Chin. Ann. Math. .
35B(4), 2014, 563-574 Chinese A'_‘nals Of_
DOT: 10.1007/s11401-014-0846-8 Mathematics, Series B
© The Editorial Office of CAM and
Springer-Verlag Berlin Heidelberg 2014

Monomial Base for Little g-Schur Algebra ug(2,7) at
Even Roots of Unity

Qunguang YANG!

Abstract Let ux(2,7) be a little g-Schur algebra over k, where k is a field containing an
I’-th primitive root € of 1 with I’ > 4 even, the author constructs a certain monomial base
for little g-Schur algebra ug(2,7).
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1 Introduction

The infinitesimal Schur algebra s(n,r); was introduced in [7] to study the polynomial rep-
resentation of G, T of a given degree r, where G} T is the group scheme associated to the r-th
Frobenius kernel GG, and a maximal torus 7" of the general linear group gl,,. The quantum
version of the infinitesimal Schur algebra was studied by Cox in [2-3]. Semisimple infinitesimal
Schur algebras were classfied in [6] and semisimple infinitesimal ¢-Schur algebras were classfied
in [17]. The finite representation type of infinitesimal Schur algebra was classified in [8] and the
tame representation type of infinitesimal Schur algebra was given in [4]. The finite representa-
tion type of infinitesimal ¢g-Schur algebra was given in [16] and the tame representation type
of infinitesimal g-Schur algebra was given in [18]. The structure of the endomorphism ring of
tensor space as a module for the infinitesimal g-Schur algebra s4(2, 7)1 was investigated in [13].

Little g-Schur algebra ug(n,r) was introduced in [11, 15] and the construction of various
bases of monomial, BLM and PBW types for ug(n,r) was given. Here k is a field containing
an [’-th primitive root € of 1. There is a close relation between infinitesimal ¢-Schur algebra
sq(n, )y and little g-Schur algebra ug(n,r). In fact, little g-Schur algebra can be considered
as a subalgebra of infinitesimal g-Schur algebra (see [14]). The irreducible modules for little
g-Schur algebras and semisimple little g-Schur algebras were classified in [12]. The basic algebra
of the endomorphism ring of tensor space as a module for the little g-Schur algebra ug(2,r) was

determined in [20].
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In [11, Theorem 8.2, Theorem 8.5], various bases for little ¢-Schur algebra wuy(n,r) were
obtained when !’ > 3 odd. And the case when I’ > 4 even was studied in [15]. In [19,
Theorem 5.1], the construction of a #-basis for little g-Schur algebra ug(n, r) was given where
% = Zle,e71] and € is an I’-th primitive root of 1 with I’ > 3 being odd. In this paper, we shall
construct a certain monomial base for little g-Schur algebra u(2,7) when I’ > 4 even.

We organize this paper as follows. In Section 2 we recall the definition of little g-Schur
algebras, given in [11, 15]. We shall construct a certain monomial base for little g-Schur algebra
up(2,7) in Section 3.

Throughout, let v be an indeterminate and let Z = Z[v,v~!]. Let k be a field containing
an I’-th primitive root € of 1 with I’ > 3. Let [ > 1 be defined by

U, if I’ is odd,
I=<7

5 if I’ is even.

Specializing v to €, k will be viewed as a Z-module.

2 The Little g-Schur Algebra

The quantized enveloping algebra of gl,, is the algebra U(n) = U(gl,,) over Q(v) generated
by the elements
Ej, F;, Kf' (1<i<n-1,1<j<n)

subject to the following relations:

a) KiK; = K;K;, K;K; ' =
b) K;E; = v E;K;, where €(i,i) = 1, (i +1,i) = —1, and €(4, j) = 0 otherwise;
¢) KiF; = v G F K,

EF; — FE; =4, WhereKz.—KK_

—-K;
€ 1341, =1 i+1°

(

(

(

(d) E;E; = E;E;, F;F; = F;F;, if |i — j| > 1;
(e)

(f) E?E; — (v+v YEE;E; + E;E? =0, if [i — j| = 1;
(

g) F2Fj — (v+v Y )EFF+ F;F2 =0, if [i — j| = 1.

Following [21-22], let Uz(n) be the Z-subalgebra of U(n) generated by all Ei(m), Fi(m), Kt

and [K;;O}, where for m,t € N and ¢ € Z,

E(m) _ ET F(m) . Fm {Ki;c} _ ﬁ Kjpe—s+l — Ki—lvchrs,l
S 1 (O ¢ _5:1 v —v*
with [m]' = [1][2] - - - [m] and [i] = viouTt

v—y—1"
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For any integers ¢,t with ¢ > 0, let

t c—s+1 —c+s—1
c v v
= Z
[t} 51;[1 V8 —vF <
IchtZO,wehave[i]z#{t]!,whﬂeift>020\vehave [{]=0.

Let Ug(n) = Uz(n) @z k. We denote the images of E;, F;, K; in Uk(n) by the same letters.
Let u(n) be the k-subalgebra of Ui (n) generated by the elements F;, F;, KfEl for all 7, j. Let
u?(n) be the k-subalgebra of uy(n) generated by the elements Kjil’s.

Let g(n) be the set of all n x n matrices over Z with all off diagonal entries in N, and let
E(n) = M,(N). Denote o : £(n) — N be the map sending a matrix to the sum of its entries,
and let E(n,r) = o~ !(r), where r € N. For 1 < i,j < n. let E; ; € Z(n) be the matrix (ay,)
with ax,; = 0,105,

We denote

=t (n) = {A = (a;;) € E(n) | a;; = 0,Vi},

=%(n) = {A = (ai;) € E(n) | aij = 0,¥i # j},

D(n) = {A = (aiy) € E(n) |ai; <LVi#j },

I*(n) = {A=(a:;) | A€ Z(n), ai; <1,¥i#j, ai; =0 for all i},

Let Uz(n,r) be the algebra over Z introduced in [1, §1.2]. It has a normalized Z-basis
{[A]} ae=(n,r) defined in [1]. From [9], the algebra Uz (n,r) is isomorphic to the g-Schur algebra
Sq(n,r). Let U(n,r) = Uz(n,r) ®z Q(v), then we call both Uz(n,r) and U(n,r) as g-Schur
algebras.

Given r > 0, A € Z*(n) and j = (j1, ja, - ,jn) € Z", we define

AG.ry= > v=i%i[A+D]eU (n,r),

De=(n)
oc(A+D)=r

where D = diag(dy,da, - ,dy).
Theorem 2.1 (see [1]) There exists an algebra epimorphism ¢, : U(n) — U(n,r) satisfying
Ep = Eppga(0,r),  E{'KJ - Kjr = 0(3,7),  Fn = Eny1n(0,7).

Denote e; = (.(E;), fi = ((F), ki = (-(K;), 1 < i

(1,82, ,tn) € N, let kg = T]["°).

A
3
|
\.H
—_
A
<.
AN
s
g
=
-+
Il

i=1
Define a map - : 7" — Zﬁ, (j17j27" : a]n) = (j_laj_Qv ;]_n) For j: (j17j27"' 7]n) € Nnv
let K = kI'k?> - ki 0(j) = j1 + -+ jn, Ny = {0,1,-- , I/ =1} C Z. Let A(n,r) := {\ €
N | o(X) =1}
Denote U%(n,r) be the subalgebra generated by ky (A € A(n,r)) of Uz(n,r).
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Theorem 2.2 (see [5, 10]) (1) The set {kx | A € A(n,r)} is a complete set of orthogonal

primitive idempotents (hence a basis) for Uz(n,r). In particular, 1 = >  kj.
AEA(n,r)

(2) Let A € A(n,r). Then k;ky = vViky for 1 <i < n.

Let Ug(n,r) = Uz(n,r) ®z k. According to [9], we have (,(Uz(n)) = Uz(n,r). Thus, ¢
could naturally induce an epimorphism ¢, 5 := ¢, ®id : Ug(n) — Ug(n,r). For convenience, we
denote e; ® 1, f; ® 1, k; ® 1 as e;, f;, k;, respectively. Then the algebra ug(n,r) = ¢ x(Ur(n))
is called a little g-Schur algebra (see [11, 15]). Let ul(n,r) = ¢ x(ud(n)).

Denote _ _
Z k,, ifAxeA(n,r),
— — /J peA(n,r)
Py T
0, otherwise.
For A = (a; ;) € Z*(n), we define
e(A+) _ H ega,-,j), £A7) — H f}(Lai,J).
1<i<h<j<n 1<j<h<i<n

For A € T*(n), A € Z, we define

A+ ding(w)], it X € K(m 7~ o(A)),
[A -+ ding(X), ] = { HeACLT— ()
=
0, otherwise.

For A= (as:) € E(n) and i < 7, let 05 ;(A) = > asy and 0;;,(A) = > ars. Define A’ < A
s<i s<i
t>5 t>j

if and only if 0, ;(A") < 0;,(A) and 0,,;(4") < 0;;(A) forall 1 <i < j<n. Put A < Aif
A" 5 A and, for some pair (Z,7) with ¢ < j, either o; ;(A") < 0;;(A) or 0;,(A") < 0;,:(A).

For A = (a;;) € E(n), we define

oi(A) = a;; + Z (aij + aji)-
1<5<i

Lemma 2.1 (see [11, Proposition 7.3], [15, Corollary 6.2]) FEach of the following sets forms
a k-basis for the algebra ud(n,r) :

(1) X = {K | J €N}, ji, =0, o(j) <7}

(2) ¥ ={px[ X €An,n)}.

Lemma 2.2 (see [11, Theorem 8.2, Theorem 8.5], [15, Theorem 6.8, Theorem 6.9]) Fach
of the following sets forms a k-basis for the little q-Schur algebra ug(n,r) :

(1) My, = {e@DpsfA7) | A€ TH(n), A€ Aln,r), \i > 05(A), Vi)

(2) Li, = {[A+ diag(\),r] | A € TE(n), o(A) <7, A€ Aln,r —a(A))};

(3) Nigk = {e@KIEA) | A € T%(n), je NI, ji, =0, o(j) +o(A) <r}.



Monomial Base for ug(2,7) at Even Roots of Unity 567

Assume that !’ is even. Let

n—1
K07 o am
Dy 1= {e(A+)kai[ ;’O}fm )‘Aefi(n), 0<A<I—1,68=01,i=1,,n—1,
i=1 g

o(A) +ni:(>\i +6il) < 7"}-

i=1
It is conjectured by Qiang Fu that the set ©,, , forms a k-basis for ug(n,r). We will prove that
this conjecture is true when n = 2 and I’ is even.

We have following results:

ki= Y e¥py, 1<i<n

XEA(n,r)
k;; Ai .
[ jo}: Z {j]px, 1< <m (2.1)
XeA(n,r)

P3Pz = 05 ;Px-
Lemma 2.3 Assume that I’ is even. There exists a bijection between the set

{(Aa(slv"' 7671717)\17"' 7)\n71)|A€Fi(n)v OSAzél_lv 51':071; Z:1a27 an_]-a

o(A) + Ti(&' + ;1) < 7“}

and the set
{(A4,j) | AeT=(n), NS, jn =0, o(A) +0(j) <r}.

Proof We establish a map between the two sets as
(Aa A17 e 7)\n—1; 517 e 75n—1) = (A; A1 + 5115 e 7)\n—1 + 5n—1l)-
Then it is easy to know that the map is a bijection.

According to the lemma above, we can establish a bijection between the set ©,,, and the
set Ny in Lemma 2.2(3).

Similarly, there exists a bijection between the following two sets.
Lemma 2.4 Assume that I’ is even. There exists a bijection between the set

,Tn,r = {(A17"'7)\n—1;517"';5n—1)|og)\i§l_17 61':0)17 i:l,---,n—l,

n—1

Z(/\i +0;l) < 7“}

i=1

and the set
Xn,r = {.] = (jlv"' ajnflvo) |j € Nﬁa Jn =0, U(j) < T}'

Then we can establish a bijection between the set 9B, » and the set &;, in Lemma 2.1(1).
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3 Monomial Base for ug(2,r)

Denote

7—2,7“ ::{(Alﬂél) | 0< M <I- 1;51 = Oa]-v A1 +5ll < 7’},

A2,r) ={(0,7),(1,r = 1),--+ ,(r—1,1),(r,0)}.

Proposition 3.1 Assume that I is even. Then the set

%2’7, = {k(lsl[k){io] |0 <\ <Il- 1, A+ 611 < r, 01 :0,1}

forms a k-basis for ud(2,r).

Proof We shall carry out the proof in three cases.

Case 1 r <.

We fix an order in Y = {py | e A2,7)}:

P@or Par=1:"""> PF0)-
The elements (A1, d1) in T3, are
(07 O)a (L 0)7 (27 0), B (’I“, 0)-
Hence, we will fix an order in B, , as follows:
1 [kl;O} [k1;0} {kl;O}
) 1 ) 2 ) ) r M

kl;O

According to (2.1), each element [’

A(2,7)).

Q. G. Yang

| can be written as a k-linear combination of py (A €

Applying the above order, we know that the matrix between vectors consisting of elements

in By, and vectors consisting of elements in ) is a square matrix according to Lemma 2.4. We

denote by this matrix B,. By Lemma 2.1(2), Y is a k-basis of u(2,r), it is sufficient to show

that B, is invertible.

B, is the following matrix:

1 0 0
1 1
Lo
i [rjl] [7";1]
L MU Y

[

o

T
r—1

]

o O

S e
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where the first column vector in B, corresponds to the element 1 in ‘B ,, the second column

vector in B, corresponds to the element [kll;o] in By -, the third column vector corresponds to
the element [*1°] in Vs, ---, the (r + 1)-th column vector in B, corresponds to the element
(%197 in B,

Apparently, B, is a lower triangle matrix with diagonal elements 1 and hence, it is invertible.

Case 2 [ <r <l —1.
Let r=14+b,0<b<1—1. We have

We also fix an order in = {px | A € A(2,7)}:
Por» Par=1) " Pr0)-
The elements (A1,01) in 73, are
(0,0), (1,0), (2,0), ---, (I—1,0), (0,1), (1,1), (2,1), ---, (b,1).

Therefore, we shall fix an order in Bj ;. as follows:

T S e B

1 2 -1 1 2 b

k1;0

Similarly, each element k%[ N\

] can be also written as a k-linear combination of py (X €

A(2,7)) and we denote the matrix between vectors consisting of elements in B, and vectors

consisting of elements in ) by B,. Now we will show that B, is invertible.

B, is the following matrix:

1 0 0o .- 0 0o .- 0o 0 1 0 0
1 1 0 0 0 0 0 e e 0
1[3] 1 0 0 0 0 &2 e[?] e?

l; b .b b
Lo Ll o 00 e ehl Lkl
IO R B oA (73] 1 0 0 ¢ € 1oy
e LI it B
1 [1] [2] [b] [b+1 1_2] 1 e 7[1] 57[2]
1 0 0 0 0 o o ¢ 0 0
L0 -0 0 - 0 0 gt g 0
1 [Hl-Q] [l-|2—2] O O 0 0 €l+2 €l+2[l-|1—2] €l+2[l-|2—2]
1 [Hl—b] [HQ—b] L [Hb_b] 0 . 0 0 El+b El+b[l-i1—b] El-&-b[l-{Q—b]

El-&-b[l-gb]

where the first column vector in B, corresponds to the element 1 in By ,., the second column

vector in B, corresponds to the element [k“o] in By, -+, the I-th column vector corresponds

1
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to the element [ll(fi)

] in By, the (I + 1)-th column vector corresponds to the element k; in
B, the (I + 2)-th column corresponds to the element kl[kll;o] in By, ---, the ({+ b+ 1)-th

column vector corresponds to the element kl[klb‘o] in By .

Observe the determinant, there exists only one non-zero element 1 in [-th column which is
in the I-th row. There exist two non-zero elements 1 in the (I — 1)-th column which are in the
(I — 1)-th row and the I-th row. Counting the number of non-zero elements in each column in
turn, we know that there are | — b — 1 non-zero elements 1, [Zﬁ], e [éﬁ] in the (b + 2)-th
column which are in the (b + 2)-th, (b4 3)-th, ---, I-th row, respectively.

Therefore, we can simplify the I-th, (I —1)-th, ---, (b+2)-th columns in turn. Then we have

1 0 0 0 1 0 0 0
1 1 0 0 e € 0 0
1 [f] 1 0 e? 82[?} g2 0
1 [bil] [bgl} 0 €b71 Ebfl[bzl] Ebfl[bgl} 0
b b
B, | 1 (7] (5] 1 eb et o] e®
Tl =1 0 0 0 gl 0 0 0
I 0 0 g+l el 0 0
142 1+2 142 1+2
[ (52 0 glt? el 212 el 212 0
1 [l+é71 z+1;71] o 0 Ez+})—1 El+b—1.[l+§71] EH'b_ltHléﬂ] L 0
+b I+b l+b ! l l+b
I A 5230 BT £ A0 - ehtb[i1e) et [o] T

Next we add —1 multiple of the first row vector to the (b+ 2)-th row vector and obtain

|Br |
1 0 0 0 1 0 0 0
1 1 0 € € 0 0
2 1 0 g2 e2[? g2 0
[1] 1
1 [b;l] [bgl] 0 6bfl €b71[bzl] Ebfl[bgl] 0
NN (] 1 el Y et[3] el
|0 0 0 0 et —1 0 0 0
1 14{1] 0 0 El+1 6l+1[lJ{1] 0 0
1 [1-11-2] [1452] 0 glt2 Ez+2[l4£2] €l+2[lg2] 0
1 [l+1i—1 l+é—1] . 0 €l+.b71 €l+b71.[l+b—1] El+b71.[l+b—1] . 0
1 [zJ{b] [l;b] o [ngb] gltb 6z+b[lJlrb] 5l+b[l;b] ... El+b[ngb]

Note that the (b+ 2)-th row vector now has only one non-zero element ¢! — 1. So we simplify

the (b+ 2)-th row in |B,| and we have
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1 0 0 0 0 0 0

1 1 0 0 € 0 0

1 [?] 1 0 e2[7] g2 0
By = (' = 1) 1 ?] (5] 1 e’[y] eyl e’

1Mo 0 et 0 0

1 [lJ{Q] [l452] 0 6l-l—2[l4£2] El+2[l452] . 0

1 [lJlrb] [l;b] . [ngb] 6H—b[lJlrb] El—i—b[l;rb] . El+b[ngb]

It is a determinant of order 2b + 1.

Now, the first row vector has only one non-zero element 1. So we can simplify |B,| with

respect to the first row and we have

1 0 0 0 € 0 0
2] 1 0 0 e?[2] g2 0
b— b—1 : Cirbe1 Cirbe1 :
[T %3] 1 e N = 0
(Al b b b b b
[Bel=(" =11 3] [3] [ho] 1 e’[y] e’[,] e’
10 0 0 et 0 0
1 l l l
42 142 00 e ey 0
: : : 0 : : :
I+b I+b I+b I+b I+b I+b I+b
050 T e AR et T G Bt 0 = A R A
And it is a determinant of order 2b + 1.
Continuing in this way we finally get that
b I+ b 1] L+
_ I+ _ ~J . I+j _
B =TTE - ]| - -Ilew -]
J=1 Jj=0
In particular, in the case of r =1’ — 1, By_1 is the following matrix:
1 0 0 0 0 1 0 0 0 0
1 1 0 0 0 € € 0 0 0
I 1 0 0 e? e2[?] e? 0 0
i [l—12} 152 1 O 51;2 51_2'[l—12} l 2[1 2] El'_g O
I e B [ S I ISP . e
1 0 0 0 el 0 0 0 0
1 [Hl_l] 0 0 0 1+1 €l+1[l-|1>1] 0 0 0
1 [14{2] [1452} 0 0 cl+2 EH_Q[“{Q] 51+2[l§2] 0 0
O e O e O e B e 11*2[“2 el 202 o
I o T L B (e I L =L =Ly Kot =) Gl INPPRI L) it I=U Lt
and
N A T = I+
a-hes-a ) -l
j=1 J j=0 J
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Apparently, B, is invertible.
Case 3 r>1'—1.
Let r =1"+b, b > 0. We have that

A(2,7’) = {(6,7),(1,7’— 1); 7(1/ - 27b+2)7(l/ - 17b+ 1)}

And we choose an order in Y = { px | A € A(2,r) } as follows:

P@ory Par—1)"""» Pur=1p+1)
The elements (A1,d1) in 73, are
(0,0), (LO)? (270)a Tty (l—l,O), (Oal)v (171)a (2a1)7 ) (l_]-v]-)'

Similarly, we fix an order in B, , as
I G Y o Y ot G R

and denote the matrix between vectors consisting of elements in 955, and vectors consisting of

elements in )Y by B,.

Since in the case r > 1" — 1 we have |A(2,7),| = |A(2,r + 1),], it is easy to know that
Biyj = Brijt1,

where j > —1.
Therefore, we have |B,| # 0 for any r > 0, that is, B, is invertible. The assertion follows.

Now we give our main result in this paper which shows that the conjecture given above by

Fu is true in the case n = 2.
Theorem 3.1 Assume that I’ is even. Then the set
ki; -
Dy, = {e<A*>k<{1 [ ;\’O]f("‘ JJAeTE(2), 0< A <11, 6 =0,1, o(A) + M\ + 61 < r}
1

forms a k-basis for ux(2,r).

Proof Obviously, o1(A) = 0 for any A € '*(2). By Theorem 2.2, we have
e(AJr)k(iﬁ |:k1’0i|f(A A+)k(51 |: i| A7)
A1
(A+)k51 [kl, } ( Z ku)f(A
meA(2,r)
— eAh) pady [ 1 (A7)
e Z € [}\ }p ot
nEA(2,T)

= ¥ e“l“l[‘;l}e“ﬁ)pnf‘”).
1

HEA(2,7)
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Then by [1], [19, Theorem 5.1(3)], [10, Theorem 5.5, Corollary 5.6] and Lemma 2.4, we obtain
that

ki;0 - .
e(A+)kz1$1 [ )1\1 }f(A ) — Z cH161 {f\tﬂ ([A + diag(z — o(A)), r] + gz)

mEA(2,7)

- 3 et [\ ] (1A + diag(m — o (A)), 1] + g7)

_HEEARr)

n—o(A)eA(2,r—c(A))

B Grten(ane [T F AT ) L g -5

= Z € N [A + diag(®), r] + 9, 5 ay)
TEA(2,r—0(A))

- ¥ gulal[’/l]([[Aeria @), + 9o o)

- s )\1 g ! gﬁ"l‘U(A)
TEA(Z,r—o(A))

= Z 51/1(51 {;i}(ﬂA—Fdlag(D),Tﬂ) +h,
veEA(2,r—0(A))

where v = (v1,10), v; := p; —0;(A) for m =7, 1w € A(2,r). In particular, 14 = p1 —01(A) = p1.
For A € T'#(2),

g =Y Is]B+diag(7i — o(B)), 7],
B<A

— v101 V1
h = Z er [)\1]9?+0(A)
veA(2,r—o(A))

for some fp € k.

It is easy to know that the matrix (19! [Kll]))\ , is invertible. Thus, the elements in Dz,

are k-linearly independent. And the assertion holds.
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