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Identification of the Exchange Coefficient from Indirect
Data for a Coupled Continuum Pipe-Flow Model∗

Xinming WU1 Philipp KÜGLER2 Shuai LU3

Abstract Calibration and identification of the exchange effect between the karst aquifers
and the underlying conduit network are important issues in order to gain a better under-
standing of these hydraulic systems. Based on a coupled continuum pipe-flow (CCPF for
short) model describing flows in karst aquifers, this paper is devoted to the identification
of an exchange rate function, which models the hydraulic interaction between the fissured
volume (matrix) and the conduit, from the Neumann boundary data, i.e., matrix/conduit
seepage velocity. The authors formulate this parameter identification problem as a non-
linear operator equation and prove the compactness of the forward mapping. The stable
approximate solution is obtained by two classic iterative regularization methods, namely,
the Landweber iteration and Levenberg-Marquardt method. Numerical examples on noise-
free and noisy data shed light on the appropriateness of the proposed approaches.

Keywords CCPF model, Landweber iteration, Levenberg-Marquardt method
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1 Introduction

Modeling of karst aquifers has attracted great interest nowadays because of its important
role as groundwater resources that are increasingly contaminated by industrial accidents and
human settlements. Geologically, this groundwater system shall consist of a fissured volume
(matrix) with high storage and low hydraulic conductivity, i.e., limestones or dolomites, and
karst channels (conduits) characterized by fast transport of water. Both structures, revealed by
the geologists, own two different types of flow, for instance the diffusive flow in the matrix and
turbulent flow in the conduit. Another important ingredient in describing these complex nested
structures is the exchange effort between this dual flow system controlled by the difference in
hydraulic heads (see Figure 1). For further details we refer to [16] and references therein.
These observations promote varieties of models, for instance the Navier-Stokes/Darcy system
(see [8] and references therein), the Stokes-Brinkman system (see a recent publication [7]) and
the coupled continuum pipe flow model [2–4, 13, 18, 21].
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Figure 1 Exchange effort between the matrix and the conduit controlled by the difference in

hydraulic head. hm represents the hydraulic head in the matrix and hc in the conduit, respectively

(see [11]).

The focus of the current work is on the CCPF model which is ad-hoc arising from the karst
aquifer genesis (see [2–4]). In this particular model (2D setting) conduits are degenerated into
1D traces embedded in a 2D matrix and divided into segments with a set of finite nodes {xi}
(see Figure 2). The Darcian flow is treated as a continuous flow field in the matrix Ωm by

∇ · (K∇hm) − Πex + fm = S
∂hm

∂t
, (1.1)

where hm is the hydraulic head, K is the hydraulic conductivity, S is the storativity coefficient
in the non-steady case, fm is the recharge rate in the continuum matrix and Πex is the most
important term characterizing the exchange effort between the matrix and the conduit. The
mathematical formulation of the exchange rate Πex is given by

Πex =
∑

i

δ(x − xi)qex,iV
−1

and

qex,i = αex,i(hm,i − hc,i),

where δ is the Dirac delta function, V is the unit volume of the continuum matrix and qex,i

is the Barenblatt type exchange flow at the node xi which is assumed to be proportional to
the hydraulic head difference between the matrix (i.e., hm,i) and the conduit (i.e., hc,i). The
so-called exchange coefficient αex,i is crucial and depends on many aspects, for instance, the
exchange surface, the hydraulic conductivity in the matrix and the local conduit geometry (see
[2]). At the same time, by assuming that the conduit flow is laminar and obeys the Kirchhoff’s
rule, the governing equation for the head hc in the conduit Ωc is concentrated at the nodes {xi}
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of the segments by ∑
j

Qij + qex,i + fc,i = 0, (1.2)

where fc,i stands for the recharge rate to the conduit at the ith node, and the Poiseuille flow
formula Qij takes the form

Qij = −D
hc,i − hc,j

Lij

with a laminar Poiseuille constant D and a segment length Lij between the ith and jth nodes.

Figure 2 Conduits are degenerated into 1D traces embedded in a 2D matrix and divided into

segments with nodes {xi}.

The original CCPF model (1.1)–(1.2) is intuitively natural and clear but mathematically
ill-posed. [21] showed that the hydraulic head hm blows up at the node xi if qex,i �= 0 by a
Green function representation. To overcome the point singularity in the original CCPF model
a series of modifications was carried out in [5, 13, 21] in 2D and 3D setting, respectively. In the
considered scenario, the following modified steady CCPF model is proposed in the dissertation
(see [13]): ⎧⎪⎨⎪⎩

−∇ · (K∇hm) = −α(hm − hc)δΩc + fm in Ωm,

− ∂

∂τ

(
D

∂hc

∂τ

)
= α(hm|Ωc − hc) + fc in Ωc,

(1.3)

where α is the exchange rate function depending on the space variable x, ∂
∂τ denotes the

tangential derivative along the conduit and δΩc is the Dirac delta function concentrated on Ωc.
Well-posedness of the modified version was provided in [13], its FEM numerical approximation
was given in [5]. The heuristic derivation from the original CCPF model to the modified one
was well addressed in [21] where the exchange rate function α in (1.3) is adjusted accordingly.
In principle the exchange coefficient αex in the original CCPF model (1.1)–(1.2) must differ
from the one in the modified model (1.3) depending on different conduit variables.

Calibration of the exchange coefficient αex or rate function α in both CCPF models is of great
importance as it determines exchange effects between the fissured matrix and the karst conduits.
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In early literatures [16] provided comprehensive numerical illustration by tuning various values
of the source term in (1.1) as exchange effort with different conduit discharge, i.e., natural
springs or drainage galleries. [2–3] investigated karst aquifer genesis by the original CCPF
model with different constant values of αex in order to obtain different geological developments.
Recently [6] focused on the validity of the modified CCPF model by calibrating a constant
exchange parameter α in order to fit the Stokes-Darcy system which is viewed as a “true model”.
Nevertheless, calibrating the exchange rate function directly is difficult in real situations because
the conduit is embedded in the matrix and usually not easy to reach. Thus, to identify this
function from indirect measurements is of interests. However, to reconstruct such a function
defined on an interior trace in the CCPF model is rather new and, to the best of our knowledge,
only [17] reported a uniqueness result from Cauchy data on parts of the boundary, for instance,
by measuring the hydrology head and the seepage velocity. No algorithms have been proposed
to numerically approximate α from indirect measurements.

At the same time, the reconstruction of the exchange rate function α from indirect data can
be viewed as a class of nonlinear inverse problems that has been well-investigated from different
aspects including the geophysical identification or industrial applications (see [9]). Often, such
nonlinear inverse problems are ill-posed, for which compactness of the forward mapping together
with, e.g., its (local) injectivity is a sufficient criterion (see [9]). In order to solve ill-posed
problems, we require appropriate regularization techniques. In Section 3 a short introduction
with two iterative regularization schemes will be provided as background knowledge. A recent
monograph on the subject is [15] which contains comprehensive convergence analysis for these
approaches. We note that in order to numerically demonstrate the procedure, we will confine
our problem to a rectangle domain and a straight conduit, but a generalized setting can be
established in a similar manner.

The paper is organized in the following sense. In Section 2 we formulate an abstract
parameter-to-output nonlinear operator which maps the exchange rate function α to the lo-
cal Neumann boundary data (i.e., the measurable seepage velocity of the fluid flow). The
mathematical compactness of this operator is verified as well. The corresponding inverse prob-
lem of identifying the exchange rate function from the measured (noisy) boundary data and its
iterative regularization schemes are thus considered in Section 3 in order to obtain a stable ap-
proximation. Section 4 contains several numerical examples which verifies the appropriateness
of our proposed approaches.

2 Well-Posedness of the Direct Problem

As mentioned in the previous section, the CCPF model in the current work will be considered
in a simplified geometry of the domain with homogeneous, the isotropic porous media and a
straight conduit. To be more precise, the matrix and conduit are defined as Ωm = (0, 1)×(−1, 1)
and Ωc = (0, 1) × {y = 0}, respectively; the hydraulic conductivity K is equal to KI with a
constant K and an identity tensor I; D represents a Poiseuille constant. We thus obtain the
following CCPF model for a laminar flow:⎧⎪⎨⎪⎩

−KΔhm = −α(x)(hm − hc)δΩc + fm in Ωm,

−D
∂2hc

∂x2
= α(x)(hm|Ωc − hc) + fc in Ωc

(2.1)
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with Dirichlet boundary conditions ⎧⎪⎨⎪⎩
hm|∂Ωm = gD,

hc(0) = c1,

hc(1) = c2.

(2.2)

Assumption 2.1 In the sequel of this paper, we will assume that the source terms satisfy
fm ∈ L2(Ωm) and fc ∈ L2(Ωc). Moreover, the exchange rate function α belongs to a closed
subset L2(Ωc) ∩ Π whose definition is

Π := {α ∈ L∞
+ (Ωc) and α ≥ ζ with ζ > 0}.

Remark 2.1 The well-posedness of the CCPF model (2.1)–(2.2), i.e., existence, stability
as well as uniqueness of the weak solution, can be proven by assuming weaker regularities
α ∈ L∞

+ (Ωc), fm ∈ H−1(Ωm) and fc ∈ H−1(Ωc) referring to [5, 13]. Nevertheless, higher
regularities listed in Assumption 2.1 are necessary to well define a so-called parameter-to-output
mapping (operator) F in the forthcoming equation (2.6).

Under Assumption 2.1 the following estimates hold with homogeneous Dirichlet boundary
conditions respectively for (2.1):

‖hm‖H1
0 (Ωm) + ‖hc‖H1

0 (Ωc) ≤ C(‖fm‖H−1(Ωm) + ‖fc‖H−1(Ωc)), (2.3)

‖hm‖
H

3
2 −ε(Ωm)

+ ‖hc‖H2(Ωc) ≤ C(ε)(‖fm‖
H− 1

2 (Ωm)
+ ‖fc‖L2(Ωc)) (2.4)

with different regularity of the right-hand sides. We note that the global regularity of hm in
(2.4) is nearly optimal in the sense that there exists no constant β ≥ 0 satisfying hm ∈ H

3
2+β

even assuming that fm and fc are smooth. For detailed arguments we refer to [5, 13].
In order to put the following contents into the classical framework of regularization theory

of inverse problems (see [9]), we will formulate the inverse problem as an abstract (nonlinear)
operator equation, i.e.,

F (α) = z, (2.5)

where α is the exchange rate function and z represents the observed data. Referring to Section 1,
the observed data can be chosen as the seepage velocity of the fluid flow K∇hm at the boundaries
∂Ωm, ∂Ωc which is equivalent to partial Neumann data of (hm, hc). Without loss of generality,
by denoting Γ1 = {x = 0, y ∈ (−1, 0)}, Γ2 = {x = 0, y ∈ (0, 1)} and Γ3 = {x = 0, y = 0}, the
following nonlinear operator F will be considered:

F : α →
(
K

∂hm

∂n

∣∣∣
Γ1

, K
∂hm

∂n

∣∣∣
Γ2

, D
∂hc

∂n

∣∣∣
Γ3

)
, (2.6)

where n is the outer unit normal vector. The existence of the Neumann boundary trace K ∂hm

∂n

∣∣
Γ1

or K ∂hm

∂n

∣∣
Γ2

follows from the local regularity results in [17] by assuming fm ∈ L2(Ω). Moreover,
to adopt the domain D(F ) as well as the observation data space Y , we confine the nonlinear
operator F mapping from

D(F ) = (L2(Ωc) ∩ Π) ⊂ L2(Ωc)
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to
Y = (L2(Γ1), L2(Γ2), L∞(Γ3)).

The aim of the current section is to show that the nonlinear operator (2.6) is compact.
The following proposition holds true in view of the estimates (2.3)–(2.4).

Proposition 2.1 Let Assumption 2.1 hold true. Then ‖hm‖
H

3
2−ε(Ωm)

and ‖hc‖H2(Ωc)

depend continuously on the exchange rate function α.

Proof Define two exchange rate functions α1 and α2 and by (hm,1, hc,1) and (hm,2, hc,2)
denote the solutions of (2.1)–(2.2), respectively. Taking the difference between these two systems
and introducing ĥm = hm,1 − hm,2, ĥc = hc,1 − hc,2, we obtain⎧⎪⎨⎪⎩

−KΔĥm = −α2(ĥm − ĥc)δΩc − (α1 − α2)(hm,1 − hc,1)δΩc in Ωm,

−D
∂2ĥc

∂x2
= α2(ĥm|Ωc − ĥc) + (α1 − α2)(hm,1|Ωc − hc,1) in Ωc

(2.7)

with homogeneous Dirichlet boundary conditions. A basic estimate then holds true in view of
(2.3) for the coupled system (2.7) such that

‖ĥm‖H1
0 (Ωm) + ‖ĥc‖H1

0 (Ωc) ≤ C‖α1 − α2‖L∞(Ωc)‖hm,1 − hc,1‖L2(Ωc)

≤ C‖α1 − α2‖L∞(Ωc)(‖hm,1‖H1(Ωm) + ‖hc,1‖L2(Ωc))

≤ C(‖fm‖L2(Ωm) + ‖fc‖L2(Ωc))‖α1 − α2‖L∞(Ωc), (2.8)

where C is a constant independent of α1, α2, fm and fc.
The regularity of ĥc is obtained directly from the regularity of α1,2, hm,1, hc,1 and the

basic regularity ĥm ∈ H1
0 (Ωm). We then deduce the results on ĥm. Choosing the test function

(vm, vc) satisfying vm ∈ H1
0 (Ωm) and vc ≡ 0, there exists∫

Ωm

K∇ĥm · ∇vmdxdy = −
∫ 1

0

α2(ĥm(x, 0) − ĥc(x))vm(x, 0)dx

−
∫ 1

0

(α1 − α2)(hm,1(x, 0) − hc,1(x))vm(x, 0)dx.

Following the arguments in [13], both integrals on the right-hand side define a bounded linear
functional f̃m ∈ H− 1

2−ε(Ωm) and have an estimate, by using (2.8),

‖f̃m‖
H− 1

2−ε(Ωm)
≤ C(ε)(‖fm‖L2(Ωm) + ‖fc‖L2(Ωc))‖α1 − α2‖L∞(Ωc).

Since the source terms fm and fc are fixed, we then derive for (2.7),

‖ĥm‖
H

3
2 −ε(Ωm)

+ ‖ĥc‖H2(Ωc) ≤ C(ε)(‖fm‖L2(Ωm) + ‖fc‖L2(Ωc))‖α1 − α2‖L∞(Ωc)

≤ C(ε, fm, fc)‖α1 − α2‖L∞(Ωc)

by implementing the classical elliptic regularity in domains with corners (see [12]) and interpo-
lation inequalities (see [1]). The proposition is thus proven.

The next proposition verifies that the local Neumann boundary trace
(
K ∂hm

∂n

∣∣
Γ1

, K ∂hm

∂n

∣∣
Γ2

)
also depends continuously on the exchange rate function α.
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Proposition 2.2 Let Assumption 2.1 hold true. Then
∥∥K ∂hm

∂n

∥∥
Hs(Γ1)

and
∥∥K ∂hm

∂n

∥∥
Hs(Γ2)

for 0 < s < 1
2 depend continuously on the exchange rate function α.

Proof Define two exchange rate functions α1 and α2, the validity of the Neumann boundary
data for hm,1 and hm,2 relies on the local regularity of the CCPF model, i.e., [17, Lemma 2.3].

Using the same argument as in [10, Section 6.3.1] with respect to the system (2.7), we can
prove for an open set V � W � Ωm and W ∩ Ωc = ∅, an interior estimate such that

‖ĥm‖H2(V ) ≤ C‖ĥm‖H1(Ωm) ≤ C(fm, fc)‖α1 − α2‖L∞(Ωc).

The proposition is valid due to the trace theorem.

We then present the following theorem which confirms the compactness of our proposed
forward operator F .

Theorem 2.1 Let Assumption 2.1 hold true. The forward operator F defined in (2.6) is a
compact mapping from (L2(Ωc) ∩ Π) to (L2(Γ1), L2(Γ2), L∞(Γ3)).

Proof The proof is straight forward by noticing Proposition 2.2 and the compactness of
the identify operator from (Hs(Γ1), Hs(Γ2)) to (L2(Γ1), L2(Γ2)).

The compactness of the forward operator F thus indicates the ill-posedness of the inverse
problems and calls for the use of regularization methods, for instance iterative regularization
schemes, which are presented in the forthcoming section.

3 Parameter Identification Problem for the CCPF Model

3.1 Inverse problems and iterative regularization schemes

The focus of the current section is the identification of the exchange rate function α(x)
defined on Ωc from the measurements of the partial Neumann boundary data(

K
∂hm

∂n

∣∣∣
Γ1

, K
∂hm

∂n

∣∣∣
Γ2

, D
∂hc

∂n

∣∣∣
Γ3

)
,

i.e., the boundary seepage velocity (see Figure 3).
These types of parameter identification problems for partial differential equations are typ-

ically ill-posed (see [9, 14–15]), provided that the forward operator F is compact. The ill-
posedness means that the solution of (2.5) may not be unique or may not depend continuously
on the measurement data, if it exists. Throughout the current work, we assume that the exact
data z ∈ Y is attainable, such that there exists an exchange rate function α† ∈ (L2(Ωc) ∩ Π)
satisfying F (α†) = z. In practice, the exact right-hand side z is not known precisely such that
only a noisy observation zγ ∈ Y is available with

‖z − zγ‖ ≤ γ, (3.1)

where γ is the noise level. The parameter identification problem then aims at reconstructing α

from the noisy observation data zγ such that

F (α) = zγ (3.2)
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holds in an approximate sense. Due to the discontinuity of F−1, standard algorithms for
well-posed problems, e.g., the Newton iteration, are not suitable for solving (3.2) (see [15]).
Regularization methods are then necessary for avoiding an arbitrarily large amplification of the
data noise or round-off errors.

Figure 3 The parameter identification problem (3.2) where the observation data is defined on

(Γ1, Γ2, Γ3) and the exchange rate function α to be reconstructed is defined on Ωc.

Iterative regularization schemes are popular in solving nonlinear ill-posed problems. We refer
to [15] for a comprehensive discussion of these schemes as well as a well-developed convergence
analysis. To incorporate the convex constraint of the subset Π from Assumption 2.1 we define
a metric projection such that PΠ(α) = max(α, ζ). The simplest scheme among all iterative
regularization methods is the Landweber iteration which, taking the metric projection PΠ into
account, is read as {

α̃ = αγ
k + F ′(αγ

k)∗(zγ − F (αγ
k)),

αγ
k+1 = PΠ(α̃, ζ),

k = 1, 2, · · · . (3.3)

An alternative and faster regularization scheme is the Levenberg-Marquardt method. The idea
of this method is to find the next iterate as a minimizer of

min{‖zγ − F (αγ
k) − F ′(αγ

k)(α − αγ
k)‖2 + εk‖α − αγ

k‖2},

which gives rise to the Euler equation, by additionally adding the metric projection PΠ,{
α̃ = αγ

k + (F ′(αγ
k)∗F ′(αγ

k) + εkI)−1(F ′(αγ
k)∗(zγ − F (αγ

k))),
αγ

k+1 = PΠ(α̃, ζ),
k = 1, 2, · · · , (3.4)

where I is the identity matrix and εk is a stabilizing parameter. The initial guess α0 contains
available a priori information about the unknown exact solution. For further reading on the
convex constraint and metric projection we recommend [20, Chapter 9] and a recent paper [19].

3.2 Linearization of the forward operator

In both schemes (3.3)–(3.4), one needs to implement the Fréchet derivative F ′ of the forward
operator F as well as its adjoint operator. In the sequel, we provide a formal calculation of these
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operators for our forward operator (2.6). Consider some test function v(x) ∈ (L2(Ωc)∩Π), e.g.,
linear B-splines for a representation of α(x) from the solution space. Then, the linearization of
the nonlinear operator F at α is given by

F ′(α) : v →
(
K

∂um

∂n

∣∣∣
Γ1

, K
∂um

∂n

∣∣∣
Γ2

, D
∂uc

∂n

∣∣∣
Γ3

)
,

where um and uc denote the solutions of the linearization of the CCPF model (2.1)–(2.2) in the
direction v, that is,⎧⎪⎨⎪⎩

−KΔum = −α(x)(um − uc)δΩc − v(x)(hm − hc)δΩc in Ωm,

−D
∂2uc

∂x2
= α(x)(um|Ωc − uc) + v(x)(hm|Ωc − hc) in Ωc

(3.5)

with homogeneous Dirichlet boundary conditions⎧⎪⎨⎪⎩
um|∂Ωm = 0,

uc(0) = 0,

uc(1) = 0.

(3.6)

The linearized system (3.5)–(3.6) is easily obtained by defining elements α1(x) = α(x) and
α2(x) = α(x) + ηv(x) with a scalar η and by taking the difference of both systems with

um = lim
η→0

hm,2 − hm,1

η
, uc = lim

η→0

hc,2 − hc,1

η
.

Now we verify that F ′(α) is indeed the Fréchet derivative of F at α. To start, we define

uη
m = hm,2 − hm,1 − ηum, uη

c = hc,2 − hc,1 − ηuc.

Standard calculation shows that (uη
m, uη

c ) solves the following system, with i = 1, 2,

−KΔuη
m = − η[(hm,2 − hm,1) − (hc,2 − hc,1)]︸ ︷︷ ︸

g1(η,hm,i,hc,i)

vδΩc

− α [(hm,2 − hm,1 − ηum) − (hc,2 − hc,1 − ηuc)]︸ ︷︷ ︸
g2(η,hm,i,hc,i)

δΩc in Ωm,

−D
∂2uη

c

∂x2
= η[(hm,2|δΩc

− hm,1|δΩc
) − (hc,2 − hc,1)]︸ ︷︷ ︸

g3(η,hm,i,hc,i)

v

+ α [(hm,2|δΩc
− hm,1|δΩc

− ηum|δΩc
) − (hc,2 − hc,1 − ηuc)]︸ ︷︷ ︸

g4(η,hm,i,hc,i)

in Ωc,

and the boundary condition ⎧⎪⎨⎪⎩
uη

m|∂Ωm = 0,

uη
c (0) = 0,

uη
c (1) = 0.

By the definition of (um, uc) and the appropriate estimate (2.3), we can derive

4∑
j=1

‖gj(η, hm,i, hc,i)‖L∞(Ωc) ≤ C(fm, fc)η2,
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which yields the following theorem.

Theorem 3.1 The forward operator F subject to (2.1)–(2.2) is Fréchet differentiable. The
derivative F ′(α) maps v onto the solution of (3.5)–(3.6).

3.3 Adjoint of the linearization forward operator

In an abstract form the underlying CCPF model (2.1) for h = (hm, hc) can be written as

−Th = αAh + f

with the operator matrices

T =

⎛⎝KΔ 0

0 D
∂2

∂x2

⎞⎠ , A =
(−δΩc δΩc

|Ωc −I

)
.

Then, the linearized system (3.5) for u = (um, uc) is read as

−Tu = αAu + vAh.

Moreover, the following proposition holds true.

Proposition 3.1 The operator A is self-adjoint.

Proof We take h1 = (hm,1, hc,1) and h2 = (hm,2, hc,2). It follows that

〈Ah1, h2〉Ωm×Ωc = −
∫

Ωm

(hm,1 − hc,1)δΩchm,2dxdy +
∫

Ωc

(hm,1|Ωc − hc,1)hc,2dx

= −
∫

Ωc

(hm,1|Ωc − hc,1)hm,2|Ωcdx +
∫

Ωc

(hm,1|Ωc − hc,1)hc,2dx

= −
∫

Ωc

(hm,2|Ωc − hc,2)hm,1|Ωcdx +
∫

Ωc

(hm,2|Ωc − hc,2)hc,1dx

= −
∫

Ωm

(hm,2 − hc,2)δΩchm,1dxdy +
∫

Ωc

(hm,2|Ωc − hc,2)hc,1dx

= 〈h1, Ah2〉Ωm×Ωc ,

which proves the proposition.

Suppose that we have an element r = (r1, r2, r3) with r1 ∈ L2(Γ1), r2 ∈ L2(Γ2) and
r3 ∈ L∞(Γ3) belonging to the space Y of our observation (which finally plays the role of the
residual in the iteration). In view of Proposition 3.1, we can obtain the adjoint equation of
(3.5)–(3.6) satisfying ⎧⎪⎨⎪⎩

−KΔχm = −α(x)(χm − χc)δΩc in Ωm,

−D
∂2χc

∂x2
= α(x)(χm|Ωc − χc) in Ωc

(3.7)
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with the boundary conditions ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

χm|Γ1 = r1,

χm|Γ2 = r2,

χm|∂Ωm\(Γ1∪Γ2) = 0,

χc(0) = r3,

χc(1) = 0.

(3.8)

We note that the adjoint operator of F ′(α) satisfies the variational equality

〈F ′(α)v, r〉Γ1 ,Γ2,Γ3 = 〈v, F ′(α)∗r〉Ωc . (3.9)

Notice that the left-hand side in (3.9) yields

〈F ′(α)v, r〉Γ1,Γ2,Γ3 =
∫ 0

−1

K
∂um

∂n
(0, y) · r1(y)dy

+
∫ 1

0

K
∂um

∂n
(0, y) · r2(y)dy + D

∂uc

∂n
(0) · r3.

Furthermore, by standard calculation, we have

−
∫

Ωm

KΔχmumdx = −
∫

∂Ωm

K
∂χm

∂n
um ds +

∫
Ωm

K∇χm · ∇umdx

= −
∫

∂Ωm

K
∂χm

∂n
umds +

∫
∂Ωm

K
∂um

∂n
χmds −

∫
Ωm

KΔumχmdx

=
∫

Γ1

K
∂um

∂n
r1ds +

∫
Γ2

K
∂um

∂n
r2ds −

∫
Ωm

KΔumχmdx,

−
∫

Ωc

D
∂2χc

∂x2
ucdx = −D

∂χc

∂n
(0)uc(0) − D

∂χc

∂n
(1)uc(1)

+ D
∂uc

∂n
(0)χc(0) + D

∂uc

∂n
(1)χc(1) −

∫
Ωc

D
∂2χc

∂x2
dx

= D
∂uc

∂n
(0)r3 −

∫
Ωc

D
∂2χc

∂x2
dx.

Summarizing, we obtain the variational equality for any test function v such that

〈F ′(α)v, r〉Γ1 ,Γ2,Γ3 =
∫

Γ1

K
∂um

∂n
r1ds +

∫
Γ2

K
∂um

∂n
r2ds + D

∂uc

∂n
(0)r3

= −
∫

Ωm

KΔχmumdx +
∫

Ωm

KΔumχmdx

−
∫

Ωc

D
∂2χc

∂x2
ucdx +

∫
Ωc

D
∂2uc

∂x2
χcdx

=
∫

Ωc

v(hm|Ωc − hc)(χm|Ωc − χc)dx

≡ 〈v, F ′(α)∗r〉Ωc . (3.10)

The iterative regularization scheme (3.3) or (3.4) together with the variational equality (3.10)
allows us to update the iterates by means of the test function v.
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4 Numerical Examples

In this section, we apply both the Landweber iteration (3.3) and the Levenberg-Marquardt
method (3.4) for solving the parameter identification problem (3.2) arising in the CCPF model
(2.1)–(2.2).

The forward problem solver is realized by the finite element method. Detailed discussions
can be found in [5]. For convenience, we set the hydraulic conductivity K, the Poiseuille
constant D to unity. The exact exchange rate function α† takes the form of

α†(x) = 2 + sin(πx)

along the trace Ωc. Such a choice is consistent with the observation that the exchange rate
function α shall be in the order of the hydraulic conductivity K (see [2–3]). In the current
work we are interested in a non-constant exchange rate function since the constant one can be
approximated by measuring the data near the boundary ∂Ωc which serves as an initial guess
for the iterative regularization schemes.

We adjust the source terms fm and fc in the domain Ωm and Ωc respectively, so that the
forward solution (hm, hc) satisfies⎧⎪⎨⎪⎩

hc(x) = 2 sin(πx) in x ∈ (0, 1) = Ωc,

hm(x, y) = sin(πx) in (x, y) ∈ (0, 1) × (−1, 0] ⊂ Ωm,

hm(x, y) = (−(2 + sin(πx))y + 1) sin(πx) in (x, y) ∈ (0, 1) × [0, 1) ⊂ Ωm.

Recall the inverse problem

F (α†) = z.

The noise ξ is added to the exact observation z in the following sense by a uniform noise
generator with mean zero and ‖ξ‖ = 1 such that

zγ = z + γξ,

where the constant γ plays the role of noise level and is set to 10−2. Due to the ill-posedness of
the inverse problems, we need an appropriate stopping criteria so that the iterative regulariza-
tion schemes enforce stability and noise propagation is avoided. Here we simply implement the
discrepancy principle (see [15]), i.e., where the iteration will terminate at step k∗ = k∗(γ, zγ)
when the following criterion is satisfied

‖zγ − F (αk∗)‖ ≤ τγ < ‖zγ − F (αk)‖, 0 ≤ k < k∗ (4.1)

with τ ≥ 1. In all examples, to start the iterative regularization schemes, we choose the initial
guess α0 = 2 along the whole trace Ωc. The metric projection PΠ is defined with a threshold
value ζ = 10−16, i.e., PΠ := PΠ(·, 10−16) in (3.3)–(3.4). The test functions v for the exchange
rate function are 32 equally distributed linear B-splines.

4.1 Performance of the Landweber iteration

The first example is devoted to the exact observation data z, where we want to demonstrate
the convergence of the proposed Landweber iteration (3.3). In each iteration, the next iterate
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is updated along test functions following the variational equality (3.10) by substituting the
variable r with the iterative residual zγ − F (αγ

k).
Since there is no noise in the observation data, the stopping criteria is considered when

convergence is observed in the sense that

‖αk+1 − αk‖
‖αk‖ ≤ 10−5. (4.2)

The upper panel in Figure 4 presents the approximated iterative solution α1584 which satisfies
the mentioned stopping criteria (4.2). The middle and lower panels in Figure 4 collect the
iterative residual ‖F (αk)−z‖ as well as the iterative solution error ‖αk−α†‖ for k = 1, · · · , 1584
(x-axis) in the log-scale. As one can observe in these panels, both the iterative residual and
the iterative solution error decrease as the iterative step k increases. The approximate iterative
solution α1584, which fulfills the stopping criteria, has a solution error ‖α1584 − α†‖ ≈ 0.8222.
Actually, one can tune the stopping criteria with a smaller value to improve the accuracy but
the computational cost increases as well.

−

−

−

−

−

Figure 4 Landweber iteration for the reconstruction of the exchange rate function α† with noise-

free data. The stopping criteria is (4.2). Upper figure: The approximate iterative solution α1584

versus the exact solution. Middle figure: The iterative residual ‖F (αk) − z‖ for k = 1, · · · , 1584

(x-axis) in the log-scale. Lower figure: The iterative solution error ‖αk − α†‖ for k = 1, · · · , 1584

(x-axis) in the log-scale.

We continue with the second numerical test on noisy observation data zγ . The Landweber
iteration takes the same form as for the noise-free data but one has to choose the stopping
index satisfying the discrepancy principle (4.1). In our implementation, we fix the constant
τ = 1.01. Figure 5 collects all the numerical results for the noisy data with γ = 10−2. Though
the approximate iterative solution looks similar to that of the exact data, the iterative residual
‖F (αγ

k) − zγ‖, on the other hand, never breaks the threshold value 10−2 (see the middle panel
in Figure 5). The discrepancy principle provides an approximate solution αγ

1618 after 1618
iterative steps with a solution error ‖αγ

1618 − α†‖ ≈ 0.7841.
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−

−

−

−

−

−

Figure 5 Landweber iteration for the reconstruction of the exchange rate function α† with noisy

data γ = 10−2. The stopping criteria is the discrepancy principle (4.1). Upper figure: The ap-

proximate iterative solution αγ
1618 versus the exact solution. Middle figure: The iterative residual

‖F (αγ
k)− zγ‖ for k = 1, · · · , 1618 (x-axis) in the log-scale. Lower figure: The iterative parameter

error ‖αγ
k − α†‖ for k = 1, · · · , 1618 (x-axis) in the log-scale.

The overall computational cost for one Landweber iteration includes calls of the direct and
adjoint solvers, i.e., referring to (3.3) where the forward operator F (α) and its linearized adjoint
form F ′(α)∗ are necessarily realized. However the number of iterations can be rather large and
the convergence might be slow (see Figure 4). Thus we will consider a faster Newton type
method in the coming subsection.

4.2 Performance of the Levenberg-Marquardt method

The Levenberg-Marquardt method (3.4) is computationally realized by solving in each it-
eration the linear system (F ′(αγ

k)∗F ′(αγ
k) + εkI)α̃k = F ′(αγ

k)∗(zγ − F (αγ
k)) in order to obtain

α̃k = α̃ − αγ
k before applying the projection operator. A numerical discretization of the ex-

change rate function as, e.g., a linear combination of linear B-splines then corresponds to a
matrix representation of the linear mapping F ′(αγ

k)∗F ′(αγ
k) + εkI.

We test the Levenberg-Marquardt method for the noise-free data z. The stopping criteria
is the same as for the Landweber iteration presented in (4.2) and we collect all the numerical
results in Figure 6. As one can see from Figure 6 the residual decreases much faster compared
with the Landweber iteration in Figure 4. At the same time, the Levenberg-Marquardt method
provides a solution error of ‖α986 − α†‖ ≈ 0.4019. One additional observation is that the
approximate iterative solution α986 in the upper panel of Figure 6 has a smaller error in the
left part of the domain (i.e., x ∈ (0, 0.5)) in comparison to the right part of the domain (i.e.,
x ∈ (0.5, 1)). This is because we impose the observation data near the left boundary of the
domain Ωm which influences the left part of the approximate solution more than the right part.

Similar to the previous subsection, the performance of the Levenberg-Marquardt method
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for noisy data zγ is summarized in Figure 7. This time, the iterative regularization method
terminates only after 3 steps where the iterative approximate solution is presented in the upper
panel of Figure 7. The solution error is ‖αγ

3 − α†‖ ≈ 0.7358 which is better than that of the
Landweber iteration but with significantly less computational costs.

−

−

−

−

−

Figure 6 Levenberg-Marquardt method for the reconstruction of the exchange rate function α†

with noise-free data. Captions of the panels are the same as in Figure 4 with k = 986.
−

−

−

−

−

−

−

Figure 7 Levenberg-Marquardt method for the reconstruction of the exchange rate function α†

with noisy data γ = 10−2. Captions of the panels are the same as in Figure 5 with k = 3.

Finally we will illustrate the ill-posedness of the inverse problem as well as the importance
of the discrepancy principle as a stopping criterion. The problem setting is the same as in
Figure 7. At the same time, we disable the discrepancy principle and let the iteration proceed
until 100 iterations. As one can observe in Figure 8, though the iterative residual ‖F (αγ

k)− zγ‖
monotonically decreases as the iteration index increases, the solution error ‖αγ

k − α†‖ does not
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proceed in the same manner.

−

−

−

−

−

−

Figure 8 Levenberg-Marquardt method for the reconstruction of the exchange rate function α†

with noisy data γ = 10−2 but without application of the discrepancy principle. Captions of the

panels are the same as in Figure 5 with k = 100.

4.3 Further discussion of the exact exchange rate function

−

−

−

−

−

−

−
−

Figure 9 Levenberg-Marquardt method for the reconstruction of the exchange rate function α†

with projection PΠ. Captions of the panels are the same as in Figure 6 with k = 2038.
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Recently the authors of [6] revealed that to fit the modified CCPF model with the Stoke-
Darcy system by minimizing the difference of the solutions via two models one should choose
the nearly optimal choice of exchange rate function sufficiently larger than 25. We also tested
an additional α†(x) = 26+10x(1−x) in a similar process. The numerical results are consistent
with those in previous subsections and are omitted here.

In both tested cases the metric projection PΠ in (3.3)–(3.4) did not play a role since both
exact exchange rate functions α† are quite large. To validate such a projection operator, we
choose a small α† = 0.99 ∗ 10−5 − 0.9 ∗ 10−5 sin(πx). In the first 6 iterations of the Levenberg-
Marquardt method, the operator PΠ projects the exchange rate function α̃ to the subset Π with
ζ = 10−16. It is observed that the algorithm still performs well and the approximate solution
is presented in the upper panel of Figure 9 with a solution error ‖α2038 − α†‖ ≈ 3.1199 ∗ 10−5.
For the case of noisy data, situations are similar and we omit the details.
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