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1 Introduction
In the theory of automorphic forms, Eisenstein series and L-functions play critical roles. The

analytic continuation of L-functions and information about the poles can be obtained by using
Siegel Eisenstein series. To be able to get better results for location of poles, one needs to use the
doubling method and the regularized Kudla-Rallis-Siegel-Weil formula. Poles of L-functions are
important in the theory of theta correspondence. In this paper, we follow Kudla-Rallis’ work
on the orthogonal-symplectic case to have similar results for quaternion groups O∗(4n) and
Sp∗(n, n). Here some Yamana’s results on quaternion groups are crucial.

Let k be a totally real number field and let D be a quaternion division algebra over k with
a main involution σ. Let ε be either 1 or −1. Let V = Dm be a non-degenerate ε-Hermitian
space equipped with a D-valued non-degenerate form ( , ) such that (x, y)σ = −ε(y, x) and
(xa, yb) = aσ(x, y)b for all a, b ∈ D and x, y ∈ V . Assume that m is even. Let

H = {h ∈ GL(m,D) : (hx, hy) = (x, y) for all x, y ∈ V }.
LetW ′ be a 2n-dimensional vector space overD. LetW be a maximal totally isotropic subspace
of W ′. Let S ∈ GL(2n,D) satisfy S∗ = εS, where S∗ = tSσ is the conjugate transpose of S. S
defines an ε-Hermitian form on W ′. Let

G = Gn = {g ∈ GL(2n,D) : g∗Sg = S}.
Then G and H form a dual reductive pair in the sense of [5]. We can see these groups as
quaternion orthogonal or symplectic groups. For example, G can be denoted as follows:

G �
{
O∗(4n), if ε = −1 (case 1),
Sp∗(n, n), if ε = +1 (case 2).

Let P be the parabolic subgroup of G which stablizes a maximal isotropic subspace of
W ′. Such a parabolic subgroup is called a Siegel parabolic subgroup and it has the Levi
decomposition P = MN , where

M = Mn =
{
m(a) =

(
a 0
0 a∗−1

)
: a ∈ GL(n,D)

}
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is the standard Levi subgroup and

N = Nn =
{
n(b) =

(
1n b
0 1n

)
: b ∈ Matn(D), b+ εb∗ = 0

}

is the unipotent radical.
The modular function of P is given by δP (m) = | det a|2ρ2n with

ρn =

⎧⎪⎨
⎪⎩
n− 1

2
, if ε = −1,

n+ 1
2

, if ε = +1,

where

m =
(
a 0
0 a∗−1

)

is in the standard Levi component of P .
Fix a non-trivial additive character ψ on A /k. Let S(V n(A)) be the space of Schwartz

functions on V n(A). Let ω = ωψ be the associated Weil representation of G(A) × H(A) on
S(V n(A)) (for the explicit definition see [9, 13]).

For g ∈ GA, Φ ∈ S(V n(A)) and s ∈ C, we define the function

fΦ(g, s) = (ω(g)Φ)(0)|a(g)|s−s0 ,
where s0 = m− ρ2n.

For a unitary idele-class character χ : A
× /k×→ C×, let

In(s, χ) = IndG(A)
P (A)(χ| · |s)

be the degenerate principal series representation of G(A) consisting of functions f on G(A)
which are finite sums of monomials

⊗
v
fv, where at any archimedean v, fv is Kv-finite and

smooth, and at any non-archimedean v, fv is locally constant and compactly supported, such
that

f(nm(a)g, s) = χ(det a)| det a|s+ρ2nf(g, s).

Note that the map Φ �→ fΦ(·, s0) defines a GA intertwining map from S(V n(A)) to In(s0, χ).
We fix a standard maximal compact subgroup K =

∏
v
Kv of G(A). Then I(s, χ) is a

representation of (g∞,K∞) ×G(Af ), where g∞ is the Lie algebra of G∞. A function

s �→ Φ(s) ∈ I(s, χ)

is called a standard section if the restriction of Φ(s) to K is independent of s.
For a standard section Φ(s) ∈ In(s, χ) and g ∈ G(A), we define an Eisenstein series

E(g, s,Φ) =
∑

γ∈Pn(k)\G(k)

Φ(γg, s),

which is absolutely convergent for Re(s) > ρ2n. Eisenstein series may have a pole when Re(s) ≤
ρ2n. Now we define the normalized Siegel Eisenstein series by

E∗(g, s,Φ) = bSn(s)E(g, s,Φ),

where bSn(s) is a certain product of Abelian L-series for a finite set of primes S which includes
bad primes (see Lemma 2.1).
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Suppose that π is a given irreducible cuspidal representation of G(A) and χ was a given
character of A

×/k×. Let

LS(s, π ⊗ χ) =
∏
v �∈S

Lv(s, πv ⊗ χv)

be the (partial) standard Langlands L-function associated to π⊗χ. An integral representation
of this L-function was given in [9] by using a doubling method.

Define the set X+
n to be

X+
n =

{
n− 1

2
− j

∣∣∣ j ∈ Z, 0 ≤ j ≤ n− 1
}
, if ε = −1,

X+
n =

{
n+

1
2
− j

∣∣∣ j ∈ Z, 1 ≤ j ≤ n
}
, if ε = 1, χ �= 1,

X+
n =

{
n+

1
2
− j

∣∣∣ j ∈ Z, 0 ≤ j ≤ n, j �= 1
}
, if ε = 1, χ = 1.

Theorem 1.1 (Main Theorem) (1) If χ2 �= 1, then LS(s, π ⊗ χ) is entire.
(2) If χ2 = 1, then LS(s, π ⊗ χ) has at most simple poles and these can only occur for

s ∈
{
t+

1
2

: t ∈ X+
2n and t ≤ ρ4n − n

}
=

{
1, 2, · · · , n+

1 + ε

2

}
,

where s = 2 is not included in the set when n = 1, ε = 1 and χ = 1.

The proof uses the information about the poles of normalized Siegel Eisenstein series, the
regularized Kudla-Rallis-Siegel-Weil (KRSW for short) formula and the doubling method.

2 Poles of Normalized Siegel Eisenstein Series

For Re(s) > ρ2n define an intertwining operator M(s, χ) = Mn(s, χ),

M(s, χ) : I(χ | · |s) → I(χ | · |−s)

by

M(s, χ)Φ(g, s) =
∫
Nn(A)

Φ(wnng, s)dn,

where wn is the longest Weyl element

wn =
(

0n, 1n,
−ε1n, 0n

)
.

From the general theory of Eisenstein series (for example see [1, 8]), we have the following
theorem.

Theorem 2.1 The Eisenstein series E(g, s,Φ) is absolutely convergent in the half-plane
Re (s) > ρ2n and has a meromorphic continuation to the complex plane. Its meromorphic
continuation satisfies the functional equation

E(g, s,Φ) = E(g,−s,M(s, χ)Φ).

Note that M(s, χ) has a meromorphic continuation as well.
For any non-archimedean place v of k at which χv is unramified, let Φ0

v(s) be the spherical
standard section of

In,v(s, χv) = IndG(kv)
P (kv)(χv| · |sv)



522 Ç. Ürtiş

determined by Φ0
v(s)(k) = 1 for all k ∈ Kv. Since In(s, χ) =

⊗
v
In,v(s, χv), we can write

M(s, χ) =
⊗
v

Mv(s, χ),

where, for Φv ∈ In,v(s, χv);

Mv(s, χ)Φ(g, s) =
∫
Nn(kv)

Φv(wnng, s)dn.

The following calculation can be done by using a standard Gindikin-Karpelevich type argu-
ment (see [4]) or a Casselman type argument (see [2, Theorem 3.1, p. 397]).

Lemma 2.1 If v is a non-archimedean place of k at which χv is unramified and D splits
over kv, then

Mv(s, χv)Φ0
v(s) =

an,v(s)
bn,v(s)

Φ0
v(−s),

an,v(s, χv) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2n∏
k=1

ζv(2s− 4n+ 2k), (case1),

Lv(s+ ρ2n − 4n, χv)
2n∏
k=1

ζv(2s− 4n+ 2k), (case2),

bn,v(s, χv) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2n∏
k=1

ζv(2s+ 4n− 2k + 1), (case1),

Lv(s+ ρ2n, χv)
2n∏
k=1

ζv(2s+ 4n− 2k + 1), (case2).

Theorem 2.2 (see [13]) Let Φ(s) be a holomorphic section of In(s, χ).
(1) If χ2 �= 1, then E∗(g, s,Φ) is entire.
(2) Assume that χ2 = 1. Then the poles of E∗(g, s,Φ) in Re(s) ≥ 0 are at most simple and

occur in the set X+
n .

Remark 2.1 Kudla and Rallis investigated the poles of the normalized Eisenstein series for
orthogonal and symplectic groups in [6–7]. In [10] similar results are obtained for quaternion
groups, where some possible poles on the left half-plane are not ruled out. By using a regularized
Siegel-Weil formula for quaternion groups, Yamana were able to remove possible poles on the
left-half plane in [13].

3 Regularized Kudla-Rallis-Siegel-Weil Formula
For Φ ∈ S(V (A)n), g ∈ GA and h ∈ HA, define a theta kernel:

θ(g, h; Φ) =
∑

x∈V (k)n

ω(g, h)Φ(x).

This is a smooth function on GA × HA, left Gk × Hk-invariant, and slowly increasing on
(Gk\GA) × (Hk\HA). By Weil’s criterion (see [11, 13]), the integral

I0(g; Φ) =
∫
H(k)\H(A)

θ(g, h; Φ)dh

converges absolutely for all Φ if either r = 0 or m − r > 2ρ2n, where r is the dimension of a
maximal isotropic k-subspace of V .
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Assume that r > 0 and m− r ≤ 2ρ2n. The theta integral is not convergent anymore for all
Φ. We need to have a regularization. From [7] and [13], one can regularize the theta integral
by finding an element z0 in the Bernstein center of H such that for all Φ ∈ S(V (A)n)

(1) z0Φ(0) = Φ(0),
(2) Fz0Φ = 0.
Here a local place v is fixed and F is defined to be a certain local Gv×Hv-intertwining map

from S(V n) to a local induced representation (see [13]).
From the construction, it can be seen that the kernel θ(g, h; z0Φ) is rapidly decreasing on

H(k)\H(A) and the integral

I(g; Φ) =
∫
H(k)\H(A)

θ(g, h; z0Φ)dh

is independent of the choice of a local place v and z0.
Now we can state a regularized SWKR-formula for quaternion groups.

Theorem 3.1 (see [13]) Let Φ be a holomorphic section of I(s, χ), s0 = m − ρ2n and
A−1(g,Φ) = Res

s0
E∗(g, s, fΦ).

(1) Let ε = −1. Then we have

A−1(g,Φ) = I(g; Φ).

(2) Let ε = 1.
(a) If m ≤ n, then

A−1(g,Φ) = 
−1
�∑
j=1

Ij(g; Φ).

(b) If m ≥ n+ 1, then for every j

A−1(g,Φ) = Ij(g; Φ),

where Ij(g; Φ)s denote to the theta integrals associated to the global equivalence classes locally
isometric to V .

4 Poles of L-Functions

4.1 Zeta integrals of doubling method
Let π =

⊗
v
πv be an irreducible automorphic cuspidal representation of G(A). The Peterson

pairing

〈f1, f2〉 =
∫
Gk\GA

f1(g)f2(g)dg

induces a pairing on π and we choose local pairings 〈 , 〉 on πv such that

〈f1, f2〉 =
∏
v

〈f1, f2〉v,

where fi =
⊗
v
fi,v for i = 1, 2 are factorizable vectors. Here, local pairings are normalized so

that 〈f0
v , f

0
v 〉v = 1 for the spherical vector f0

v ∈ πv.
The product G×G is embedded in G2n as usual by

ι0 :
(
a b
c d

)
×

(
a′ b′

c′ d′

)
→

⎛
⎜⎜⎝

a 0 b 0
0 a′ 0 b′

c 0 d 0
0 c′ 0 d′

⎞
⎟⎟⎠ .
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We make a slight change in ι0 to make it useful. Set

ι(g1, g2) = ι0

(
g1,

(
1n 0n
0n −1n

)
g2

(
1n 0n
0n −1n

))
.

Let

δ =

⎛
⎜⎜⎜⎜⎜⎝

0 0 −1
2

1
2

1
2

1
2

0 0

1 −1 0 0
0 0 1 1

⎞
⎟⎟⎟⎟⎟⎠

∈ G2n.

Choose f1, f2 ∈ π such that fi,v is a spherical vector, that is Kv-invariant for all v �∈ S.
Choose a factorizable section

Φ(s) =
∏
v

Φv(s) ∈ I2n(s, χ)

such that for all v �∈ S,Φv(s) is the normalized spherical vector. Let E(g, s,Φ) be the Siegel
Eisenstein series on G2n(A). Consider the zeta integral

Z(s, f1, f2,Φ) =
∫

(G×G)k\(G×G)A

f(g1)f2(g2)E(ι(g1, g2), s,Φ)dg1dg2.

From the doubling method of [3–4], we have that for Re(s) > ρ4n,

Z(s, f1, f2,Φ) =
1

bS2n(s, χ)
LS

(
s+

1
2
, π ⊗ χ

)
〈πS(Φ(s))f1, f2〉,

where ΦS(s) =
⊗
v∈S

Φv(s) and

〈πS(Φ(s))f1, f2〉 =
∫
GS

〈π(g)f1, f2〉ΦS(δ · ι(g, 1), s)dg.

Assume that f1 and f2 are factorizable vectors. Define local zeta integrals by

Zv(s, f1,v, f2,v,Φv) =
∫
Gv

〈πv(g)f1,v, f2,v〉vΦv(δι(g, 1), s)dg.

To be able to have a result about poles of L-functions, we need to control local zeta inte-
grals. As in the case of orthogonal-symplectic groups (see [7]), by choosing Φ whose support is
sufficiently small, we have the following lemma for quaternion groups.

Lemma 4.1 (see [7, 12]) (1) Assume that v is non-archimedean. For any f1,v ∈ πv, there
exists a choice of Φv(s) ∈ I2n,v(s, χ) such that

π(Φv(s))f1,v = f1,v

for all s ∈ C. In particular,

Zv(s, f1,v, f2,v,Φv) = 〈π(Φv(s))f1,v, f2,v〉v = 〈f1,v, f2,v〉v
for such a choice.

(2) Assume that v is archimedean. For any s0 ∈ C, there exist f1,v, f2,v and Φv such that
the local zeta integral is nonzero at s0.
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Corollary 4.1 Suppose that f1, f2 ∈ π are Kv invariant for v ∈ S. Assume that for each
v ∈ S, f1,v, f2,v and Φv satisfy the conditions of Lemma 4.1. Then

Z(s, f1, f2,Φ) =
1

bS2n(s, χ)
LS

(
s+

1
2
, π ⊗ χ

)
〈π(Φ∞(s))f1, f2〉.

From here we have

bS2n(s, χ)Z(s, f1, f2,Φ) =
∫

(G×G)k\(G×G)A

f(g1)f2(g2)E∗(ι0(g1, g2), s,Φ)dg1dg2

= LS
(
s+

1
2
, π ⊗ χ

)
〈π(Φ∞(s))f1, f2〉. (4.1)

Therefore, any pole of LS
(
s+ 1

2 , π ⊗ χ
)

must be a pole of E∗(g, s,Φ) for a suitable choice
of Φ and we have the following corollary.

Corollary 4.2 (1) If χ2 �= 1, then LS(s, π ⊗ χ) is entire.
(2) If χ2 = 1, then LS(s, π ⊗ χ) has at most simple poles and these can only occur for

s ∈
{
t+

1
2

: t ∈ X+
2n

}
.

From now on assume that χ2 = 1. Let s0 = m− ρ4n and assume that s0 ∈ X+
2n. Fix f1 and

f2 and choose Φ(s) as in Corollary 4.1. From (4.1), we have

Res
s0

LS
(
s+

1
2
, π ⊗ χ

)
〈π(Φ∞(s))f1, f2〉

= Res
s0

bS2nZ(s, f1, f2,Φ)

=
∫

(G×G)k\(G×G)A

f(g1)f2(g2)A−1(ι(g1, g2),Φ)dg1dg2. (4.2)

The regularized SWKR-formula and theta correspondence allow us to improve the result in
Corollary 4.2. For f ∈ π and Φ ∈ S(V (A)n), the theta lifting of f is defined by

θ(h; f,Φ) =
∫
Gk\GA

f(g) θ(g, h; Φ)dg.

Then ΘV (π) = {θ(f,Φ) | f ∈ π,Φ ∈ S(V (A)n)} is an invariant subspace of the space of
automorphic forms on H(A). Following Proposition 7.2.4 of [7], we have the next proposition.

Proposition 4.1 For Φ1,Φ2 ∈ S(V0(A)n), let Φ = Φ1 ⊗ Φ2 ∈ S(V0(A)2n). Then we have
∫

(G×G)k\(G×G)A

f(g1)f2(g2) I(ι(g1, g2); Φ)dg1dg2 =
∫
Hk\HA

(θ(h; f1,Φ1)θ(h; f2,Φ2))z0dh,

where c is a nonzero constant, z0 is the element in the Bernstein center of H used in the
regularization of theta integrals.

Let r be the dimension of a maximal totally isotropic subspace of V . We may write V as a
sum V = V0⊕Vr,r, where Vr,r is a split ε-Hermitian space of dimension of 2r. Letm0 = 2ρ4n−m.
Then we have the following vanishing result in theta correspondence.

Lemma 4.2 (see [7]) ΘV0(π) = 0 if m0 = dim V0 < n.

Now we can improve the result in the previous corollary by removing about half of the
possible poles.
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Theorem 4.1 (Main Theorem) If χ2 = 1, then LS(s, π ⊗ χ) has at most simple poles and
these can only occur for s ∈ {

t + 1
2 : t ∈ X+

2n and t ≤ ρ4n − n
}

=
{
1, 2, · · · , n + 1+ε

2

}
. Here

s = 2 is not included in the set when n = 1, ε = 1 and χ = 1.

Proof Suppose that there exists a pole at s ∈ {
t + 1

2 : t ∈ X+
2n

}
. Let f = f1 = f2 and

Φ(s) as in Corollary 4.1. If LS
(
s + 1

2 , π ⊗ χ
)

has a pole (with a nonzero residue) at s = s0,
then from (4.2) we conclude that the integral of A−1(ι(g1, g2),Φ) against f ⊗ f is nonzero. By
using the regularized SWKR formula, we see that there exists at least one quadratic space V0

of dimension m0, a character χV0 = χ and a function Φ = Φ1 ⊗Φ2 ∈ S(V0(A)2n) such that the
function I(ι(g1, g2); Φ) has a nonzero integral against f ⊗ f . By Proposition 4.1, we see that
θ(f,Φ1) �= 0. This means that ΘV0(π) �= 0. From the previous lemma, this is possible only if
m0 ≥ n. Therefore, we have 2ρ4n −m ≥ n which implies s0 = m− ρ4n ≤ ρ4n − n.

Remark 4.1 In [13], Yamana gave a theorem in which the set of possible poles of LS(s, π⊗
χ) includes negative numbers. In the main theorem, we improve this result by removing possible
poles in the left-half plane.
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