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Abstract The lasso of Tibshirani (1996) is a least-squares problem regularized by the
�1 norm. Due to the sparseness promoting property of the �1 norm, the lasso has been
received much attention in recent years. In this paper some basic properties of the lasso
and two variants of it are exploited. Moreover, the proximal method and its variants such
as the relaxed proximal algorithm and a dual method for solving the lasso by iterative
algorithms are presented.
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1 Introduction

The lasso, abbreviation of “the least absolute shrinkage and selection operator”, was intro-

duced by Tibshirani [16] in 1996, and is formulated as the minimization problem

min
x

1
2
‖Ax− b‖2

2 subject to ‖x‖1 ≤ t, (1.1)

where A is an m×n (real) matrix, x ∈ R
n, b ∈ R

m, t ≥ 0 is a tuning parameter. An equivalent

formulation of (1.1) is the following regularized minimization problem:

min
x

1
2
‖Ax− b‖2

2 + γ‖x‖1, (1.2)

where γ ≥ 0 is a regularization parameter.

The lasso has been received much attention due to the involvement of the �1 norm which

promotes sparsity, phenomenon of many practical problems arising from image/signal process-

ing, machine learning, and so on. As a matter of fact, in imaging science, an image of interest

is to be recovered from a set of linear measurements taken randomly. Mathematically this can

be modeled by the linear system

Ax = b, (1.3)
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where A is an m× n matrix, b ∈ R
m is an input, and x ∈ R

n represents the image of interest

to be recovered. Since the dimension of x is high (i.e., n is big), and since the number of

measurements is restricted due to some constraints (i.e., m is small compared to n), the system

(1.3) is underdetermined (indeed, m � n), and therefore, admits infinitely many solutions (if

any).

If a certain appropriate sparsity condition is imposed, then even a unique solution of the

underdetermined linear system (1.3) can be achieved. This is the crucial role played by sparsity

which has brought a revolution in the imaging science and which is pioneered by Donoho,

Candes, Tao, Romberg, and others (see [1–4, 7]), which has given birth to a new research field-

compressed sensing. Sparsity is based on the observation that, upon a cleverly chosen basis,

such as a Fourier or wavelet basis, it will often be the case that an image/signal of interest is

concentrated on a small subset of the basis, hence it can be well approximated by vectors with

a small number of nonzero coefficients. Conversely, an image/signal is of interest if it can be

described with a small number of the basis vectors. An uninteresting image/signal is actually

viewed as noise as commented in [5].

Sparsity is described by the quasi �0-“norm”:

‖x‖0 := #{j : xj �= 0}

for x = (xj)t ∈ R
n. For a given integer k ≥ 0, x ∈ R

n is said to be k-sparse if ‖x‖0 ≤ k.

The sparse recovery problem is stated as finding the sparsest vector x with Ax = b. Put in

another way, the problem is

min ‖x‖0 subject to Ax = b. (1.4)

The minimization (1.4) is numerically unstable and combinatorial NP-hard, and therefore,

not an ideal way to recover the sparse signal x.

The �1 norm plays an intermediation role between the �0 norm and the �2 norm since it

shares the sensitivity of the �0 norm to sparsity and the convexity of the unit ball that the �2
norm has. However, minimizing the �0 norm is NP-complete and untractable, while minimizing

the �2 norm, though much easier and efficient, requires too many measurements to guarantee

an accurate recovery. Therefore, minimizing the �1 norm is ideal as it combines the parsimony

of �0 and the computational efficiency of �2 (see [5]).

The theory of compressed sensing surprisingly guarantees that the NP-hard combinatorial

minimization (1.4) can be exactly reconstructed under certain conditions by solving a convex

polynomial-time �1-minimization.

It is known (see [1, 3]) that if a sufficiently sparse x0 exists such that Ax0 = b, then the

basis pursuit (BP for short)

min ‖x‖1 subject to Ax = b, (1.5)
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will find it; indeed (1.5) can be recast as a linear program.

When measurements take errors (which is often the case), the exact system (1.3) turns out

to be inexact:

Ax = b+ e. (1.6)

In this case, one looks for a vector with minimum �1 norm and within some error range, that

is, the minimization problem

min ‖x‖1 subject to ‖Ax− b‖2 ≤ ε (1.7)

or the equivalent �1 regularized minimization (1.2) will be taken into consideration.

Candes, Romberg and Tao [2] showed that if a sufficiently sparse x0 exists such that b =

Ax0 + e, for some small error term ‖e‖2 ≤ ε, then the solution x∗ to (1.7) will be close to x0,

that is, ‖x∗ − x0‖2 ≤ Cε, where C is a constant.

In this paper we will exploit certain basic properties of the lasso (1.1) and iterative methods

for solving it. The main iterative method will be the proximal algorithm which will also be

used to solve variants of the lasso such as the elastic net (see [20]) and the smooth-lasso (see

[10]).

2 Properties of the Lasso

Let γ > 0 and let

ϕγ(x) :=
1
2
‖Ax− b‖2

2 + γ‖x‖1

be the objective function of the lasso (1.1). Observing that ϕγ is continuous, convex, and

coercive (i.e., ϕγ(x) → ∞ as ‖x‖2 → ∞), we have that the lasso (1.1) has a closed convex

nonempty solution set which is denoted as Sγ .

Proposition 2.1 We have the following assertions:

(i) A and ‖ · ‖1 take constant values on the solution set Sγ, that is, Axγ = Ax̂γ and

‖xγ‖1 = ‖x̂γ‖1 for xγ , x̂γ ∈ Sγ. Consequently, the functions

ρ(γ) := ‖xγ‖1 and η(γ) :=
1
2
‖Axγ − b‖2

2 (xγ ∈ Sγ)

are well-defined for γ > 0 (not depending upon a particular choice xγ ∈ Sγ). This is mentioned

in [15].

(ii) ρ(γ) is decreasing and continuous in γ > 0.

(iii) η(γ) is increasing in γ > 0.

(iv) Axγ is continuous in γ > 0.

Proof For xγ ∈ Sγ , we have the optimality condition

0 ∈ ∂ϕγ(xγ) = At(Axγ − b) + γ∂‖xγ‖1.
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Here At is the transpose of A and ∂ stands for the subdifferential in the sense of convex analysis.

Equivalently,

− 1
γ
At(Axγ − b) ∈ ∂‖xγ‖1.

It turns out by the subdifferential inequality that

γ‖x‖1 ≥ γ‖xγ‖1 − 〈At(Axγ − b), x− xγ〉, ∀x ∈ R
n. (2.1)

In particular, for x̂γ ∈ Sγ ,

γ‖x̂γ‖1 ≥ γ‖xγ‖1 − 〈At(Axγ − b), x̂γ − xγ〉. (2.2)

Interchange xγ and x̂γ to get

γ‖xγ‖1 ≥ γ‖x̂γ‖1 − 〈At(Ax̂γ − b), xγ − x̂γ〉. (2.3)

Adding up (2.2) and (2.3) yields

0 ≥ 〈Ax̂γ −Axγ , Ax̂γ −Axγ〉 = ‖Ax̂γ −Axγ‖2
2.

Consequently, Ax̂γ = Axγ , and (2.2)–(2.3) imply that ‖x̂γ‖1 ≥ ‖xγ‖1 and ‖xγ‖1 ≥ ‖x̂γ‖1,

respectively. Hence ‖x̂γ‖1 = ‖xγ‖1, and the functions

ρ(γ) := ‖xγ‖1 and η(γ) :=
1
2
‖Axγ − b‖2

2 (xγ ∈ Sγ)

are well-defined for γ > 0.

It turns out from (2.1) that, for xβ ∈ Sβ,

γ‖xβ‖1 ≥ γ‖xγ‖1 − 〈At(Axγ − b), xβ − xγ〉. (2.4)

Interchange γ and β, and xγ and xβ to find

β‖xγ‖1 ≥ β‖xβ‖1 − 〈At(Axβ − b), xγ − xβ〉. (2.5)

Adding up (2.4) and (2.5) obtains

(γ − β)(‖xβ‖1 − ‖xγ‖1) ≥ ‖Axγ −Axβ‖2
2. (2.6)

We therefore find that if γ > β, then ‖xβ‖1 ≥ ‖xγ‖1, that is, ρ(γ) is nonincreasing. (2.6) also

shows that Axγ is continuous, so is η(γ) for γ > 0.

To see that the function η(γ) = 1
2‖Axγ−b‖2

2 is increasing, we use the inequality (as xγ ∈ Sγ)

1
2
‖Axγ − b‖2

2 + γ‖xγ‖1 ≤ 1
2
‖Axβ − b‖2

2 + γ‖xβ‖1

which implies that

1
2
‖Axγ − b‖2

2 ≤ 1
2
‖Axβ − b‖2

2 + γ(‖xβ‖1 − ‖xγ‖1).
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Now if β > γ > 0, then as ‖xβ‖1 ≤ ‖xγ‖1, we immediately find that 1
2‖Axγ−b‖2

2 ≤ 1
2‖Axβ−b‖2

2.

Namely, η(γ) ≤ η(β).

Finally we prove the continuity of ρ(γ) for γ > 0. Rewrite (2.4) as

γ‖xβ‖1 ≥ γ‖xγ‖1 − 〈Axγ − b, Axβ −Axγ〉, β > 0, γ > 0. (2.7)

Since Axγ is continuous in γ > 0, it follows from (2.7) that

lim
β→γ+

γρ(β) = lim
β→γ+

γ‖xβ‖1 ≥ γ‖xγ‖1 = γρ(γ).

Hence, ρ(γ+) ≥ ρ(γ) which in turns implies that ρ(γ+) = ρ(γ) for ρ is nonincreasing. Hence,

ρ is right-continuous in γ > 0.

Taking the limit in (2.7) as γ → β− yields ρ(β) ≥ ρ(β−) that again implies ρ(β) = ρ(β−)

due to the nonincreasingness of ρ. Hence, ρ is also left-continuous. Consequently, ρ(γ) is

continuous in γ > 0.

Proposition 2.2 We have the following assertions:

(i) lim
γ→0

η(γ) = inf
x

1
2‖Ax− b‖2

2.

(ii) lim
γ→0

ρ(γ) = min
x∈S

‖x‖1, where S := argmin
x

‖Ax− b‖2
2 is assumed to be nonempty.

Proof (i) Taking the limit as γ → 0 in the inequality

1
2
‖Axγ − b‖2

2 + γ‖xγ‖1 ≤ 1
2
‖Ax− b‖2

2 + γ‖x‖1, ∀x ∈ R
n

immediately yields the result in (i).

As for (ii), we claim that ‖xγ‖1 ≤ ‖x̃‖1 for any x̃ ∈ S. As a matter of fact,

1
2
‖Axγ − b‖2

2 + γ‖xγ‖1 ≤ 1
2
‖Ax̃− b‖2

2 + γ‖x̃‖1

≤ 1
2
‖Axγ − b‖2

2 + γ‖x̃‖1.

It turns out that ‖xγ‖1 ≤ ‖x̃‖1. In particular, ‖xγ‖1 ≤ ‖x†‖1, where x† is an �1 minimum-norm

element of S, that is, ‖x†‖1 = min
x∈S

‖x‖1.

Assume γk → 0 is such that xγk
→ x̂. Then for any x,

1
2
‖Ax̂− b‖2

2 = lim
k→∞

1
2
‖Axγk

− b‖2
2

= lim
k→∞

1
2
‖Axγk

− b‖2
2 + γk‖xγk

‖1

≤ lim
k→∞

1
2
‖Ax− b‖2

2 + γk‖x‖1 =
1
2
‖Ax− b‖2

2.

It turns out that x̂ solves the least-squares problem min
x

1
2‖Ax − b‖2

2, that is, x̂ ∈ S. Conse-

quently,

lim
γ→0

ρ(γ) = lim
k→∞

ρ(γk) = lim
k→∞

‖xγk
‖1 = ‖x̂‖1 ≤ ‖x†‖1 = min

x∈S
‖x‖1.

This suffices to ensure that the conclusion of (ii) holds.
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Proposition 2.3 If γ > ‖Atb‖∞, then xγ = 0.

Proof The optimality condition

−At(Axγ − b) ∈ γ∂‖xγ‖1

implies that

−(At(Axγ − b))j = γ · sgn[(xγ)j ], if (xγ)j �= 0,

|(At(Axγ − b))j | ≤ γ, if (xγ)j = 0.

Taking x = 2xγ in the subdifferential inequality (2.1) yields

γ‖xγ‖1 ≥ −〈At(Axγ − b), xγ〉
= −

∑
(xγ)j �=0

(At(Axγ − b))j(xγ)j

=
∑

(xγ)j �=0

γ · [sgn(xγ)]j(xγ)j

= γ
∑

(xγ)j �=0

|(xγ)j | = γ‖x‖1.

It follows that

γ‖xγ‖1 = −〈At(Axγ − b), xγ〉 = −〈Axγ − b, Axγ〉 (2.8)

= −‖Axγ − b‖2 − 〈xγ , A
tb〉

≤ −〈xγ , A
tb〉 ≤ ‖xγ‖1‖Atb‖∞. (2.9)

It turns out from (2.9) that if xγ �= 0, we must have γ ≤ ‖Atb‖∞.

Notice that (2.8) shows that ρ(λ) = ‖xγ‖1 can be determined by Axγ . Hence we arrive at

the following characterization of solutions of the lasso (1.2).

Proposition 2.4 Let γ > 0 and xγ ∈ Sγ. Then x̂ ∈ R
n is a solution to the lasso (1.2) if

and only if Ax̂ = Axγ and ‖x̂‖ ≤ ‖xγ‖. It turns out that

Sγ = xγ +N(A) ∩Bρ(γ), (2.10)

where N(A) = {x ∈ R
n : Ax = 0} is the null space of A, and Br denotes the closed ball centered

at the origin and with radius of r > 0. This shows that if we can find one solution to the lasso

(1.2), then all solutions are found by (2.10).

Proof If Ax̂ = Axγ , then from the relation

ϕγ(xγ) =
1
2
‖Axγ − b‖2

2 + γ‖xγ‖1

≤ 1
2
‖Ax̂− b‖2

2 + γ‖x̂‖1

=
1
2
‖Axγ − b‖2

2 + γ‖x̂‖1,
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we obtain ‖xγ‖1 ≤ ‖x̂‖1. This together with the assumption of ‖x̂‖1 ≤ ‖xγ‖1 yields that

‖x̂‖1 = ‖xγ‖1 which in turns implies that ϕγ(x̂) = ϕγ(xγ) and hence x̂ ∈ Sγ .

Remark 2.1 As the solution set Sγ may contain more than one point, it is unclear what

kind of continuity of the set-valued function γ → Sγ one can get.

Definition 2.1 The function from (0,∞) to [0,∞) × [0,∞) defined by

�(γ) := (ρ(γ), η(γ)), γ > 0 (2.11)

is referred to as the L-curve associating with the lasso (1.2).

Proposition 2.5 The L-curve �(γ) is continuous on (0,∞).

Remark 2.2 For more details on L-curves and properties about the �1 regularization, the

reader is referred to [15].

3 Iterative Methods

In this section we discuss the proximal iterative methods for solving the lasso (1.1). The

basics are Moreau’s concept of proximal operators.

3.1 Proximal operators

Let H be a Hilbert space and let Γ0(H) be the space of convex functions in H that are

proper, lower semicontinuous and convex.

Definition 3.1 (see [13–14]) The proximal operator of ϕ ∈ Γ0(H) is defined by

proxϕ(x) := arg min
v∈H

{
ϕ(v) +

1
2
‖v − x‖2

}
, x ∈ H.

The proximal operator of ϕ of order λ > 0 is defined as the proximal operator of λϕ, that is,

proxλϕ(x) := argmin
v∈H

{
ϕ(v) +

1
2λ

‖v − x‖2
}
, x ∈ H.

We list some of the useful properties of the proximal operators.

Proposition 3.1 (see [6, 12]) Let ϕ ∈ Γ0(H) and λ ∈ (0,∞).

(i) If C is a nonempty closed convex subset of H and ϕ = IC is the indicator function of

C, then the proximal operators proxλϕ = PC for all λ > 0, where PC is the metric projection

from H onto C.

(ii) proxλϕ is firmly nonexpansive (hence nonexpansive). Recall that a mapping T : H → H

is firmly nonexpansive if

‖Tx− Ty‖2 ≤ 〈Tx− Ty, x− y〉, x, y ∈ H ;

and T is nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖, x, y ∈ H.



508 H. -K. Xu

(iii) proxλϕ = (I + λ∂ϕ)−1 = J∂ϕ
λ , the resolvent of the subdifferential ∂ϕ of ϕ.

(iv) y ∈ ∂ϕ(x) ⇔ x = proxϕ(x+ y).

The proximal operator can have a closed-form expression in some cases as shown in the

examples below (see [6]).

(a) If we take ϕ to be the norm of H , then

proxλ‖·‖(x) =

⎧⎨
⎩

(
1 − λ

‖x‖
)
x, if ‖x‖ > λ,

0, if ‖x‖ ≤ λ.

In particular, if H = R, then the above operator is reduced to the scalar soft-thresholding

operator:

proxλ|·|(x) = sgn(x)max{|x| − λ, 0}.

(b) Let {en}∞n=1 be an orthonormal basis of H and let {ωn} be a sequence of real positive

numbers. Define ϕ ∈ Γ0(H) by

ϕ(x) =
∞∑

n=1

ωn|〈x, en〉|.

Then proxϕ(x) =
∞∑

n=1
αnen, where

αn = sgn(〈x, en〉)max{|〈x, en〉| − ωn, 0}.

Below is a restatement, in terms of proximal operators, of the resolvent identity of monotone

operators.

Lemma 3.1 The proximal identity

proxλϕx = proxμϕ

(μ
λ
x+

(
1 − μ

λ

)
proxλϕx

)
(3.1)

holds for ϕ ∈ Γ0(H), x ∈ H, λ > 0 and μ > 0.

3.2 Proximal algorithm

The proximal operators can be used to minimize the sum of two convex functions

min
x∈H

f(x) + g(x), (3.2)

where f, g ∈ Γ0(H). It is often the case where one of them is differentiable. The following is an

equivalent fixed point formulation of (3.2).

Proposition 3.2 Let f, g ∈ Γ0(H). Let x∗ ∈ H and λ > 0. Assume that f is finite-valued

and differentiable on H. Then x∗ is a solution to (3.2) if and only if x∗ solves the fixed point

equation

x∗ = (proxλg ◦ (I − λ∇f))x∗. (3.3)
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Proof x∗ is a solution to (3.2) if and only if

0 ∈ ∂(f + g)x∗ = ∇f(x∗) + ∂g(x∗)

⇔ 0 ∈ x∗ + λ∂g(x∗) − (x∗ − λ∇f(x∗))

⇔ x∗ − λ∇f(x∗) ∈ x∗ + λ∇g(x∗)
⇔ x∗ = (I + λ∂g)−1(x∗ − λ∇f(x∗))

⇔ x∗ = (proxλg ◦ (I − λ∇f))x∗.

The fixed point equation (3.3) immediately yields the following fixed point algorithm which

is also known as the proximal algorithm for solving (3.2) as follows.

Initialize x0 ∈ H and iterate

xn+1 = (proxλng ◦ (I − λn∇f))xn, (3.4)

where {λn} is a sequence of positive real numbers.

Theorem 3.1 Let f, g ∈ Γ0(H) and assume that (3.2) is consistent. Assume in addition

that

(i) ∇f is Lipschitz continuous on H:

‖∇f(x) −∇f(y)‖ ≤ L‖x− y‖, x, y ∈ H ;

(ii) 0 < lim inf
n→∞ λn ≤ lim sup

n→∞
λn <

2
L .

Then the sequence (xn) generated by the proximal algorithm (3.4) converges weakly to a solution

of (3.2). No strong convergence in general is guaranteed if dimH = ∞.

To prove Theorem 3.1, we need the concept of averaged mappings. Let α ∈ (0, 1). We say

that a mapping T : H → H is an α-averaged mapping (α-av for short) if

T = (1 − α)I + αU, with U : H → H nonexpansive.

It is known that projections and proximal operators are all 1
2 -av (equivalently, firmly nonex-

pansive). We will use the fact (see [18]) that under the assumption (i) of Theorem 3.1, the

operator

Vλ ≡ proxλg ◦ (I − λ∇f) (3.5)

is 2+λL
4 -av for each 0 < λ < 2

L .

It is known (see [9]) that if T is averaged with fixed points, then for each x ∈ H , the iterates

T nx converge weakly to a fixed point of T .

It is also known (see [9]) that if T is nonexpansive, then the graph of I − T is demiclosed,

namely, if xn → x weakly and (I − T )xn → y in norm, then it follows that (I − T )x = y. This

is named the demiclosedness principle of nonexpansive mappings in Hilbert spaces.
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Proof of Theorem 3.1 A sketch of the proof is given in [6]. Here we provide a slightly

different proof by using the technique of averaged mappings (see [18]). Let S be the nonempty

solution set of (3.2). For the sake of simplicity, we may assume, due to condition (ii), that

0 < a ≤ λn ≤ b <
2
L

(3.6)

for all n, where a, b are constants.

We follow the proof of [18, Theorem 4.1] (see also [11]). As Vλ given in (3.5) is 2+λL
4 -av, we

can rewrite

Vλ ≡ proxλg ◦ (I − λ∇f) =
(
1 − 2 + λL

4

)
I +

2 + λL

4
Tλ, (3.7)

where Tλ is nonexpansive, that is, ‖Tλx− Tλy‖ ≤ ‖x− y‖, x, y ∈ H. Putting

Vn = Vλn , Tn = Tλn , γn =
2 + λnL

4
,

we then get

xn+1 = Vnxn = (1 − γn)xn + γnTnxn. (3.8)

It turns out that, for x∗ ∈ S = Fix(Vγ) for all γ > 0,

‖xn+1 − x∗‖2 = ‖(1 − γn)(xn − x∗) + γn(Tnxn − x∗)‖2

= (1 − γn)‖xn − x∗‖2 + γn‖Tnxn − x∗‖2 − γn(1 − γn)‖xn − Tnxn‖2

≤ ‖xn − x∗‖2 − γn(1 − γn)‖xn − Tnxn‖2

≤ ‖xn − x∗‖2 − δ‖xn − Tnxn‖2, (3.9)

where δ = (2+aL)(2−bL)
16 > 0. Consequently, we get ‖xn+1 − x∗‖ ≤ ‖xn − x∗‖ for all n. In

particular, (xn) is bounded and moreover,

lim
n→∞ ‖xn − x∗‖ exists for every x∗ ∈ S. (3.10)

We also find from (3.9) that

‖xn − Tnxn‖2 ≤ 1
δ
(‖xn − x∗‖2 − ‖xn+1 − x∗‖2).

This implies that ‖xn − Tnxn‖ → 0 which, together with (3.8), in turns implies that

lim
n→∞ ‖xn+1 − xn‖ = lim

n→∞ ‖xn − Vnxn‖ = 0. (3.11)

We next prove that

ωw(xn) ⊂ S. (3.12)

Here ωw(xn) is the set of all weak cluster points of (xn). Note that (3.10) and (3.12) together

guarantee that (xn) converges weakly to a point in S and then the proof is complete. To see
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(3.12) we proceed as follows. Take x̂ ∈ ωw(xn) and assume that {xnj} is a subsequence of {xn}
weakly converging to x̂. Hence by (3.11), xnj+1 → x̂ weakly as well. Without loss of generality,

We may assume λnj → λ. Then 0 < λ < 2
L , due to (3.6). Setting T = proxλg(I − λ∇f), then

T is nonexpansive. Setting

yj = xnj − λnj∇f(xnj ), zj = xnj − λ∇f(xnj ),

we get xnj+1 = Vnjxnj = proxλnj
gyj . Using the proximal identity of Lemma 3.1, we deduce

that

‖xnj+1 − Txnj‖ = ‖proxλnj
gyj − proxλgzj‖

=
∥∥∥proxλg

( λ

λnj

yj +
(
1 − λ

λnj

)
proxλnj

gyj

)
− proxλgzj

∥∥∥
≤ λ

λnj

‖yj − zj‖ +
∣∣∣1 − λ

λnj

∣∣∣‖xnj+1 − zj‖

≤ λ

λnj

|λnj − λ|‖∇f(xnj )‖ +
|λnj − λ|
λnj

‖xnj+1 − zj‖.

As (xn) is bounded, ∇f is Lipschitz continuous (hence {∇f(xn)} is bounded), and λnj → λ,

we immediately derive from the last relation that ‖xnj+1 − Txnj‖ → 0. As a result, we find

‖xnj − Txnj‖ ≤ ‖xnj − xnj+1‖ + ‖xnj+1 − Txnj‖ → 0.

Now the demiclosedness of the nonexpansive mapping I−T implies that (I−T )x̂ = 0. Namely,

x̂ ∈ Fix(T ) = S. Therefore, (3.12) is proven.

3.3 The relaxed proximal algorithm

The relaxed proximal algorithm generates a sequence (xn) by the following iteration process.

Initialize x0 ∈ H and iterate

xn+1 = (1 − αn)xn + αn(proxλng ◦ (I − λn∇f))xn, (3.13)

where {αn} is the sequence of relaxation parameters and {λn} is a sequence of positive real

numbers.

Theorem 3.2 Let f, g ∈ Γ0(H) and assume (3.2) is consistent. Assume in addition that

(i) ∇f is Lipschitz continuous on H :

‖∇f(x) −∇f(y)‖ ≤ L‖x− y‖, x, y ∈ H ;

(ii) 0 < lim inf
n→∞ λn ≤ lim sup

n→∞
λn <

2
L ;

(iii) 0 < lim inf
n→∞ αn ≤ lim sup

n→∞
αn <

4
2+L·lim sup

n→∞
λn
.

Then the sequence (xn) generated by the proximal algorithm (3.4) converges weakly to a solution

of (3.2). No strong convergence in general is guaranteed if dimH = ∞.
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Proof Set

Vn = proxλng(I − λn∇f).

Notice that Vn can be rewritten as

Vn = (1 − γn)I + γnTn,

where γn = 2+λnL
4 and Tn is nonexpansive. We can further rewrite xn+1 as

xn+1 = (1 − αnγn)xn + αnγnTnxn. (3.14)

Also observe from the assumption (iii) that

0 < lim inf
n→∞ αnγn ≤ lim sup

n→∞
αnγn < 1. (3.15)

Repeating the proof of Theorem 3.1, we can see (details omitted) that the relations (3.10) and

(3.12) remain valid and consequently, (xn) converges weakly to a solution of (3.2).

If we take λn ≡ λ ∈ (
0, 2

L

)
, then the relaxation parameters αn can be chosen from a larger

pool; they are allowed to be close to zero. More precisely, we have the following theorem (the

proof of which is omitted here).

Theorem 3.3 Let f, g ∈ Γ0(H) and assume that (3.2) is consistent. Define the sequence

(xn) by the following relaxed proximal algorithm:

xn+1 = (1 − αn)xn + αnproxλg(xn − λ∇f(xn)). (3.16)

Suppose that

(a) ∇f satisfies the Lipschitz continuity condition (i) in Theorem 3.2;

(b) 0 < λ < 2
L and 0 ≤ αn ≤ 2+λL

4 for all n;

(c)
∞∑

n=1
αn

(
4

2+λL − αn

)
= ∞.

Then (xn) converges weakly to a solution of (3.2).

3.4 Proximal algorithms applied to lasso

For the lasso (1.2), we take f(x) = 1
2‖Ax − b‖2

2 and g(x) = γ‖x‖1. Noticing that ∇f(x) =

At(Ax − b) which is Lipschitz continuous with constant L = ‖A‖2
2, we find that the proximal

algorithm (3.4) is reduced to the following algorithm for solving the lasso (1.2):

xk+1 = proxλkγ‖·‖1
(I − λk(At(Ax − b)))xk. (3.17)

Here we have that for α > 0 and x = (xj)t ∈ R
n,

proxα‖·‖1
= (proxα|·|(x1), · · · , proxα|·|(xn))t

with proxα|·|(β) = sgn(β)max{|β| − α, 0} for β ∈ R.

The convergence theorem of the general proximal algorithm (1.2) reads the following for the

lasso (1.2).
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Theorem 3.4 Assume 0 < lim inf
k→∞

λk ≤ lim sup
k→∞

λk <
2

‖A‖2
2
. Then the sequence (xk) generated

by the proximal algorithm (3.17) converges to a solution of the lasso (1.2).

Remark 3.1 The relaxed proximal algorithms (3.13) and (3.16) also apply to the lasso

(1.2). We however do not elaborate on the details.

3.5 A dual method

Write f(x) = 1
2‖Ax − b‖2

2 and g(x) = ‖x‖1. Then the lasso (1.2) can be rewritten as the

minimization

min
x∈Rn

F (x) := f(x) + γg(x). (3.18)

The optimality condition of (3.18) is that x∗ ∈ R
n solves (3.18) if and only of

0 ∈ ∇f(x∗) + γ∂g(x∗) or − 1
γ
∇f(x∗) ∈ ∂g(x∗).

This is equivalent, by the Young-Fenchel equality, to

x∗ ∈ ∂g∗
(
− 1
γ
∇f(x∗)

)
, (3.19)

where g∗ is the conjugate of g, that is,

g∗(v) := sup
u∈Rn

{〈u, v〉 − g(u)}, v ∈ R
n. (3.20)

Setting y = x∗ − λ∇f(x∗) with λ > 0, we rewrite (3.19) as

x∗ ∈ ∂g∗
( 1
λγ

(y − x∗)
)
. (3.21)

Further setting z = 1
λγ (y − x∗), we get

0 ∈ z − 1
λγ
y +

1
λγ
∂g∗(z). (3.22)

Note that (3.22) can be rewritten as

0 ∈ ∂
(1

2

∥∥∥z − 1
λγ
y
∥∥∥2

2
+

1
λγ
g∗(z)

)
. (3.23)

This is equivalent to the fact

z = argmin
v∈Rn

(1
2

∥∥∥v − 1
λγ
y
∥∥∥2

2
+

1
λγ
g∗(v)

)
. (3.24)

Since the homogeneity of g (i.e., g(σx) = σg(x) for all σ ≥ 0 and x ∈ R
n) implies that the

conjugate of g, g∗, is the indicator of the set K := ∂g(0):

g∗(v) =
{

0, if v ∈ K,
∞, if v �∈ K,

(3.25)
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it turns out that (3.24) is reduced equivalently to

z = argmin
v∈K

1
2

∥∥∥v − 1
λγ
y
∥∥∥2

2
= PK

( 1
λγ
y
)
. (3.26)

Here PK is the projection from R
n to K. Now by the definition of z, (3.26) implies that

y − x∗ = λγPK

( 1
λγ
y
)

= PλγK(y). (3.27)

It follows from (3.27) that x∗ is a solution of (3.18) if and only if x∗ satisfies the fixed point

equation

x∗ = (I − PλγK)y = (I − PλγK)(I − λ∇f)x∗. (3.28)

Consequently, we immediately get the following fixed point algorithm for the lasso (1.2):

xk+1 = (I − PλkγK)(I − λk∇f)xk. (3.29)

Similarly to the proximal algorithm (3.4), we have the following convergence result for the

algorithm (3.29) with the proof omitted.

Theorem 3.5 Let (λk) satisfy the condition

0 < lim inf
k→∞

λk ≤ lim sup
k→∞

λk <
2

‖A‖2
2

.

Then the sequence (xk) generated by the algorithm (3.29) converges to a solution of the lasso

(1.2).

Remark 3.2 Since K = ∂‖x‖1|x=0 = [−1, 1]n, we see that for each positive number λ > 0,

PλK is the projection of the Euclidean space R
n to the �∞ ball with radius of λ, i.e., {x ∈ R

n :

‖x‖∞ ≤ λ}. It is not hard to find that the algorithm (3.29) and the proximal algorithm (3.4)

coincide when g(x) = ‖x‖1 because it is not hard to find that proxλγK = I − PλγK . Indeed if

we set

v = proxλγK(u) = arg min
z∈Rn

{
g(z) +

1
2λγ

‖z − u‖2
2

}
,

then we have

0 ∈ ∂g(v) +
1
λγ

(v − u) or v ∈ ∂g∗
( 1
λγ

(u− v)
)
.

This corresponds to (3.21) in the case where v := x∗ and u := y. It therefore turns out by

(3.27) that proxλγK(u) = v = u− PλγKu.

4 Two Variants of the Lasso

The lasso (1.2) promotes sparsity. It is however ill-posed and regularization is needed to

accommodate other purposes except for sparsity. Various variants of the lasso have therefore

been proposed. Here we focus on the elastic net (see [20]) and S-lasso (see [10]). More variants,

such as group lasso and sparse group lasso can be found in [8, 17, 19].
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4.1 The elastic net

Zou and Hastie [20] used the �2 norm (i.e., the Tikhonov regularization) to regularize the

lasso (1.2) and therefore introduced the concept of the elastic net (EN for short) which is the

minimization problem

min
x∈Rn

ϕγ,δ(x) :=
1
2
‖Ax− b‖2

2 + γ‖x‖1 + δ
1
2
‖x‖2

2. (4.1)

The advantage of EN lies in its unique solvability (due to the strict convexity if the �2 norm).

Let xγ,δ denote this unique solution of EN (4.1). Set

ϕγ(x) :=
1
2
‖Ax− b‖2

2 + γ‖x‖1 (4.2)

and

ψδ(x) :=
1
2
‖Ax− b‖2

2 + δ
1
2
‖x‖2

2, (4.3)

which are the limits of ϕγ,δ(x) as δ → 0 and γ → 0, respectively.

Proposition 4.1 Assume that the least-squares problem

min
x∈Rn

1
2
‖Ax− b‖2

2 (4.4)

is consistent and let S be its nonempty set of solutions.

(i) As δ → 0 (for each fixed γ > 0), xγ,δ → x†γ and x†γ is the (�2) minimum-norm solution

to the lasso (1.2). Moreover, as γ → 0, every cluster point of x†γ is an (�1) minimum-norm

solution of the least-squares problem (4.4), i.e., a point in the set argmin
x∈S

‖x‖1.

(ii) As γ → 0 (for each fixed δ > 0), xγ,δ → x̂δ and x̂δ is the unique solution to the �2
regularized problem:

min
x
ψδ(x) :=

1
2
‖Ax− b‖2

2 + δ
1
2
‖x‖2

2. (4.5)

Moreover, as δ → 0, x̂δ → x̂ which is the �2 minimal norm solution of (4.4), that is, x̂ =

argmin
x∈S

‖x‖2.

Proof Since the subdifferential

∂ϕγ,δ(x) = At(Ax− b) + δx+ γ∂‖x‖1,

it turns out that the optimality condition 0 ∈ ∂ϕγ,δ(xγ,δ) is reduced to

− 1
γ

(At(Axγ,δ − b) + δxγ,δ) ∈ ∂‖xγ,δ‖1. (4.6)

Then the subdifferential inequality implies that

γ‖x‖1 ≥ γ‖xγ,δ‖1 − 〈At(Axγ,δ − b) + δxγ,δ, x− xγ,δ〉 (4.7)
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for x ∈ R
n. Replacing x with xγ′,δ′ for γ′ > 0 and δ′ > 0 yields

γ‖xγ′,δ′‖1 ≥ γ‖xγ,δ‖1 − 〈At(Axγ,δ − b) + δxγ,δ, xγ′,δ′ − xγ,δ〉. (4.8)

Interchange γ and γ′ and δ and δ′ to get

γ′‖xγ,δ‖1 ≥ γ′‖xγ′,δ′‖1 − 〈At(Axγ′,δ′ − b) + δ′xγ′,δ′ , xγ,δ − xγ′,δ′〉. (4.9)

Adding up (4.8) and (4.9) results in

(γ′ − γ)(‖xγ,δ‖1 − ‖xγ′,δ′‖1) ≥ ‖Axγ,δ −Axγ′,δ′‖2
2 + 〈δxγ,δ − δ′xγ′,δ′ , xγ,δ − xγ′,δ′〉

≥ ‖Axγ,δ −Axγ′,δ′‖2
2 + (δ − δ′)〈xγ,δ, xγ,δ − xγ′,δ′〉

+ δ′‖xγ,δ − xγ′,δ′‖2
2. (4.10)

Since the elastic net is the Tikhonov regularization of the lasso (1.2), we know that

‖xγ,δ‖2 ≤ ‖xγ‖2 ≤ c‖xγ‖1 ≤ c‖x‖1, xγ ∈ Sγ , x ∈ S.

Here Sγ = arg min
x∈Rn

ϕγ(x), S = arg min
x∈Rn

‖Ax − b‖2
2, and c is a constant. It follows that {xγ,δ} is

bounded. Hence, it follows from (4.10) that (γ, δ) �→ xγ,δ is a continuous curve for γ, δ > 0.

Now by the properties of Tikhonov’s regularization, we have that for each fixed γ > 0, xγ,δ

converges as δ → 0 to the �2 minimal norm solution of the lasso (1.2), i.e., the unique element

x†γ := arg min
x∈Sγ

‖x‖2. Moreover, by Proposition 2.2, we find that every cluster point (as γ → 0)

of the net (x†γ) belongs to the set argmin
x∈S

‖x‖1.

Next fix δ > 0 and let x̂δ be the unique solution to the minimization (4.3). This uniqueness

and Proposition 2.2 imply that xγ,δ → x̂δ as γ → 0. Now the standard property of Tikhonov’s

regularization ensures that x̂δ → argmin
x∈S

‖x‖2 as δ → 0.

The elastic net (4.1) can be solved by the proximal algorithm (3.4). Take f(x) = 1
2‖Ax −

b‖2
2 + 1

2δ‖x‖2
2 and g(x) = γ‖x‖1, then the proximal algorithm (3.4) is reduced to

xk+1 = proxλkγ‖·‖1
(xk − λk[At(Axk − b) + δxk]). (4.11)

The convergence of this algorithm is given as follows.

Theorem 4.1 Assume

0 < lim inf
k→∞

λk ≤ lim sup
k→∞

λn <
2

‖A‖2
2 + δ

.

Then the sequence (xk) generated by the algorithm (4.11) converges to the solution of the EN

(4.1).

We can also take f(x) = 1
2‖Ax − b‖2

2 and g(x) = γ‖x‖1 + 1
2δ‖x‖2

2, then proxμg(x) =

proxν‖·‖1

(
1

1+μδx
)

with ν = μγ
1+μδ , and the proximal algorithm (3.4) is reduced to

xk+1 = proxνk‖·‖1

( 1
1 + δγk

(xk − λkA
t(Axk − b))

)
, (4.12)

where νk = γλk

1+δγk
. Convergence of this algorithm is given below.
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Theorem 4.2 Assume

0 < lim inf
k→∞

λk ≤ lim sup
k→∞

λk <
2

‖A‖2
2

.

Then the sequence (xk) generated by the algorithm (4.12) converges to the solution of the EN

(4.1).

4.2 The S-lasso

The smooth-lasso (S-lasso for short) of Hebiri and van der Geer [10] is formulated as the

minimization problem

min
x

1
2
‖Ax− b‖2

2 + γ‖x‖1 + δ

n−1∑
j=1

(xj+1 − xj)2. (4.13)

This is also an adaption to the fused lasso of Tibshirani, et al [17],

min
x

1
2
‖Ax− b‖2

2 + γ‖x‖1 + δ

n−1∑
j=1

|xj+1 − xj |. (4.14)

A more general version of the S-lasso is the minimization

min
x

1
2
‖Ax− b‖2

2 + γ‖x‖1 + δ‖Jx‖2
2, (4.15)

where J is a k × n matrix. The S-lasso of (4.13) corresponds to the choice of J given by

J =

⎡
⎢⎢⎢⎢⎢⎣

1 −1 · · · 0 0
1 −1

...
...

. . . . . .
1 −1

0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦ .

We can apply the proximal algorithm (3.4) to the S-lasso (4.15) by taking

f(x) =
1
2
‖Ax− b‖2

2 + δ‖Jx‖2
2, g(x) = γ‖x‖1.

Since ∇f(x) = At(Ax− b) + 2δJ tJ(x), we find that the proximal algorithm (3.4) is reduced to

the algorithm

xk+1 = proxλkγ‖·‖1
(xk − λk[At(Axk − b) + 2δJ tJ(xk)]). (4.16)

The convergence of this algorithm is given below.

Theorem 4.3 Assume

0 < lim inf
k→∞

λk ≤ lim sup
k→∞

λk <
2

‖A‖2
2 + 2δ‖J‖2

2

.

Then the sequence (xk) generated by the algorithm (4.16) converges to the solution of the EN

(4.15).
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