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Abstract A new method of the reproducing kernel Hilbert space is applied to a two-
dimensional parabolic inverse source problem with the final overdetermination. The exact
and approximate solutions are both obtained in a reproducing kernel space. The approxi-
mate solution and its partial derivatives are proved to converge to the exact solution and
its partial derivatives, respectively. A technique is proposed to improve some existing
methods. Numerical results show that the method is of high precision, and confirm the
robustness of our method for reconstructing source parameter.
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1 Introduction

Inverse source identification problems are important in many branches of engineering sci-
ences. For example, an accurate estimation of pollutant source is crucial to environmental
safeguard in cities with high populations. Taking more and more important roles in the migra-
tion of groundwater, identification and control of pollution source and environmental protection
(see [1]), the inverse source problems attracted much attention and have been studied by many
authors (see [2–13]).

We consider the following inverse source problem of determining a pair of functions w(x, t)
and p(x) satisfying

wt(x, t) = Δw(x, t) + p(x)g(x, t), (x, t) ∈ D ≡ Ω × [0, T ], (1.1)

w(x, 0) = h(x), x ∈ Ω, (1.2)

w(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T ], (1.3)

and the overdetermination condition

w(x, T ) = r(x), x ∈ Ω, (1.4)
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where Ω is a bounded domain in R
n with smooth boundary ∂Ω, g(x, t) and h(x) are known and

sufficiently smooth functions, r(x) is measurement data, and g(x, T ) �= 0. On the right-hand
side of (1.1), p(x)g(x, t) is interpreted as a heat source. Also, in the modeling of air pollution
phenomena, p(x)g(x, t) is considered as the source pollutant.

The existence and uniqueness of the solutions to this inverse problem are discussed in [11–
13]. Various methods (see [14–20]) are developed for this inverse source problem and related
inverse parabolic problems. In this paper, we use a reproducing kernel method to obtain the
analytical solutions.

In recent years, there are broader interests in the use of reproducing kernels for the solutions
to diverse inverse problems (see [21–22]). Those papers indicate that the reproducing kernel
method (RKM) (see [23]) has many outstanding advantages. The most important advantages
of RKM are as follows:

(i) The approximate solutions and their derivatives can be proved to converge uniformly to
the exact solutions and their derivatives.

(ii) The structure of numerical programming is simple and the calculations are very fast.
In this paper, we represent an exact solution to problem (1.1)–(1.4) in a reproducing kernel

space, and improve the existing methods as follows: First, we obtain reproducing kernel spaces
by re-defining the inner products appropriately, and our reproducing kernel is simpler than [24].
Numerical calculations indicate that the method using our reproducing kernel can improve the
precision and decrease the runtime, compared to the case where we use the reproducing kernel
in [24]; second, this approach reduces problem (1.1)–(1.4) to a system of linear equations,
and avoids the Gram-Schmidt orthogonalization process which is needed in [25]. Numerical
calculations indicate that our method decreases the runtime, compared to the method using
Gram-Schmidt orthogonalization process in [25].

Before applying our method to problem (1.1)–(1.4), we first transform (1.1) to an equation
which is easy to solve by using the RKM. For simplicity, we take Ω = [0, 1] × [0, 1] ⊂ R

2 and
T = 1.

From (1.1) and (1.4), we obtain

p(x, y) =
wt(x, y, 1) − Δr(x, y)

g(x, y, 1)
, (x, y) ∈ Ω. (1.5)

Substituting (1.5) into (1.1) yields

Δw(x, y, t) − wt(x, y, t) +
g(x, y, t)
g(x, y, 1)

wt(x, y, 1) =
g(x, y, t)
g(x, y, 1)

Δr(x, y).

Again we set

u(x, y, t) = w(x, y, t) − h(x, y). (1.6)

Then we can further transform the original problem to

Lu(x, y, t) = f(x, y, t), (x, y, t) ∈ D, (1.7)

u(x, y, 0) = 0, (x, y) ∈ Ω, (1.8)
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u(0, y, t) = u(1, y, t) = 0, y, t ∈ [0, 1], (1.9)

u(x, 0, t) = u(x, 1, t) = 0, x, t ∈ [0, 1]. (1.10)

Here we set

Lu = Δu− ut +
g(x, y, t)
g(x, y, 1)

ut(x, y, 1),

f(x, y, t) =
g(x, y, t)
g(x, y, 1)

Δr(x, y) − Δh(x, y).

In our method, the datum r(x, y) with Δr(x, y) is involved in (1.7). Thus we have to assume
that r(x, y) ∈ C2(Ω). This can be proved by the classical result for an initial-boundary value
problem if we assume suitable smoothness assumptions on g(x, y, t), h(x, y) and compatibility
conditions. In this paper, we omit the detailed proofs. In Section 4, we add noises in L∞(Ω) to
r(x, y) and test the robustness of our method with Tikhonov regularization for reconstructing
p(x, y).

We apply our numerical method to problem (1.7)–(1.10). Our method is composed of:

(i) Solving (1.7)–(1.10) which is an initial-boundary value problem for a non-classical heat
equation.

(ii) Finding p(x, y) by (1.5)–(1.6).

This paper is organized as follows: In Section 2, we construct reproducing kernel spaces
according to (1.7)–(1.10). In Section 3, we give the exact and approximate solutions in the
reproducing kernel space and show the convergence. In Section 4, numerical tests are done
and we can conclude that our method is robust against errors. Finally a conclusion is given in
Section 5.

2 Several Reproducing Kernel Spaces

In this section, referring to [23], we construct the reproducing kernel space W(4,4,3)(D)
according to (1.7)–(1.10), which gives a simpler method than [24]. Henceforth “·′” denotes the
derivative in the variable under consideration.

First we define the reproducing kernel spaces Wk[0, 1], k = 4, 3, 2.

We set W4[0, 1] = {u | u, u′, u′′ and u(3) are absolutely continuous real-valued functions in
[0, 1], u(4) ∈ L2[0, 1], u(0) = 0, u(1) = 0}, and we define the inner product in W4[0, 1] by

〈u, v〉W4 =
2∑

i=1

u(i)(0)v(i)(0) +
∫ 1

0

u(4)(x)v(4)(x)dx.

Next we set W3[0, 1] = {u | u, u′ and u′′ are absolutely continuous real-valued functions in [0, 1],
u(3) ∈ L2[0, 1], u(0) = 0}, and we define the inner product in W3[0, 1] by

〈u, v〉W3 =
2∑

i=1

u(i)(0)v(i)(0) +
∫ 1

0

u(3)(x)v(3)(x)dx.
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We set W2[0, 1] = {u | u and u′ are absolutely continuous real-valued functions in [0, 1], u′′ ∈
L2[0, 1]}, and we define the inner product in W2[0, 1] by

〈u, v〉W2 =
1∑

i=0

u(i)(0)v(i)(0) +
∫ 1

0

u′′(x)v′′(x)dx.

We define the norms by ‖u‖Wk
=

√〈u, u〉Wk
for k = 4, 3, 2. We can prove that W4[0, 1],

W3[0, 1], W2[0, 1] are reproducing kernel spaces and the reproducing kernels R1, R2, R3 are
defined respectively by (2.1)–(2.3) in [26].

Moreover we assume that {pi(x)}∞i=1 and {rk(t)}∞k=1 are respectively the orthonormal bases
of the reproducing kernel spaces W4[0, 1] and W3[0, 1]. Then we define W(4,4,3)(D) by

W(4,4,3)(D) =
{
u

∣∣∣u(x, y, t) =
∞∑

i,j,k=1

cijkpi(x)pj(y)rk(t),
∞∑

i,j,k=1

|cijk|2 <∞, cijk ∈ R

}
.

The inner product of W(4,4,3)(D) is defined dy

〈u1, u2〉W(4,4,3) =
∞∑

i,j,k=1

cijkdijk,

where u1 =
∞∑

i,j,k=1

cijkpi(x)pj(y)rk(t) and u2 =
∞∑

i,j,k=1

dijkpi(x)pj(y)rk(t). The norm is denoted

by

‖u‖2
W(4,4,3)

= 〈u, u〉W(4,4,3) .

According to [23], we can obtain the following theorem.

Theorem 2.1 W(4,4,3)(D) is a reproducing kernel space and its reproducing kernel is given
by

K(x, ξ, y, ζ, t, η) = R1(x, ξ)R1(y, ζ)R2(t, η),

where R1(·, ·) and R2(·, ·) are respectively the reproducing kernel of W4[0, 1] and W3[0, 1].

Similarly to W(4,4,3)(D), we can define the reproducing kernel space W(2,2,2)(D). It is easy
to show that its reproducing kernel is

K(x, ξ, y, ζ, t, η) = R3(x, ξ)R3(y, ζ)R3(t, η),

where R3(·, ·) is the reproducing kernel of W2[0, 1].

3 The Solution of (1.7)–(1.10)

In this section, the exact solution of problem (1.7)–(1.10) is given in the reproducing kernel
space W(4,4,3)(D).

We choose a countable dense subset (xi, yi, ti) ∈ D, i = 1, 2, 3, · · · . Put

ϕi(x, y, t) = K(x, xi, y, yi, t, ti), ψi(x, y, t) = L∗ϕi(x, y, t),
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where K is the reproducing kernel of W(2,2,2)(D) and L∗ is the formal adjoint operator of L:
〈Lϕ,ψ〉W(2,2,2) = 〈ϕ,L∗ψ〉W(4,3,3) for each ϕ, ψ ∈ C∞

0 (D). Here, noting that r′k ∈ C[0, 1] by
r′k ∈ W2[0, 1] ⊂ C[0, 1] by the Sobolev embedding, we see that L : W(4,4,3)(D) →W(2,2,2)(D) is
a bounded linear operator. Let K(x, ξ, y, ζ, t, η) be the reproducing kernel of W(4,4,3)(D).

We show the following Theorems 3.1–3.2.

Theorem 3.1 Assume the uniqueness for the inverse problem (1.1)–(1.4). Then the system
{ψi}∞i=1 is complete in W(4,4,3)(D), and

ψi(x, y, t) = L(ξ,ζ,η)K(x, ξ, y, ζ, t, η)|(ξ,ζ,η)=(xi,yi,ti)

=
(∂2K

∂ξ2
+
∂2K

∂ζ2

)
(x, xi, y, yi, t, ti) − ∂ηK(x, xi, y, yi, t, ti)

+
g(xi, yi, ti)
g(xi, yi, 1)

∂ηK(x, xi, y, yi, t, 1).

We construct an orthonormal system {ψi}∞i=1 of W(4,4,3)(D) by the Gram-Schmidt orthog-
onalization process to {ψi}∞i=1:

ψi =
i∑

k=1

βikψk with βii > 0, i = 1, 2, · · · .

Theorem 3.2 A unique solution to (1.7)–(1.10) is expressed by

u =
∞∑

i=1

i∑
k=1

βikf(xk, yk, tk)ψi (3.1)

in W(4,4,3)(D).

The proofs of the theorems are given in appendix and similar to those in [26].
Next we will find approximate solutions un in the form of

un =
n∑

i=1

i∑
k=1

βikf(xk, yk, tk)ψi, (3.2)

which is the n-term truncated Fourier series of the exact solution u in (1.7)–(1.10).

Theorem 3.3 If u is the solution to (1.7)–(1.10) and un = Pnu, where Pn is the orthogonal
projection from W(4,4,3) to Span{ψi}n

i=1, then Lun(xi, yi, ti) = f(xi, yi, ti), i = 1, 2, · · · , n.
Since

Lun(xi, yi, ti) = 〈Lun, ϕi〉W(2,2,2) = 〈un, L
∗ϕi〉W(4,4,3)

= 〈Pnu, ψi〉W(4,4,3) = 〈u, Pnψi〉W(4,4,3)

= 〈u, ψi〉W(4,4,3) = 〈Lu, ϕi〉W(2,2,2)

= Lu(xi, yi, ti) = f(xi, yi, ti), i = 1, 2, · · · , n,

the proof of Theorem 3.3 is seen.
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On the other hand, we have

un(x, y, t) =
n∑

i=1

i∑
k=1

βikf(xk, yk, tk)ψi(x, y, t)

=
n∑

i=1

i∑
k=1

βikf(xk, yk, tk)
i∑

l=1

βilψl(x, y, t)

=
n∑

i=1

Ciψi(x, y, t). (3.3)

Here Ci =
n∑

l=i

l∑
k=1

βlkf(xk, yk, tk)βli, which is verified as follows.

From (3.2), we have

un(x, y, t) =
n∑

i=1

i∑
k=1

βikf(xk, yk, tk)ψi(x, y, t) =
n∑

i=1

i∑
k=1

βikf(xk, yk, tk)
i∑

l=1

βilψl(x, y, t).

Let Ci =
i∑

k=1

βikf(xk, yk, tk). Then we obtain

un =
n∑

i=1

Ci

i∑
l=1

βilψl

= C1β11ψ1

+ C2β21ψ1 + C2β22ψ2

+ C3β31ψ1 + C3β32ψ2 + C3β33ψ3

+ · · ·
+ Cnβn1ψ1 + Cnβn2ψ2 + Cnβn3ψ3 + · · · + Cnβnnψn

=
n∑

i=1

( n∑
l=i

Clβli

)
ψi

=
n∑

i=1

( n∑
l=i

l∑
k=1

βlkf(Mk)βli

)
ψi

=
n∑

i=1

Ciψi.

Thus the proof is completed.
Then, from Theorem 3.3, we have

Lun(xj , yj , tj) =
n∑

i=1

CiLψi(xj , yj , tj) = f(xj , yj , tj), j = 1, 2, · · · , n. (3.4)

Thus, from (3.4), we can obtain Ci, i = 1, 2, · · · , n. Then we take them into (3.3) and obtain
the approximate solution un(x, y, t) to (1.7)–(1.10). Finally we may obtain the approximation
of (w(x, y, t), p(x, y)) to the original inverse problem from (1.5)–(1.6).
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Using (3.3) and (3.4) to solve (1.7)–(1.10), we can avoid the Gram-Schmidt orthogonalization
process in [25] of {ψi}∞i=1. Thus we can improve the precision and considerably decrease the
runtime, compared to the method using the Gram-Schmidt orthogonalization process in [25].
Our method is efficiently applied for solving some model problems, and is of high precision.

We conclude this section with the convergence of the approximate solutions un. The exact
solution and the n-term approximation solution to (1.7)–(1.10) are respectively denoted by u

and un. Similarly to [27], we can obtain the following theorem.

Theorem 3.4 Assume that u ∈W(4,4,3)(D). Then
(i) ‖u − un‖W(4,4,3) → 0, n → ∞. Moreover the sequence ‖u − un‖W(4,4,3) is monotonically

decreasing in n.
(ii) ∥∥∥ ∂i+j+ku

∂xi∂yj∂tk
− ∂i+j+kun

∂xi∂yj∂tk

∥∥∥
C(D)

→ 0, n→ ∞

for i, j = 0, 1, 2, k = 0, 1, i+ j + k = 0, 1, 2.

4 Numerical Examples

In this section, the numerical examples are studied to demonstrate that our method is
effective and the accuracy of approximate solution is high. All computations are performed by
Mathematica 5.0.

The domain D is divided into m1×m2×m3 meshes with the step size 1
m3

in the t direction,
and the step sizes 1

m1
and 1

m2
in the x and y directions, respectively, in which m1,m2,m3 ∈ N.

Example 4.1 Consider problem (1.1)–(1.4) with the following conditions:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w(x, y, 0) = sin(x) sin(1 − x) sin(y) sin(1 − y), x, y ∈ [0, 1],
w(0, y, t) = 0, w(1, y, t) = 0, y, t ∈ [0, 1],
w(x, 0, t) = 0, w(x, 1, t) = 0, x, t ∈ [0, 1],
g(x, y, t) = exp(t), x, y, t ∈ [0, 1],
w(x, y, 1) = exp(1) sin(x) sin(1 − x) sin(y) sin(1 − y), x, y ∈ [0, 1].

The exact solution is

w(x, y, t) = exp(t) sin(x) sin(1 − x) sin(y) sin(1 − y)

and

p(x, y) = 2 cos(x) cos(1 − x) sin(y) sin(1 − y)

− 1
2
(3 cos(1) − 7 cos(1 − 2y)) sin(x) sin(1 − x).

With grid m1×m2×m3 = 5×5×5, the absolute errors of w(x, y, t) and p(x, y) are respectively
presented in Tables 1–2. Also the root mean square (RMS, for short) errors of w(x, y, t) and
p(x, y), and CPU time are given in Table 3.

In the reproducing kernel method computations, the Gram-Schmidt orthogonal step is not
included in the CPU time. We note that only the proof needs the Gram-Schmidt orthogonal
step, but the numerical computations do not depend on such a step (see (3.3)–(3.4)).
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Table 1 Absolute errors of w(x, y, t) for Example 4.1

(x, y, t) Absolute errors (x, y, t) Absolute errors (x, y, t) Absolute errors

( 1
5
, 1

5
, 1

5
) 1.53203E-4 ( 2

5
, 2

5
, 4

5
) 2.28499E-4 ( 3

5
, 4

5
, 1

5
) 2.63810E-4

( 1
5
, 1

5
, 4

5
) 4.45928E-4 ( 2

5
, 3

5
, 1

5
) 2.68327E-4 ( 3

5
, 4

5
, 4

5
) 5.15967E-4

( 1
5
, 2

5
, 1

5
) 2.00921E-4 ( 2

5
, 3

5
, 4

5
) 2.68550E-4 ( 4

5
, 1

5
, 1

5
) 1.83683E-4

( 1
5
, 2

5
, 4

5
) 4.41510E-4 ( 2

5
, 4

5
, 1

5
) 2.38590E-4 ( 4

5
, 1

5
, 4

5
) 4.96542E-4

( 1
5
, 3

5
, 1

5
) 2.20419E-4 ( 2

5
, 4

5
, 4

5
) 4.55640E-4 ( 4

5
, 2

5
, 1

5
) 2.38786E-4

( 1
5
, 3

5
, 4

5
) 4.88336E-4 ( 3

5
, 1

5
, 1

5
) 2.20609E-4 ( 4

5
, 2

5
, 4

5
) 4.56552E-4

( 1
5
, 4

5
, 1

5
) 1.83490E-4 ( 3

5
, 1

5
, 4

5
) 4.89234E-4 ( 4

5
, 3

5
, 1

5
) 2.63909E-4

( 1
5
, 4

5
, 4

5
) 4.95637E-4 ( 3

5
, 2

5
, 1

5
) 2.68471E-4 ( 4

5
, 3

5
, 4

5
) 5.16427E-4

( 2
5
, 1

5
, 1

5
) 2.01015E-4 ( 3

5
, 2

5
, 4

5
) 2.69227E-4 ( 4

5
, 4

5
, 1

5
) 2.23939E-4

( 2
5
, 1

5
, 4

5
) 4.41958E-4 ( 3

5
, 3

5
, 1

5
) 2.97001E-4 ( 4

5
, 4

5
, 4

5
) 5.65090E-4

( 2
5
, 2

5
, 1

5
) 2.42961E-4 ( 3

5
, 3

5
, 4

5
) 3.17798E-4

Table 2 Absolute errors of p(x, y) for Example 4.1

(x, y) Absolute errors (x, y) Absolute errors

( 1
5
, 1

5
) 1.06856E-3 ( 3

5
, 1

5
) 2.09500E-3

( 1
5
, 2

5
) 1.71671E-3 ( 3

5
, 2

5
) 3.37380E-3

( 1
5
, 3

5
) 2.09513E-3 ( 3

5
, 3

5
) 4.08045E-3

( 1
5
, 4

5
) 1.79791E-3 ( 3

5
, 4

5
) 3.46345E-3

( 2
5
, 1

5
) 1.71665E-3 ( 4

5
, 1

5
) 1.79778E-3

( 2
5
, 2

5
) 2.75086E-3 ( 4

5
, 2

5
) 2.92091E-3

( 2
5
, 3

5
) 3.37394E-3 ( 4

5
, 3

5
) 3.46339E-3

( 2
5
, 4

5
) 2.92107E-3 ( 4

5
, 4

5
) 2.84954E-3

Table 3 RMS errors of w(x, y, t) and p(x, y), and CPU time for Example 4.1

m1 × m2 × m3 RMS errors of RMS errors of CPU time

w(x, y, t) p(x, y) (s)

2 × 2 × 2 1.45741E-3 2.19094E-2 0.000

4 × 4 × 4 8.14157E-4 4.99276E-3 2.449

5 × 5 × 5 4.09812E-4 2.72072E-3 13.525
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The above results show that as the step sizes decrease, the precision is improved.

In addition, in order to test the robustness of our method, uniform random noise creates
noisy data by r(x, y) + d × random(x, y), where random(x, y) describes a uniform random
function with the range [0, 1]× [0, 1]. The figures 1–4 show the results with grid m1×m2×m3 =
5 × 5 × 5 and the noise factors d = 0.1, 0.2, 0.3. Our numerical method needs the second
derivatives of r, but our available data with noise are not in H2(Ω) in general and L∞(Ω)-
noises may cause instability. Therefore we apply the Tikhonov regularization for the stabilized
reconstruction.
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Figure 1 Error |w(x, y, 0.1) − w125(x, y, 0.1)| for Example 4.1: (left) d = 0.1, (middle)

d = 0.2, (right) d = 0.3
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Figure 2 Error |w(x, y, 0.5) − w125(x, y, 0.5)| for Example 4.1: (left) d = 0.1, (middle)

d = 0.2, (right) d = 0.3
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Figure 3 Error |w(x, y, 0.9) − w125(x, y, 0.9)| for Example 4.1: (left) d = 0.1, (middle)

d = 0.2, (right) d = 0.3

From the figures, it can be seen that the results become worse as the noise factor d becomes
larger, but even in the case of the largest noise level, i.e., d = 0.3, the absolute error |p − p25|
is about 0.06, which can be considered as an acceptable numerical result. Thus, the figures
confirm the robustness of our method for reconstructing p(x, y).
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Figure 4 Error |p − p25| for Example 4.1: (left) d = 0.1, (middle) d = 0.2, (right) d = 0.3

Example 4.2 Consider problem (1.1)–(1.4) with the following conditions:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w(x, y, 0) = (1 − x)y sin(x) sin(1 − y), x, y ∈ [0, 1],
w(0, y, t) = 0, w(1, y, t) = 0, y, t ∈ [0, 1],
w(x, 0, t) = 0, w(x, 1, t) = 0, x, t ∈ [0, 1],
g(x, y, t) = exp(t), x, y, t ∈ [0, 1],
w(x, y, 1) = exp(1)(1 − x)y sin(x) sin(1 − y), x, y ∈ [0, 1].

The exact solution is w(x, y, t) = exp(t)(1− x)y sin(x) sin(1− y) and p(x, y) = 2(1− x) cos(1−
y) sin(x) + y(2 cos(x) + 3(1 − x) sin(x)) sin(1 − y).

With grid m1 × m2 × m3 = 5 × 5 × 5, the absolute errors of w(x, y, t) and p(x, y) are
respectively presented in Tables 4–5. Also RMS errors of w(x, y, t) and p(x, y), and CPU time
are given in Table 6.

Table 4 Absolute errors of w(x, y, t) for Example 4.2

(x, y, t) Absolute errors (x, y, t) Absolute errors (x, y, t) Absolute errors

( 1
5
, 1

5
, 1

5
) 1.48500E-5 ( 2

5
, 2

5
, 4

5
) 7.40439E-5 ( 3

5
, 4

5
, 1

5
) 3.25325E-5

( 1
5
, 1

5
, 4

5
) 5.20127E-5 ( 2

5
, 3

5
, 1

5
) 1.25608E-5 ( 3

5
, 4

5
, 4

5
) 5.29306E-5

( 1
5
, 2

5
, 1

5
) 1.35525E-5 ( 2

5
, 3

5
, 4

5
) 6.65426E-5 ( 4

5
, 1

5
, 1

5
) 2.31230E-5

( 1
5
, 2

5
, 4

5
) 1.81131E-5 ( 2

5
, 4

5
, 1

5
) 2.63316E-5 ( 4

5
, 1

5
, 4

5
) 6.25942E-5

( 1
5
, 3

5
, 1

5
) 1.73686E-5 ( 2

5
, 4

5
, 4

5
) 4.04622E-5 ( 4

5
, 2

5
, 1

5
) 2.58179E-5

( 1
5
, 3

5
, 4

5
) 2.59583E-5 ( 3

5
, 1

5
, 1

5
) 2.00571E-5 ( 4

5
, 2

5
, 4

5
) 2.78374E-5

( 1
5
, 4

5
, 1

5
) 2.28123E-5 ( 3

5
, 1

5
, 4

5
) 3.08383E-5 ( 4

5
, 3

5
, 1

5
) 3.10066E-5

( 1
5
, 4

5
, 4

5
) 7.05839E-5 ( 3

5
, 2

5
, 1

5
) 1.45909E-5 ( 4

5
, 3

5
, 4

5
) 3.90742E-5

( 2
5
, 1

5
, 1

5
) 1.50457E-5 ( 3

5
, 2

5
, 4

5
) 6.24370E-5 ( 4

5
, 4

5
, 1

5
) 3.35229E-5

( 2
5
, 1

5
, 4

5
) 2.10252E-5 ( 3

5
, 3

5
, 1

5
) 2.06593E-5 ( 4

5
, 4

5
, 4

5
) 8.62871E-5

( 2
5
, 2

5
, 1

5
) 7.16726E-6 ( 3

5
, 3

5
, 4

5
) 5.31687E-5

From the above results, we see that as the step sizes decrease, the precision improves.

In addition, the results with grid m1 × m2 × m3 = 5 × 5 × 5 and the noise factors d =
0.1, 0.2, 0.3 are given in Figures 5–8.

From the figures, it can be seen that results become worse as noise factor d becomes larger,
but even in the case where d = 0.3, the absolute error |p− p25| is about 0.02. Thus, the figures
confirm the robustness of our method of reconstructing p(x, y).
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Figure 5 Error |w(x, y, 0.1) − w125(x, y, 0.1)| for Example 4.2: (left) d = 0.1, (middle)

d = 0.2, (right) d = 0.3
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Figure 6 Error |w(x, y, 0.5) − w125(x, y, 0.5)| for Example 4.2: (left) d = 0.1, (middle)

d = 0.2, (right) d = 0.3
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Figure 7 Error |w(x, y, 0.9) − w125(x, y, 0.9)| for Example 4.2: (left) d = 0.1, (middle)

d = 0.2, (right) d = 0.3
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Figure 8 Error |p − p25| for Example 4.2: (left) d = 0.1, (middle) d = 0.2, (right) d = 0.3
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Table 5 Absolute errors of p(x, y) for Example 4.2

(x, y) Absolute errors (x, y) Absolute errors

( 1
5
, 1

5
) 1.85085E-4 ( 3

5
, 1

5
) 8.88742E-5

( 1
5
, 2

5
) 2.73062E-4 ( 3

5
, 2

5
) 1.00934E-4

( 1
5
, 3

5
) 1.94298E-4 ( 3

5
, 3

5
) 5.42988E-5

( 1
5
, 4

5
) 2.28565E-5 ( 3

5
, 4

5
) 2.27713E-4

( 2
5
, 1

5
) 2.19547E-4 ( 4

5
, 1

5
) 6.98635E-5

( 2
5
, 2

5
) 3.15447E-4 ( 4

5
, 2

5
) 1.46284E-4

( 2
5
, 3

5
) 1.81669E-4 ( 4

5
, 3

5
) 2.67697E-4

( 2
5
, 4

5
) 5.49982E-5 ( 4

5
, 4

5
) 3.15736E-4

Table 6 RMS errors of w(x, y, t) and p(x, y), and CPU time for Example 4.2

m1 × m2 × m3 RMS errors of RMS errors of CPU time

w(x, y, t) p(x, y) (s)

2 × 2 × 2 1.09387E-4 2.52967E-2 0.000

4 × 4 × 4 2.10323E-4 1.37041E-3 3.197

5 × 5 × 5 4.23673E-5 1.93867E-4 17.175

5 Conclusions

In this article, our method has been successfully applied to a two-dimensional parabolic in-
verse source problem with the final overdetermination. Our method is based on the reproducing
kernel Hilbert space, and improves some existing methods. The numerical results confirm that
the accuracy of our method and the error of approximate solution are monotonically decreasing
in the sense of ‖ · ‖W(4,4,3) . Moreover, our method is applicable to more general inverse source
problem for parabolic equations, and we will discuss in a forthcoming paper.

6 The Proof of Theorems 3.1–3.2

6.1 The proof of Theorem 3.1

We have

ψi(x, y, t) = (L∗ϕi)(x, y, t) = 〈(L∗ϕi)(ξ, ζ, η),K(x, ξ, y, ζ, t, η)〉
= 〈ϕi(ξ, ζ, η), L(ξ,ζ,η)K(x, ξ, y, ζ, t, η)〉
= L(ξ,ζ,η)K(x, ξ, y, ζ, t, η)|(ξ,ζ,η)=(xi,yi,ti)

=
(∂2K

∂ξ2
+
∂2K

∂ζ2

)
(x, xi, y, yi, t, ti) − ∂ηK(x, xi, y, yi, t, ti)

+
g(xi, yi, ti)
g(xi, yi, 1)

∂ηK(x, xi, y, yi, t, 1).

Clearly, ψi ∈ W(4,4,3)(D).
For each fixed u ∈ W(4,4,3)(D), let 〈u, ψi〉W(4,4,3) = 0, i = 1, 2, · · · , which means that

〈u, (L∗ϕi)〉W(4,4,3) = 〈Lu(·), ϕi(·)〉W(2,2,2) = (Lu)(xi, yi, ti) = 0.
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Note that {(xi, yi, ti)}∞i=1 is dense in D, and (Lu)(x, y, t) = 0. It follows that u ≡ 0 by the
uniqueness assumption for the inverse problem. Thus the proof of Theorem 3.1 is completed.

6.2 The proof of Theorem 3.2

Applying Theorem 3.1, we easily see that {ψi}∞i=1 is a complete orthonormal system of
W(4,4,3)(D).

Note that 〈v, ϕi〉W(2,2,2) = v(xi, yi, ti) for each v ∈ W(2,2,2)(D), and we have

u(x, y, t) =
∞∑

i=1

〈u, ψi〉W(4,4,3)ψi(x, y, t)

=
∞∑

i=1

i∑
k=1

βik〈u, L∗ϕk〉W(4,4,3)ψi(x, y, t)

=
∞∑

i=1

i∑
k=1

βik〈Lu, ϕk〉W(2,2,2)ψi(x, y, t)

=
∞∑

i=1

i∑
k=1

βik〈f, ϕk〉W(2,2,2)ψi(x, y, t)

=
∞∑

i=1

i∑
k=1

βikf(xk, yk, tk)ψi(x, y, t).

The proof of the theorem is completed.
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