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Abstract In this paper, the authors consider inverse problems of determining a coefficient
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1 Introduction

Let n, m € N and x € R", y € R™. We consider the ultrahyperbolic equation
Ayu(z,y) — Agu(z,y) — p(z,y )ulz,y) = F(z,y) (1.1)
in some bounded domain of (z,y) € R™ x R™. We set
y=(yy) ER™, oy =, ym) ER", 2= (21, ,2,) ER"

and

szzafm Ayzzajjv vx:(8117"'7aﬂﬂn)a vy:(ayn"'aaym)a
i=1 j=1

Vay = Ve, Vy), 0O = aixi, Oy, = 5%]
If m = 1, then (1.1) is a hyperbolic equation, where y; is the time variable. Generally, it is
considered that one time dimension is fundamentally important in describing many dynamic
evolutions of physical quantities in the classical and quantum fields. Multiple times have been
considered rarely, because it is widely believed to violate the causality and lead to the instability
yielding that the phenomena under consideration are not deterministic in a usual physical sense.
However, certain developments in the theoretical physics such as the string theory require
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additional dimensions for the time, and for related literature, we refer to Bars [4], Craig and
Weinstein [11], Sparling [29], and Tegmark [31]. In particular, the multiple dimensions are
considered in the context of the twistor spaces (see [29]).

The quantum kinetic theory is one of the fields in which ultrahyperbolic type equations are
arising. For example, let us consider the quantum kinetic equation:

St [ ol ) oo )

x expliy(p — p)|u(z, p, t)dpdy + f

in a domain {(x,p,t); x = (x1,2") € R, 1 > 0, p € R", t € R}, where u(z, p, t) is the quantum
distribution function, h is Planck’s constant, i is the imaginary unit, ®(z,t) is the potential
and f(x,p,t) is the function characterizing the sources. Applying the Fourier transform with
respect to p and the change of variables of the form

1 1
z = Shy &, T+ hy=mn,

one can obtain the following ultrahyperbolic type equation:

ow i . —~

L Sh(Ay — Agw +i[B(n) — 2(E)]w = T,
where w(&,n,t) = u(x,y,t), u and f denote the Fourier transform of u and f respectively
(see [2]). The ultrahyperbolic operator appears also as the stationary part of a generalized
Schrodinger equation:

iOwu(z,y,t) = Agu(z,y,t) — Ayu(z,y,t)

and for related nonlinear generalized Schrodinger equations, see [18-19, 30].

The solutions of some direct problems to ultrahyperbolic equations were investigated by
Kostomarov [24-25] in the case of n =3, m =2 and n = 3, m = 3. As for the uniqueness and
some mean value property of solutions to general ultrahyperbolic equations, see [10, 12, 14, 27],
but there are very few results on the existence of the solution. In [11], the unique existence
of solutions was proved for Ayu — Ayu = 0 in R™*™ with suitably given initial data and also
some non-uniqueness results were proved by some choice of hyperplanes, where the initial data
are given. The proof in [11] assumed that all the coefficients in the ultrahyperbolic equation
are constant in the whole domain because the key is the Fourier transform. There seems to be
no result on the existence of the solution to a Cauchy problem of the ultrahyperbolic equation
with non-analytic coefficients. In the case of analytic coefficients, by the Cauchy-Kovalevskaja
theorem, we can establish the well-posedness of the initial value problem of determining the
solution u to (1.1) satisfying u(z,0,vy") = a(z,y’) and 9y, u(z,0,y") = b(x,y’), where a and b
are analytic.

In this article, we discuss inverse problems of determining a coefficient or a source term in
an ultrahyperbolic equation. First we formulate an inverse source problem.

Let D C R™ be a bounded domain with smooth boundary 9D and let

y:(ylayl)eRm, yI:(y%... ;ym)€Rm_1,
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We arbitrarily fix
Zo Q ﬁ

Henceforth (-, -) means the scalar product in R” and R™. For T, T} > 0, we set
G(T, Tl) = {y S Rm’; |y1| < T, |y1| < Tl}, G/(T, Tl) = G(T, Tl) n {yl = 0}
In particular, we write
G=G(T,T), G =G(T,T)=GnN{y =0}.

Throughout this article, we identify (0,y2, - ,¥m) € R™ with 3/ = (y2,- ,ym) € R™ L. Let
p(xz,y") be given, v(z) = (11 (x), - ,vn(x)) denote the unit outward normal vector to 9D, and
Oyu = (Vyu,v). Moreover, let T,7; > 0 and T' C 9D be given. We consider the following
system:

Au=Ayu(z,y) — Agu(z,y) — plz,y)ulz,y) = f(z,y")R(z,y), ze€D,yeG(T,T), (12)

uw(z,0,y") = 0y, u(x,0,y') =0, xz€D,y eG(T,T), (1.3)

u(z,y) =0, zel,yeGT,T). (1.4)

We consider an inverse problem of determining f(z,4’) in (1.2) by extra data of the solution
to (1.2)—(1.4).

Inverse Source Problem Let p, R be given suitably. Then determine f(x,y’), = € D,
y' € G'(T,Ty) by O,ulrxc(r,1,)- Here we do not assume the uniqueness of u, but its existence.

Next we discuss an inverse problem of determining a coefficient by overdetermining lateral
boundary data. More precisely, we consider

Ay’l)(il,',y) - sz(xvy) —p(m,y')v(x,y) = 07 S Da Yy e G(Tv Tl)a (15)
v(z,0,y") = a(z,y'), Oy v(x,0,y)=0bzy), ze€D,y eGTT), (1.6)
v(z,y) =0, xzel,yeGT,T). (1.7)

Let v = v(p) satisfy (1.5)—(1.7). We discuss the following problem.

Coefficient Inverse Problem Determine the coefficient p(z,vy’), (z,vy') € D x G'(T,T1)
in (1.5) by extra data 9,v(p)|rxa-

Our main purpose is to establish the uniqueness and the stability for these inverse problems,
assuming the existence of v(p) and v(gq) within adequate classes.

The coefficient inverse problem is reduced to the inverse source problem as follows. Let v(p)
and v(q) be two solutions of (1.5)—(1.7) with the coefficients p and ¢ respectively. Here we do
not assume the uniqueness of v(p) and v(g) but their existence.

The difference v = v(p) — v(q) satisfies (1.2)—(1.4), where f(z,vy') = p(x,y’) — q(z,y’) and
R = v(q)(x,y). Therefore the determination of p, g is reduced to the inverse source problem.

Thus we first discuss the inverse source problem for (1.2)—(1.4). For the statements of the
main results, we introduce the following notations. For § > 0, 2o € D and 0 < 3 < 1, we define
the domains by

Q(é) = {(J?,y) €D x G(T7 Tl); |J? - x0|2 - ﬁ|y|2 > (52},
Q(8) = Q8) N {y1 = 0}
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We use the same notations Q(6), Q'(0) for G = {y € R™; |y1] < T, |y'| < T} if there is no fear
of confusion. Let M > 0 be arbitrarily fixed.
We are ready to state the following theorem.

Theorem 1.1 We consider (1.2)-(1.3) in D x G. Let

f € LQ(D X G/)7 pe LOO(D X G/)a ||p||L°°(D><G’) < M7
R e Hl(—T,T;LOO(D X G/)), H8y1R||L2(_T7T;Loo(DXg/)) < M.

We further assume that
[fllz2(pxary < M, N0y, ullmz(pxay < M
and that there exists a constant rq > 0 such that
|R(x,0,9")| >70>0 inDxG".

Finally we assume

max |z — xo| < \/[I? + 62 (1.8)

zeD
and that T' C 0D satisfies
T'D>IDN{|z— x| > d}. (1.9)

Then for any 61 > &, there exist constants C > 0 and 0 € (0,1), depending on M,ry such that

£l Lot 51y < CllOOy,ullTarucy- (1.10)

Theorem 1.1 gives a local estimate. More precisely, given I' C 9D and T' > 0, we can find a
subdomain '(81), where the L?-norm of f is estimated. For example, we choose g, 6 > 0 with
5>6and0<ty<T arbitrarily. We take [ sufficiently small such that 82— 682> Bt2. For this
B, we choose T > 0 sufficiently large such that (1.8) holds. Then Theorem 1.1 asserts

6
/ / \f(z, o) [2dzdy’ gc(/ |8V8y1u|2d5yd8x) . (1.11)
ly’|<to J|z—ao|>6 I'xG

In fact, we choose ¢; > 0 sufficiently close to ¢ such that 5> 61 > 0 and 52 — 52 > [Bt2. Since
|z — 0|2 — Bly|2 > 62 — Bt2 > 62 for |x — x| > 6 and |y/| < to, we see that Q' (81) D {|z —zo| >
8} x {|y/| < to}. Therefore (1.10) yields (1.11).

If we want to estimate f for larger ty, then 3 has to be small and so we have to choose
T > 0 very large, that is, we need to observe longer in y-direction as the right-hand side of
(1.11) shows. In particular, for sufficiently large 6; we have D C {|z — x¢| > 01} and so the
left-hand side of (1.11) estimates f over D provided that to is small and T > 0 is very large.
The above observation means that if we want to estimate f in a larger subdomain of D, then
the size T of the “time” region has to be large. This fact corresponds to the finiteness of the
propagation speed, which is a typical character for the case of m = 1.

In Theorem 1.1, it is not clear how large T' and I' are necessary for identifying f in a given
subdomain or D x G’. Next we derive the estimation of f in an arbitrarily given subdomain of
D x G'. For the statement, we recall

G(T,2T) = {y € R™; |y1| < T, |y/| < 2T} (1.12)
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with T > 0. For zg & D, we set
0D4 = {x € ID; ((x — xp),v) > 0}. (1.13)

We note that 0D is a proper subset of 9D in general.
Theorem 1.2 Let u satisfy (1.2)~(1.3) in D x G(T,2T) and u =0 on 0D x G(T,2T) and

10y, ull g2(pxc(rery) <M, k=1,2. (1.14)
We further assume that 3 > 0 is sufficiently small and

1
T > — max |z — o]

VB weD
and that
105, Rll L2 (-7 (Dx {ly'| <21y < M, k=1,2
and

|R(z,0,4)| #0, zeD,|y|<2T.

Then for any small € > 0, there exist constants C > 0 and 0 € (0,1) depending on e, M, xy,
such that

2
||f||L2(D><{|y'|<T—e}) < CZ ”al/agljlu||9L2(8D+><G(T,2T))' (1.15)
k=1

Next we show stability results for the coefficient inverse problem. We state two results which
correspond to Theorems 1.1-1.2, respectively.

Theorem 1.3 We consider (1.5)~(1.7). Let

peL>(Dxa"), [pllL=(pxcrys lallLe(pxary < M,
v(p),v(q) € HY(=T,T; L>°(D x G")),

[0y, v(P) 2 (DxG), |10y V(D) 2 (DxG) < M,
||8y1v(p)||L2(7T,T;L°°(D><G’))a ”81/1”((])||L2(7T,T;L°°(D><G’)) <M,

la(z,y')| >ro on D x G’

with some ro > 0. We assume that 0 < § < 1, (1.8) and (1.9) hold. Then for any 61 > &, there
exist constants C' > 0 and 0 € (0,1), depending on M,ry, such that

P = gl Lo (1)) < CllAwDy, (v(p) = v(@)]|T2(rxcy:
Theorem 1.4 Let v(p),v(q) satisfy (1.5)-(1.6) with p,q respectively and v(p) = v(q) on
0D x G(T,2T). We assume

10y, v(P)|| 2 (Dx (21> |00 V(DN B2 (DX G 2my) < M, Kk =1,2,
185, 0(D) | L2 (11 (D x {11 <21))s 105, 2@ | L2 (1 115 (D x {1y <21y < M,
la(z,y")| > 10 on D x {|y'| < 2T}
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with some rg > 0. We further assume

1
T > — max |z — x9|.
\/Bx€5| |

Then for any small € > 0, there exist constants C > 0 and 0 € (0,1) depending on ¢, M, xy,
such that

2
llp — Q||L2(D><{\y’|<Tfe}) < CZ Hauajl (v(p) — U(q))||%2(6D+><G(T,2T))'
k=1

As is seen by the proof in Section 4, in Theorem 1.2, we can obtain the same stability in
the case where G(T,2T) is replaced by a smaller G := {y € R™; |y1| < T, |¢'| < T}, if we can
take also the norm of data on the other subboundary of G:

16y, ull L2 (px e\ f=211)s 10,05, ull L2(Dx (06 {1 =47 (1.16)

where v is the unit outward normal vector to 0G \ {y1 = £T'} and d,u = Vyu - v. A similar
remark holds for Theorem 1.4. Moreover, if we have an a priori Lipschitz estimate for the direct
problem for (1.2)—(1.3) with u = 0 on (0D x G) U (D x (0G \ {y1» = £T'})), then the same
method as Imanuvilov and Yamamoto [16] can yield the Lipschitz stability, but we do not know
such Lipschitz stability for the direct problem for m > 2. In the case of m = 1, that is, the
inverse hyperbolic problem, we can replace (1.15) by the Lipschitz stability (see [15-16]) and
we note that we need not fix € > 0. Moreover, for the uniqueness of f in D x {|y/| < T}, we
need a boundary datum 9,u over 9D x {(y1,v); |y1| < T, |y'| < 2T}, that is, we need a twice
longer y'-region for the observation than the domain in y’ where f is determined.

In Theorems 1.2 and 1.4, we can not take e = 0. However, since € > 0 is arbitrary, we can
prove the uniqueness: For example, in Theorem 1.2, if u(z,y) = 0 for € 9D, |y1| < T and
|| < 2T and O, u(x,y) =0 for x € D4, |y1| < T and |y'| < 2T, then f(z,y’) =0 for x € D
and |y'| < T.

The proofs of the theorems are based on the method by Bukhgeim and Klibanov [9]. In [9],
the authors first applied a Carleman estimate which is an L?-estimate with large parameters,
and then established the uniqueness in determining a spatially varying coefficient by overdeter-
mining lateral boundary data. After [9], there have been many works relying on that method
with modified arguments. We refer to Amirov [1-2], Amirov and Yamamoto [3], Baudouin and
Puel [5], Bellassoued [6], Bellassoued and Yamamoto [7-8], Imanuvilov and Yamamoto [15-16],
Isakov [17], Khaidarov [20], Klibanov [21-22], Klibanov and Timonov [23], and Yamamoto [32].
Here we do not intend to give a complete list of the works and refer to the references therein.
There are satisfactory amounts of works on classical equations in mathematical physics, but
there are very few works for inverse problems of ultrahyperbolic equations. A key Carleman
estimate was proved by Amirov [1-2] and Lavrent’ev, Romanov and Shishat-skii [26], where
they applied the Carleman estimates to the unique continuation and proved stability. See also
Romanov [28] for a Carleman estimate for an ultrahyperbolic equation in a Riemannian mani-
fold and an application to some unique continuation problems. In Chapter 4 of Amirov [2], the
uniqueness for an inverse source problem of a different type was proved by using the Carleman
estimate. To the best knowledge of the authors, there are no results on the conditional stability
like Theorems 1.1-1.4.
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This paper is composed of four sections and one appendix. In Section 2, we present two
Carleman estimates. Sections 3—4 are devoted to the proofs of Theorems 1.1-1.2 respectively.
The proof of the key Carleman estimate is given in Appendix.

2 Key Carleman Estimate

In this section, we show two Carleman estimates for an ultrahyperbolic equation. The
former Carleman estimate is used for the proof of Theorem 1.1 and the latter for the proof
of Theorem 1.2. As for the general theory of Carleman estimates for functions with compact
supports, we refer to, for example, Hérmander [13] and Isakov [17], but we here give a direct
proof because we need a Carleman estimate for functions not having compact supports and the
proof of that Carleman estimate does not follow directly from [13, 17]. Another direct proof of
a Carleman estimate for an ultrahyperbolic equation is found in [2, 26].

Here and henceforth let ', = 0D x G(T,Ty), Ty = D x 0G(T,T), and let fl“z -.-dS, and
fFu ---dS, be the boundary integrals on I'; and I, respectively. \

W recall that for w0 € D, yo € R™ and 3 € (0,1), we set

@(xvy) :e’yw(m,y), w(xay) = |$—$0|2_ﬂ|y—y0|2,

where + is a positive parameter. We consider the following equation:

n

Lu = Ayu(z,y) — Agu(z,y) + Z a;(x,y)O0y,u + Z bi(x,y)0y,u + ao(z,y)u, @)
i=1 j=1 :

zxeD, yeGTT).
Here we recall that

Q(8) = {(z,y) € D x G(T, T1); |z — xo|” = Bly|* > 6}

and
Q) =Q0)N{y1 =0}, G(T,T1) ={y eR™; |1 < T, [y/| < T}

Let p1(x, y) be the outward unit normal vector to (D xG(T,T1)) at (z,y) and let 0, u = V, yu-p.
Henceforth we recall that D, C 9D is defined by (1.13).

Theorem 2.1 In (2.1), let us assume that a;,b; € L>®(D x G(T,T1)) for 0 < i < n and
1 < j <m. Moreover, let 0 < 3 < 1 be small and v > 0 be sufficiently large, and let

v — @02 = By2 > 62, (2,) € D x G(T,T}) (2.2)
with some 09 > 0. Then there exist constants C' > 0 and sg > 0 such that
/ (s|Vyul? + 8| Veul? + s3u?)e**?dady
()

<C | Lu|*e**?dxdy + C’/ (s®|u|? + 5]0,u|?)e?*¥dS,dS,
Q(s) a9(5)

for all u € H*(D x G(T,Ty)) and s > sq.
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Theorem 2.2 Let a;,b; € L®(D x G(T,T1)), 0 <i<n, 1 <j <m and (2.2) hold for
(x,y) € D x G(T,Ty1). Then there exist constants C > 0 and sg > 0 such that

/ (s|Vyul? + s|Vpul? + s3u?)e**¢dady

DXG(T,Ty)

<C |Lu|?e**?dady + C 50, ul?e?*?dS,dy
DXG(T,Tl) 8D+><G(T,T1)

for all s > so and all u € H*(D x G(T,Ty)) satisfying

u=0 ondDxGT,Ti), u=|Vyu =0 onDx9IGT,T). (2.3)

Theorem 2.1 gives a Carleman estimate which holds only in a level set ©(J), while the
Carleman estimate in Theorem 2.2 is global over the total domain G x (T,Ty). The proofs of
Theorems 2.1-2.2 rely on an idea similar to Bellassoued and Yamamoto [8] and the proof is
obtained only by integration by parts and is lengthy, so we give the proof in Appendix.

3 Proof of Theorem 1.1

The proofs of Theorems 1.3-1.4 are reduced to the proofs of Theorems 1.1-1.2, respectively,
which this follows from setting u = v(p) —v(q), f = p—q and R = v(q). Therefore it is sufficient
to prove only Theorems 1.1-1.2. In this section, we will prove Theorem 1.1.

We set

?:m%m—xm G=G(T,T), ¢(x,y)= |z — o> - Bly*.
€

First by (1.8), we see that
if z € D and ¥(z,t) > 6%, then |y| <T. (3.1)
In fact, let z € D and ¢ (z,t) > 6. Then (1.8) yields
0% <wp(x,y) <7 = Blyl* < BT? + 6 — Blyf.

Therefore, 372 — B|y|?> > 0, that is, |y| < T. Thus (3.1) is verified.
3
Next, we characterize 9€2(6). We can easily have 0Q(d) = (J T';, where

Jj=1

Iy = (0D x G)N{(z,y) € D x G; ¢(x,y) > 6°},
Iy = (D x 0G) N{(z,y) € Dx G; ¥(z,y) > 62},
Ty = (D x G) N {(2,y) € Dx G vl y) = 5°}.

Then, similar to (3.1), we can prove that T's = ). In fact, (1.8) implies
0% = p(x,y) <72 = Ply|* <7 - T < 6%,

which is impossible.
Moreover, noting that I'y C (90D x G) N{(z,y) € D x G; |x — xo| > 0}, we see that

I'ncl'xG.
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Hence

ING)Cc T xG)U(DxG)n{(z,y) € DxG; Y(x,y) = §°}). (3.2)
Now we apply the Carleman estimate in Theorem 2.1, but no data are given on
(D x G) N {(z,y) € D x G; ¢(x,y) = 6%}

and so we need a cut-off function.
Henceforth, C' > 0 denotes a generic constant which is independent of s. We define a cut-off
function x € C§°(2(d)) such that 0 < x(x,y) <1 and

[l () €95+ 2),
X(:L’,y) - {0, (a:,y) c Rrt™ \Q((S + 6). (33)
Setting z = (9, u)e*?x, for 1 <i <n, we have
8271‘,2” = (8587:8?/1“)68&0)( + 8(8231 SO)Z + (8111“)68(‘082?1‘,)(;
5‘572 = (ai:aylu)esvx + S(aﬂiz w)(ahz - S(aILSD)Z)
+ s(@iigo)z + 5(02,9) (02, 2) + 2(0,,0y, u)e*? 0y, X + (8y1u)ew8§ix,
that is,
Ayz = (A:camu)e:wx + QS(V:CSOv V;CZ) =+ Z(SAx<P - 52|vx§0|2)
+ 2(vx (81/1'“'); va)esw + (8y1u)es<prX-
Similarly,
Ayz = (A, 0y, u)e’?x + 25(Vyp, Vy2) + 2(sAyp — 52|V ,0[%)
+2(Vy, 0y, u, Vyx)e®? + (0y,u)e™ (Ayx).
From (1.2), we obtain
Az = [(0y, R)e* x + s{2(Vyp, Vyz) = 2(Vap, Vo) + (Ayp — Azp)z}
- 52(|vy§0|2 - |Vx<p|2)z +2e*{(Vy 0y, u, Vyx) — (V2 0y, u, Vix) b
+ (aylu)esw(AyX - AIX) (34)
In particular, setting w = x(9,,u) and s = 0 in (3.4) we have
Aw = f(9y, R)Xx + 2(Vy0y,u, VyX) — 2(V40y,u, Vax) + (Oy, u) (Ayx — AzX). (3.5)

By (3.2)—(3.3), we see that
w=|V,w| =|V,w| =0 on(DxG)N{(z,y) € Dx G, p(zx,y) =5}

By (1.4) we have |Vyu| = 0 and V,;0,,u = (9,0, u)v on I x G. Moreover, by 0 < 8 < 1 we
note that
[ — 2ol? = B2lyl? > |z — wol? — Blyl? > 8 > 0.
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Thus the assumptions in Theorem 2.1 are satisfied in Q(d). We apply the Carleman estimate
given by Theorem 2.1, and we obtain

/ (s|Vyw|® + 5|V w|? + s3|w|?)e**?dady
< C/ f(0y, R) )x|?e?*Pdxdy

e Q(9) 12(Vy0y,u, Vyx) = (VaOy,u, Vax)
+ (0, u)(Ayx — Arx)|*e”*?dzdy
" CSS/ 190 By ul’e™*7dS, dy. (3.6)
I'xG
Here we also used

ayw = (auamu)x + (aVX)a?nu

Since z = we*?, we have

§32% = sdwres¥ (3.7)
and
s(IVyz? + [Va2?) = s(IVy (we?) ] + Vo (we™?)|?)
= (|( w)e*? +ws(Vyp)e*?|? + [(Vow)e™ + ws(V,p)e™?|?)
(s(|Vyw|2 + |Vow]?) + sw?)e?. (3.8)
We set

po = 0Ty — (05307,

On the other hand, by (3.3), the supports of the functions V. x, VX, Azx, Ay x are the subsets
of Q6 +€) \ Q(d + 2¢), so that

/IMWMNM—N@MWMH%W%WAM%MMM
Q(6)

<cees [ (0 ul? + V0,00 + V20, uf)dady
Q5+\Q(5+2¢)

< C* 2 |u| 32 (s
< Ce?12 M2, (3.9)

In terms of (3.7)—(3.9), we rewrite (3.6) as
/ (s|Vyz|* + 5|Va2|? + 5%22)dady

<C / f(0y, R)x[*e**?dady + Ce*12 M? 4 CeC* / 10,0y, u|*dS,dy. (3.10)
I'xG

We set
Q5 ={(z,y) € Q6); y1 <0}
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We multiply (3.4) by 0,z and integrate it over Q5 to have
Az(0y, z)dzdy = / f(9y, R)e*?x(0y, z)dzdy
Q5 Q5
+/ {s((2Vy, Vyz) — 2V, V42))0y, 2
Q5
+ (Ayp — Dyp)20y, 2 — 52(|vy90|2 - |vx90|2)zaylz}dxdy
b [ 269,050 V) = (V28,0 V)0, sy
Q5
+/ (Oy, u)e®? (Ayx — Azx)0y, zdady. (3.11)
Q5
We denote the left-hand side of (3.11) by Iy and the right-hand side by I. By (3.2), we note
that
005 C (' x QYU {(z,y) € D x G; ¢(z,y) = 6>} U (D x G).

Moreover, by (1.3)—(1.4) and (3.3), we have
8,1 =0y, 0y =0 on (T x G)U{(z,y) € DXG; $(wy) = 62}, 1< k,j <m
and
Oy, = Oy, Oyt = 0,0y, u =0 onDx G, 2<k<m,1<j<n.

Then, we have
z2=1|Vez| = |Vyz| =0 on 0Qy. (3.12)
Therefore, using the integration by parts, we obtain
I = / Az(0y, z)dzdy
5
[ (Al AT aVyel o
o 2\ On Iy oy -

) dedy.

Consequently, we have

1

1
L=3 / 10y, 2Py, dS,dSy + 5 / (IVaz? = [Vy2]? = plz[*)1y, dS2dS,.
o0 9%,

Here v, is the y;-component of the unit outward normal vector v to 9§25 . We see that v, =0
on I' x G. Moreover, v, =0 on 0Q5 N {y; = 0}. Therefore, (3.12) yields

=L / 10,,2(x, 0, ) 2dwdy’. (3.13)

From (1.2), we have

aylz(xv 0, y,)

(92, w)e**x)(2,0,y") + Dy, u)(x,0,4)y, (xe*#)(x,0,9')
(Agu — Ayu+pu+ fR)(2,0,y')(e?x)(z,0,y")
F@,y")R(z,0,y")es?@0¥ )y (2,0, ).
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Thus by (3.3) and the condition |R(z,0,y")] > 19 > 0, we see that

1 ,
I = 5/ |f (z, 4 R(x, 0,y )e3?@0¥ )y (2,0, |*dzdy’
Q' (9)
2
> T_O f2(x’y/)e2s<p(x,0,y )dxdy’ (314)
2 Jars+2¢)

Next we estimate I5. Using the Cauchy-Schwarz inequality, we have

[ 29,00, 9,0 = (V20,110 90))0y, kady|
S5

S / |8ylz|2dxdy +/ 625w|(vyay1ua va) - (vxa?nuv VIX)Fdxdy
Q5 Q

)

Therefore we absorb the terms including [,- [0y, z|*dzdy into s [, |V, z[*dzdy, and we obtain
5 5

I, < C/ f2|0y1R|2e23“’X2da:dy+C’/ (5|Vy2|? + 5|V.z|* + s°|2]?)dzdy
Q5 Q5

+/ e2sw|(vy8ylu7 va) - (anylu, va)lzdxdy
Q

s

+ C/ |0y, u2e®*? (A, x — Ayx)?dxdy.
Qy
Now by noting that Q5 C Q(6), (3.3) and (3.10), we have

L <C £20y, R|*x%e**?dady + Ce*12 M? + Ce“* / 0,0, u|*dS,dy
Q2(3) I'xG

+C (|8y1u|2 + |Vgc(‘)y1u|2 + |Vy8y1u|2)e28‘ﬁda:dy.
Q(6+e)\Q(5+42¢)

By (3.3) and the a priori boundedness on u, we have

/ (1y, ul* + [V Oy, ul* + [Vy 0y, ul?)e**?dady < Ce> M?
Q(0+€)\Q2(d+2¢)
and so

2= C/ 210y, RI*x*e**?dady + Ce**2 M? + Ce / 10,0y, u|*dS,dy. (3.15)
“(0) I'xG

Now we will consider the first term on the right-hand side of (3.15). Since R € H'(-T,T;
L*>® (D x G")) and R(x,0,') > 1o > 0on D x G', we can define a function go € L?(—T,T) by

|8y1R(37ay)|
go\y1) = sup TS N
o) = S TR@09)]
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Then we can write
/ 1210y, RI*x*e**?dady
Q(6)

1210y, R|*x*e**?dxdy + / 1210y, R|*x*e**?dady

/Q((S)\Q(&Jrls) Q(5+2¢)

< 2o / 1210y, RPdady + / 1210y, RPe>* dady
Q(6)\Q(5+2¢) Q(6+2¢)

< Ce* 2 M? 4+ C F2IR(2,0,)*(go(y1)*e** ¥ dady
Q(5+2¢)

< Ce®2M? + C Flgo(yr)|*e* ¢ dady.
Q(5+2¢)

On the other hand, we have
Q6+ 2¢) C Q'(0+2¢) x (-T,T).
In fact, let (x,y1,vy’) € Q6 + 2¢). Then
| = zof? = Bly'|* = Blya|* > (6 + 2¢)%.
Hence (1.8) implies 72 < 872 + §2 and so
Blyrl? <z —zof® = Bly'|* — (6 +2¢)* <72 — (6 + 2¢)* < BT?,
that is, |y1| < T. Since
|z — 2|2 = Bl |2 > |z — zo|? = Bly|> > (6 + 2¢)2,

we see that (z,0,y’) € Q'(6 + 2¢).
Consequently we obtain

/Q(a) 1210y, RIPx*e#dady < Ce™2M? + C f2e25e @0 Gy (1, ) dady,

Q/ (6+2¢)

where

T o
Go(z,y') :/ |go(y1)|2e?s#(#:0W) (" =D gy,
T
Moreover, |go|* € L*(=T,T) and the Lebesgue theorem imply

sup Go(z,y') =o(1) ass— oo.
\;’T<DT

Henceforth, we set

d2:/F G|8l,8y1u|2d8mdy.
X

Then (3.15) yields

Iy < 0(1)/ erQS‘P(”’O’y/)dxdy' + Ce*H2 M2 4+ CeCsd2.
Q' (642¢)

539

(3.16)
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From (3.14) and (3.16), we obtain

0(1)/ erQSga(gc,O,y’)dxdy/ + CeQS/LQMQ + CeCsdQ > / fQ(JT, y/)eQmp(x,O,y’)dxdy/.
Q' (642¢) Q' (642¢)
Finally
(1—o0(1)) / |f(z, )29 @0 ) dady’ < Ce?H2 M? + CeC3d? (3.17)
Q' (6+2¢)

for all large s > s, where sg is some constant. Reducing the integral on the left-hand side to
(6 + 3¢), we have

erug/ f2dxdy/ < CerngQ + CeCsdQ,
Q' (6+3¢)

that is,
/ fdedy’ < Ce ™2 M? + Ce®*d? (3.18)
' (5+3¢)
for all s > sg, where ju = sz — po. Replacing C by Ce®®0, we see that (3.18) holds for all s > 0.
First, let M > d. Choosing s > 0 such that

2 M
M?2e™ 2% = e“@?  thatis, s= T log - =0

we obtain

/ |f|2dady’ < 2M %2 v,
Q' (6+3¢)

Second, let M < d. Then setting s = 0 in (3.18), we have
/ |f|?dzdy’ < 2Cd>.
Q (5+3¢)

Therefore
/ |f[2dady’ < C(d2 + d?).
O (543¢)

By the a priori boundedness |0y, u||g2(pxe) < M and the trace theorem, we have d < C'M
and so we can have d?? + d?> < Cd*?. Since € > 0 is arbitrarily small, the proof of Theorem 1.1

is completed.

4 Proof of Theorem 1.2

The proof relies on Theorem 2.2 and is similar to that in [16].

Since u itself does not satisfy (2.3), we have to introduce a cut-off function. Moreover, we
have to apply a Carleman estimate by shifting the domain along the 3’-direction. Thus we need
to introduce several notations. We set

T =max|r — zo|, r=min|zr— x|
zeD zeD

By zo ¢ D, we see that > 0. We choose p > 1 sufficiently large so that

< p. (4.1)

T
r
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By (4.1) and the assumption on 7', we have

T2
7 < r? < 72 < ﬁTQ (42)

Furthermore, if necessary, we choose smaller 3 such that

r? > T2 (4.3)
We arbitrarily choose y = (v39,- -+, %) € R™~! satisfying
T
ol <T - — —e (4.4)
p

We set
Glyy) ={y e R™; | < T, |y —wol < T}, G'(yo) = Glyp) N {y1 = 0}

and we recall
G(T,2T) = {y e R™; |y1| < T, |y/| < 2T}.

Moreover let
Y(z,y) = v — 20> = Bly|? = BlY —vbl>.  p(x,t) = V@),

Then (4.2) yields

Yz, +T,y") < |z —x0|* = BT* <7 - pT? <0, ifzeDand|y —yh| <T, (4.5)
Y(z,y1,y) <7 —BT? <0, ifzxeDand|y|<T (4.6)
and
/ 2 T2 : / / T
P(x,0,y") >r —BF>O, 1fx€Dand|y—y0|§;. (4.7)
Therefore, for small € > 0 there exists § > 0 such that
1/)(%@/173/) < —€ TE Da (48)
T —-20<|y1| <TorT—20<|y —yh <T and
/ / / T
w(xvylay)>€7 I€D7 |y1|<5a |y _y0|§; (49)

In order to apply Theorem 2.2, we introduce a cut-off function x(y) and define xo € C§°(R)

such that 0 < yo <1 and
_fo, T-5<g<T,

Setting X (y1,9) = Xo(y1)xo(|y" — yol), we see that x € Cg°(R™), 0 < x <1 and

0, T—0<|p|<TorT—-56<|y -yl <T,

Xy y) = {1, ly1| < T —26 and |y — yj| < T — 26. (4.10)

By choosing § > 0 smaller if necessary, we assume

T or_ 9 (4.11)
P
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We set
wy, = (851u)x, k=1,2.
Then

Awy, = xf(2,y)0F R(z,y) + 2(Vyx, V05 u) + (A, x)0F u,

(4.12)
xeD,yeGy), k=1,2

and

wi = |Vywi| =0 on D x 0G(y;),
wr =0 on dD x G(y]). (4.13)

From (4.4), we note that
G(y}) C G(T,2T). (4.14)

By (4.12)-(4.13), we can apply the Carleman estimate (see Theorem 2.2) to wy, wa:

2
/ > (5[ Vaywil? + 5w} )e? #dady
DxG(yg) jp—1

<C Zx 2105, Rz, y)|*e**dzdy
DxG(yg) j—1

+C/ Z|2 (Vyx, Vy 8k u) + (Ayx)851u|2e2wdxdy
DxG(y()

+C Z 5|0, wy|?e?*°dS, dy
oD xG(y) i)

:=S1 + Sy + Ss. (415)

Here and henceforth, C' > 0 denotes a generic constant which is independent of s > 0. From
the assumption on R, we have

S <C Y2 f2e?*¢dady.
DxG(y()
By (4.10), we see that |y;] < T —26 or T — 6 < |y1| < T implies 9, x = 2, x = 0, and
[y —yol <T =25 or T — 6 < |y — y{| < T implies 9y, x = 5‘5}9{ =0 for 2 < k < m. Therefore,
if ly1| € [0, — 28] U [T —6,T] and |y’ — yp| € [0,T —20] U [T — §,T7], then |V, x| = Ayx = 0.
Hence

3]

sgzc(/ +/ ) D 12(V,x. Y, 05, 0)
(T—26<|y1|[<T—8}N(DXG(y)))  H{T—26<|y/—y}|<T—5}(DxGC ()’ +=1
+ (Ayx)851u|2e2”dmdy.
By (4.8), we have ¥ (z,y) < —e in the regions of the above integrals. Hence
S <C M? exp(2se”€)dxdy < CM?e*". (4.16)

DxG(y()
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Here and henceforth we set

k1 =¢e % ko =2¢7",
Finally, we obtain

2
S3 < Ce®® / > 10,08 ul?dS.dy
17}

0D xG(yg) =1
2
< Ce®s / > 10,08 ul?dS,dy = Ce“*d®. (4.17)
dD 4 xG(T,2T)

k=1

Here we used (4.14).
Consequently (4.15) yields

/ Z 8| Vywg |2 + 8|V ywi|* + s*wi)e**?dady
DxG(yg)

<C X2 f2e? e dady + OM?e**™ 4 CeC*d>. (4.18)
DxG(y})

Next, since x(=T,y") = 0 for y' € G’'(y(,) by (4.10), the Cauchy-Schwarz inequality yields
[ N0 w0,y PO dady
DxG'(y5)
0
=/ 3y1(/ X (y1,y) (05, u(x, g1, y')) ooy )dxdy’>dy1
DxG’(yg)

/ / Ay X)X u(z, y1,y'))? + 2x3 (0, u) (05 u)
DxG(y)

+ X202 u)?25(0y, )2 @ VY ) dady

T
S/ / |8ylx|2|8§1u|2e28"°dxdy
~1JDxG'(yy)
T
O[] (Ol Xl + s e dady
Y,

< CM?*e*m 4 C (Jwal? + [y, w2|? + s|lwz|*)e**¢dady.
DxG(y()

For the last inequality, we used (4.16) and

X0y, u = n (Xﬁilu) - (8y1X)8§1u = Oy, w2 — (8y1X)8§1u-

Y1

Hence
/ (0, 5) 2102, u(z, 0,5/ ) Pe>¢ @09 ) dady’
DX G (yl)

< CM?e*™™ 4 C (s|wa|? + |0y, w2|?)e**?dady.
DxG(y()
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Applying (4.18), we have

/ Ixo(ly’ — yb) 2102 u(z, 0, y")[2e?*# @09 ) dady’
DxG'(y{)

c /
<= X5 XS (1Y = woDIf P =) dudy + CM2e*™ + Ced?
S JDxG(yh)
C ’
<~ X6 (I = yoDIfPe*# @0 dady’ + CM2e*™ 4 Ced?, (4.19)

S JDxaG(y})

Here we used |xo(y1)] < 1 and e25¢@v18") < 25009 for g € D and y € G(y}).

On the other hand, substituting y; = 0 in (1.2) and applying u(z,0,vy’) = 0 and R(z,0,y’) #
0 for z € D and |y'| < 2T, we have
a’glu(xﬂ 07 y,)

f(z,y) = R.0.y)

reD, |y|<2T. (4.20)
Noting by (4.4) that if |y — y4| < T, then |y'| < 2T, we apply (4.20) in (4.19), so that
0

[ B DI dady

DXG’(yé)
C !

< — 2|y — yo))| f12e®* e @0 ) dady’ + CM?e*™ + Ce“*d?
S JDxG'(y})

for all large s > 0. Absorbing the first term on the right-hand side into the left-hand side by
choosing s > 0 large, we obtain

/ X(2)(|y/ - y(/)|)|f|2625tp(z,0,y’)dxdy/ < CM262551 + CeCsd2
DxG'(yp)

for all large s > 0.
Replacing the integration domain on the left-hand side by D x {y'; |y’ — y}| < %} C
D x G'(y()) and using (4.9)—(4.11), we see that 1(x,0,y") > €, xo(|y' — y,|) = 1 there and

8251{2/ |f|2d$dy, S CM2e2snl +CeCsd2
Dx{y'; ly'—y)l <L}

for all s > sg, where sy is some constant. By the definition, we have ko > k1 and set kK =
ko — k1 > 0. Then the last inequality implies

/ |f|2dzdy’ < CM2e 2% + Ce®*d? (4.21)
Dx{y; ly' —yhl< %}

for all s > sg. By the same argument as in the proof of Theorem 1.1 after (3.18), we can choose
0 € (0,1) such that

/ fPdrdy < O + )
Dx{y'; ly'—yhl<Z}

for all y{, € R™~1 satisfying |yp| < T — % —€. By |10y, ullm2(pxay < M, the trace theorem yields
d < CM, which implies d < Cd?. Varying v}, and noting

_ T T m_
ULy e R 5 — sl < — bl < T == —ef = {y/ €R™ 5 1y < T = o),



Stability of Inverse Problems for Ultrahyperbolic Equations 545

we obtain

/ |f(2.y)Pdady’ < Cd*.
Dx{y’;|y'|<T—e}

Thus the proof of Theorem 1.2 is completed.

5 Appendix

Thanks to the large parameter s, it is sufficient to prove Theorems 2.1-2.2 in the case of
a; =b; =01in (2.1). Let us set

Lou := Ayu(z,y) — Agu(z,y) = F. (5.1)
We prove only Theorem 2.2 and the proof of Theorem 2.1 is obtained by replacing the domain
D x G(T,Ty) by Q(5). Henceforth, we write z,, = 0y, 2, 22; = 0,2, 2z;y, = Or,;0y, 2 and use
v to denote the unit outward normal vector to a hypersurface under consideration and we set
Ovz = (Vgz,v) or 0,z = (Vyz,v). Moreover, we set

Q=D xG(T,Ty), T,=0DxG(T,T)), Ty=DxdGT,T) (5.2)

and

2(x,y) = PEVu(n,y),  Paa,y) = e Lo(2e”*%). (5-3)

By (5.3), we calculate

Pz=P 2+ P 2z, (5.4)

where
Ptz=Ayz— Az + 582 (|Vy0l? — Va2, (5.5)
P~z =—=25((Vyp,Vyz) = (Vo,Vz2)) — s(Ayp — Ayp)z. (5.6)

The first term on the right-hand side of the Carleman estimate is ||Pz||2L2(Q) and it suffices to
make a lower estimation of ||Pz||2Lz(Q). Since

1Pz)|7200) = I1PY2l|720q) + 1P 21720 + 2(P T2, P~ 2) 20
Z 2(P+Z,P72:)L2(Q),

we will estimate (P*z, P~ z)12(q) as follows. Using (5.5)-(5.6), we obtain

(Pt2, P 2)p2) =T + Lo+ I3 + Iy + I5 + Ig,
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where
I = —2s /Q Ayz((Vyp, Vyz) — (Vap, Vgz))dzdy,
I, = —s/ﬂAyz(Aygo — Ayp)zdzdy,
Iy = 25 /Q 2oz ((Vy, Vy2) = (Vaip, Vaz))dady,
Iy = s/QAZZ(AW — Ayp)zdzdy,
Iy = =25% [ (90l = [Vap)2((T,. V,2) = (Vo V.2)dady,

o= s /Q V0l — [Vap2) (Ayo — Asip)|2[*dady.

Now, we will estimate the terms I, 1 < k < 6, using the integration by parts and the boundary
condition of z. Then we have

L= =25 | 8,2((V,0.¥,2) = (V. V) dady
Q

:25/(Vyz,vy(vyga,vyz))dxdy—25/ (0v2)(Vyp, Vyz)dS,dz
Q r

Y

—28/(Vyz,vy(vxg0, sz))dxdy+2s/ (0v2)(Vap, Vyz)dSyda
Q r

Y

=25 Z /zyk(goyjzyj)ykdxdy—%/ (0v2)(Vyp, Vyz)dS,dx
Q r

k,j=1 Y

- 2522/{22% (Pa; 22; )y, dady + 28/1“ (0v2)(Vap, Vyz)dS,da

k=1 j=1 y

=25 Z /zykzngoyjykdxdy—s/ |V, 22 A, pdady
N Q Q

J=1

—25/ (&,z)(vyga,vyz)dSydm—i—s/ (0v)|Vyz|*dS,dz
r

Y r Y

—QSZZ/szkzzjs%Jykdxdy—I—s/Q|Vyz|2Axg0dxdy

k=1j=1

—|—25/ (8yz)(vxga,vxz)d3ydx—s/ (0,9)|Vy2|?dS,dy,
r

Y x

I, = —s/ (Ay2)(Ayp — Agpp)zdady
Q
s
= S/Q V2|2 (Ayp — App)dady + 3 /Q(Vy(|z|2)7 Vy(Ayp — Ayp))dady
- s/ (0u2)(Ayp — App)zdS,dz
r

Y

S
=5 [ 1V, By~ Aupldady — 5 [ 5PA,(8yp — Ap)dady
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- 5/ (0v2)(Ayp — Agp)zdSyda + % / v (Ayp — Ap)|2|?dS,da,
r r,

Y

Is = 25/ Agz(Vyp, Vyz)dady — 25/(Amz)(vmw,vmz)dxdy
Q Q

:—QSZZ/szk(g%jzyj)xkdxdy—l—23 Z /szk(gomjzmj)xkdxdy

k=1j=1 k,j=1

+2s/ (&,z)(vyap,vyz)dsmdy—%/ (0,2)(Vaep, Vaz)dS,dy
FTC

x

:—QSZZ/szkzngoijkdxdy—l—s/ﬂ|sz|2Ayg0dxdy

k=1 j=1

—s/ (8V¢)|sz|2d5ydx—s/ |Vez2Appdzdy
r, Q

+s/ (0,0)| V2 2|?dS,dy + 2s Z /zmkz%apxﬂkdxdy
r Q

@ kj=1
425 [ (@.2)(T,0, 9,208y~ 25 | (02)(V.p. Vo2)dSdy,
u—gbgwﬁw—mWMMy |
= =5 [ (V02 Val(By = Arp)2)ldady 5 | (0,2)(8,0 — Arip)zdS,dy
== [ VP (A0 = Aspdady+ 5 [ 5P A(A 0~ Arp)dady
w1 [ @80 AcpaSity =5 [ 080 Acp)lPasay
I = 25° [ (9l = [Vapl)2((,0.V,2) = (Voo V.2)dady
=5 [ (Vo TP = (Vo TalleP D (T = Voo
= =" [ (V40 Dy 19y = [Vl dady
458 [ (940, 2PV (9 = Vgl dady
458 [ (920 V(o190 = [Vpl?))dady
=5 [ (Vo EPVA1Tyef = [Vl
= 5° [ PV, 0P = [V26P) (A0 - Aspldady

+§LVWWMVNWWP—WMWMMy

_ /Q 12(V o, Va [V 02 — [Vapl?))dzdy
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(0v) 122 (IVyl® — [Vaepl?)dS, da
(81190)|Z|2(|vy90|2 - |vx90|2)dszdy

and

To = = [ (90l = V2080 = Asi)lz Pdady.
Therefore, we can rewrite

(Pt2, P~ 2)200) = J1 + J2 + J5 + Ju + J5 + By,

where
J1 =2s Z /zykzngoyjykdxdy 4SZZ/zykzx1¢%ykdxdy,
k] 1 k=1 j=1
Jo =25 Z /Z;ckzx,@szckdxdya
k.j=1
J3 = —§/Q|z|2Ay(Ayga—Ax<p)dxdy,
s
J4:§/ |z|2Ax(Ay<p—Axga)da:dy,
Q
_ .3 2 2 2
To = s [ (9,0, 9, (V0P = [Voe)dady
=5 [ R(Va0 V(190 = V) dady
and

By = 25 / (0,2)(Vaip, Vaz) — (Vyip, Vy2))dS, da
r,
I, .
/ (0v2)(Ayp — App)zdSydz + = / 0 (Ayp — App)|z|?dS,dx
r,

—I-ZS/ (0,2)(Vyp,Vyz) — (Vap, Vi 2))dS,dy
r

x

s / (00 0) (V2P — Vs 2[2)dSady + 5° / 000|221V f? — |Val?)dS,dy

x

+ s/r (0v2)(Ayp — Agp)zdS,dy — g /1“ O (Ayp — App)|2*dS,dy.
Next we calculate Ji, 1 < k < 5 by substituting the concrete form of . Setting

di () = Ayp — Ay, da(y) = |[Vyo|* — |Vat)?,

@)V, = (92180 = 5° [ ()P (V,f ~ Voo, da
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we have
Paioe =102+ 792,), Paiy; =V PVe Vo,
Ve =7pVat), Vyp = v0Vyi,
Az = 7o(At) + 7|Vt %), Ay = vo(Ayt +7|Vyl?),

Ay — Dy = yodi (1) + 7 eda ().

Therefore, we obtain

Ji1=2s Z /szkzngayjykdfcdy—4SZZ/szkz%.gomjykdxdy

k=1 k=1 j=1

= Z /923790(1/’%% + Yy, Py, ) 2y, 2y, dady

k,j=1

=30 [ 459t 2 dady

k=1 j=1

m m 2
Z /QQS’YW/)yjykzykzyjdxdy"‘/925’7290<Z¢yjzyj) dzdy

k,j=1 j=1

-3 > / 457> 0y, Y, 2y 20, ddy
Q

k=1 j=1

and

Jy =25 Z /szkzmjapxﬂkdxdy

k,j=1

Z /Q%wzxkzxj(%jxk+ka¢xj)d$dy

kyj=1
n n 2
= Z /237<pzxkzxj1pxjxkdxdy+/ 2872¢(szkka) dady.
k=174 Q2 k=1

We can directly verify

Ay (eda (1)) = vo(Ay¥)da (V) + V2|V y1h|*da (1)
+270(Vy ), Vi (d2 () + @Ay (d2 (1))

In fact,

Ay(pda(¥)) = D (Pysu;d2(v) + 20y, (d2(¥))y; + p(d2(4))y;y;)

I

1

J

Veby,u,da () + > v oty da ()

7j=1 7j=1

3

NE

+ (2')’901/)% (do (w))yj + o(do (w))yﬂh)

j=1
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= (D) da(¥) + 72|V [da(¥)
+ 2'7‘;0(vy¢7 vy(dQ(w))) + @Ay(dQ(lp))-

Consequently, we see that
T= 3 /Q |27 Ay (Ayp = App)dady
_ _g/ 1228, (veda (1) + 1> pda (1)) dady
Q

_ _/Q 372¢|Z|2(d1(¢)Ayw + Ay (d2(4)))dady
B /Q 57l P ()T, + (A, 0)da(0) + 2V, V, (da (1)) dady
_/ %74<p|z|2|vyw|2d2(1/))dxdy.

Q

Since

Ag(pda (1)) = vo(Agt))d2 (V) + 7| Vath | da ()
+270(Vath, Vi (da () + pAz(d2(v)),

we have
Ji= 5 | FPAA e - Acg)dady
= [ St @IP A dady + [ 5971 AL (pda(w))dody
Q Q
= [ 37l Ph )Aw + Aoy
[ S (Ar0) () + 270 V() + i ()| )y
+/Q%74ga|z|2|vxw|2d2(w)dxdy.
We can directly verify

(Vyo, Vy(IVyel® = [Ve?)) = (Vyo, Vy (72 0da (1))
=72 (Vyp, da () Vy (07)) + 7> (Vy o, 9>V (d2(1))))
= 274803d2(w)(vy¢7 vyw) + '73803(Vy¢7 vy(dQ(w)))

and

Therefore, we conclude that
Jo =5 [ (90, V, (W0l = Vl))dody

~ / |22 (Vaip, Vo (I 0l? — [Vaipl?))dady
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=’ /Q 1212 {273 da (V) (Vy1b, Vy1b) + 73 0% (Vy1h, Vy (d2(¥))) Ydady
-5 /Q 1212 {273 da (V) (Vat), Vi) + V203 (Va), Vi (da () Ydady
_ /Q3373<p3|z|2{(vy¢,vy(dg(w))) — (Vath, Val(da())) }dady

+ [ 2859 af da(w) oy,
Q

Finally, we obtain the boundary term as follows:

By = /1“ 257p(0,2)((Vuth, Vi2) — (Vy1p, Vy2))dS,dz

Y

570(0,9)(IVyzl* = [Va2]*)dS,dw —/ 570 (0|2 d2(1)dS  dx

Y Y

s(vedi (1) + 72 eda (1)) 2(9,2)dS, dz

= (7%0ds (4) + 77 0d2(4))0, + 7700, (da(4))) 2 [dS, da

257p(0,2)(Vy©, Vyz) — (Vatp, Vi 2))dS,dy

x

570D, ) ([T, 2|2 — [V 2[2)dS,dy + / $363(0, )2/ da (4)dSady

x @

s(yedi () + 72 oda (1))2(0,2)dS.dy

x

(Vodi () + 7Pod2 (1)) (0,1) + 7200, (d2(1)))|2|*dS, dy. (5.8)

N »

Then from (5.7), we have

Ptz P~ = 2 dzd 2572 201 d
(PTz, Z)LZ(Q) Z o S’wayjykzykzyj rdy + o sy P Zwyjzyj xray

where

k.j=1 j=1
— Z Z/ 4372@/)% Y ; 2y, 2 dwdy
k=1j=1"%
n n 2
+ Z /257§02xkzl’jwl’ﬂkdxdy+/ 25’7280(sz,€1/)$,€) dzdy
k=1 Q k=1

S
- [ Sreleawidndy = [ sy lls(w)ady
S
= [ Srtelelaa(Pardy+ [ st s 0)dady

4 / 25346822 (da (1)) dady + Bo, (5.9)
Q

ds = d3() = (d1(1)* + Ay (da(v)) — Aa(da(v)),
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dy := da(¥) = (Vyt), Viy(d2(¥))) = (Va1h, Va(da())),
ds := ds(¢) = d1()d2(¥) + (Vy, Vi (d2(¢))) = (Vat), Va (da(¥))).

We have ¢ > 1 on Q and so ¢* < Cp?, k =1,2,3 on . Moreover the second, third and fifth
terms on the right-hand side of (5.9) are summed up into

m n
/ 257%( S gz, =3 %zxk)dedy > 0.

Q j=1 k=1

Hence
(Pt2,P™2)12(0) > —/S24ﬂs'y<p|vyz|2dxdy +/Q4s'y<p|vxz|2dxdy
+ /Q 253~y o3 d5| 2|2 dady + /Q o(s3y4p3)|z|?dzdy + Bo.
By the assumption (2.2), we have
d = 16(|x — wo|” — 2|y — yol*)* > 1657
Therefore, we can write
(Pt2,P™2)12(0) > — /Q 4857¢|V yz|*dedy + /Q 4sy0|V 22 dady
+ 325(2)/98374303|z|2dxdy+/520(8374<p3)|z|2dxdy + Bo. (5.10)

In (5.10), the signs of the terms of |V,z|? and |V,z|? are different. Thus we need to perform

another estimation for
/Q(PJFZ + P z)pzdady.
Multiplying the equation Pz = F'e®? by ¢z and applying the integration by parts, we have
/Q(PJFZ + P~ 2)pzdxdy
= [ 2oy — [ (z)pdady+ [ 9,0 =920 )il dody

ey / (Vy0. Vy2) — (Vaip, Vio2))ipzdzdy — / S(Dyp — Avg)|z2dady
Q Q

=K; + Ko+ Kz + Ky +Ks.

Now we estimate the terms K;, 1 < j <5 as follows:
Ki= [ (8,2)(p2)dody
Q

z—/(Vyz,Vy(gaz))dxdy—l—/ (0v2)(pz)dS,dx
)

Ty

1
:—/Q|Vyz|2<pdxdy—E/Q(Vy(|z|2),vy<p)dxdy+/ (0v2)(pz)dS,dz

Ty
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1
_ / oIV, 22 dady + / Yol 2 Aydady
Q 2 Ja

1 1
5 [PV pPdedy + [ (022,00 =5 [ apld0)]sPas,de.

Y

Ky = —/(sz)(apz)dxdy
Q
— [ olVaaPdady - 5 [ [P Ay
Q 2 Ja
1
- [ @ty + 5 [ @upleas.ay
T, Ta

1
- / oIV Pdady — / Yol A ipdady
Q 2 Ja

1 1
— 5 [ eIV ety — [ @228y + 5 [ p(0.0)lzRas

x

K = /Q (¥, pl? — [Vapl?) |22 pdady
= [ #2190 = [.)=Pdady
= [ # el dady,

K= - /Q 25((Vy, Vy2) — (Vasp, Va2))pzdady
== [ 59V, (=P edndy + [ (9, |29 ) dady

+ [ (920l o)dady = [ (Vi 2PV )y
= [ sellapady+ [ P9, pldedy - [ selsPAspdedy

~ [ slePIVapPdady —s [ @) pasydets [ (0up)lzPeds.dy
- / 962212y () dady + 2 / 57202 2ds (1) dardy

—s [ @), de ¢ s /F P2 (0,0) 2 [2dS, dy.

K; = —/QS(AySO — Ayp)|2|*pdedy
=—/QSWQ(AW+7|Vyw|2)|2|2dxdy+/QSWQ(AW+7|wal2)|2|2dxdy
=—/§287¢2|Z|2d1(¢)d$dy—/9872302|Z|2d2(¢)d$dy-

Therefore we see that

/ (P24 P~ 2)pzdady
Q

1
= —/ ¢|Vy 2P dzdy + 5/ vo|z|*dy (v)dady
Q Q
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1
+3 [ PelePdav)ndy + [ oIV Pdndy
Q Q

4 / P2 dy ()| dady + / 72?2 2da(¢)dedy + By
Q Q
Here

1
B, = / (0v2)(pz)dS,dx — 5/ yo(l + 28(,0)(8Vw)|z|2d5'ydx
r r,

1
—/ (0v2)(pz)dS,dy + 5/ Yo(1 + 250)(0,0)|2|*dS,dy

:07

(5.11)

because z = 0 on I'; UT', by (2.3). Now we calculate By given by (5.8), while (2.3) implies

Vyz =0and Vyz = (0,2)v on I'; and all the integrations on I'y vanish. Hence

By = —/ 237@(&,2)(Vzgp,vmz)dsxdy+/ s'yap(&,z)|sz|2dSzdy
T, T,

= —4/ s'yg0|8l,z|2((x —xg),v)dS,dy + 2/ sye((x — xo), 1/)|8l,z|2dSIdy
T T,

@ @

= —2/ S'y<p|8l,z|2((x — xp),v)dS,dy

@

> —2/ 570|0,2)? ((x — x0), v)dS,dy.
TN {((z—0),)>0}
So multiplying (5.11) by —sy(45 + p), where we choose p > 0 later, we have
- /Q (48 + p)syp(Pz)zdady
= [+ wsel ¥, Pdady — [ (@54 w9,z Pdady
+ /Q o(s*y* )|z dady.
We add (5.10) and (5.13) to have
(P*2,P™2)12(0) — (468 + 1) /Q (Pz)sypzdrdy
> u/ﬂ 57| Vyz[*dzdy + (4 — 46 — 1) /Q 57| V2 [*dady
+ 3263/05374303|z|2dxdy+/90(8374903)|z|2dxdy + Bo.
On the other hand, since

(P*2, P 2)2(0) = 5 (P2 + P~ 2|72y = [P 2l 220y — 1P 27 2(0))

1

2
1 2

< §||PZ||L2(Q)7

by the Cauchy-Schwarz inequality, we see

(5.12)

(5.13)

1 1 1
[left-hand side] < §||Pz||2L2(Q) + 48+ u){§ /Q |Pz|2dady + 5 /Q 32,),2902|Z|2dxdy}.
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By 0 < 8 < 1, we can choose p > 0 sufficiently small, so that

4—-46—p > 0.

Absorbing the term of |z|? with o(s3y%¢?), we complete the proof of Theorem 2.2.
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