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Delay-Dependent Exponential Stability for Nonlinear

Reaction-Diffusion Uncertain Cohen-Grossberg Neural
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Rates via Hardy-Poincaré Inequality∗
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Abstract In this paper, stochastic global exponential stability criteria for delayed im-
pulsive Markovian jumping reaction-diffusion Cohen-Grossberg neural networks (CGNNs
for short) are obtained by using a novel Lyapunov-Krasovskii functional approach, lin-
ear matrix inequalities (LMIs for short) technique, Itô formula, Poincaré inequality and
Hardy-Poincaré inequality, where the CGNNs involve uncertain parameters, partially un-
known Markovian transition rates, and even nonlinear p-Laplace diffusion (p > 1). It is
worth mentioning that ellipsoid domains in R

m (m ≥ 3) can be considered in numerical
simulations for the first time owing to the synthetic applications of Poincaré inequality and
Hardy-Poincaré inequality. Moreover, the simulation numerical results show that even the
corollaries of the obtained results are more feasible and effective than the main results of
some recent related literatures in view of significant improvement in the allowable upper
bounds of delays.
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1 Introduction

It is well-known that Cohen-Grossberg in [1] proposed originally the CGNNs. Since then
the CGNNs have founded its extensive applications in pattern recognition, image and signal
processing, quadratic optimization, and aritifical intelligence (see [2–11]). However, these suc-
cessful applications are greatly dependent on the stability of the neural networks, which is also
a crucial feature in the design of the neural networks. In practice, both time delays and impulse
are always inevitable, and cause probably some undesirable dynamic network behaviors such as
oscillation and instability. Therefore, the stability analysis for delayed impulsive CGNNs has
become a topic of great theoretic and practical importance in recent years (see [2–3, 5–6]). Re-
cently, the CGNNs with Markovian jumping parameters have been extensively studied, for the
systems with Markovian jumping parameters are useful in modeling abrupt phenomena, such
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as random failures, operating in different points of a nonlinear plant, and changing in the inter-
connections of subsystems (see [5–8]). Noise disturbance is unavoidable in real nervous systems,
which is a major source of instability and poor performances in neural networks. A neural net-
work can be stabilized or destabilized by certain stochastic inputs. The synaptic transmission
in real neural networks can be viewed as a noisy process introduced by random fluctuations
from the release of neurotransmitters and other probabilistic causes (see [12]). Hence, noise
disturbance should be also taken into consideration in discussing the stability of neural net-
works (see [13–17]). On the other hand, diffusion phenomena can not be unavoidable in real
world. Usually diffusion phenomena is simulated by linear Laplace diffusion for simplicity in
many previous literatures (see [2, 18–20]). However, diffusion behavior is so complicated that
the nonlinear reaction-diffusion models were considered in several papers (see [3, 21–24]). Even
the nonlinear p-Laplace diffusion (p > 1) was considered in simulating some diffusion behaviors
(see [3, 6, 10]). Particularly, if p = 2, the p-Laplace diffusion was just the conventional linear
Laplace diffusion in many previous papers (see [2, 18–20]). In addition, neural networks may
encounter various other factors and problems in the factual operations. In fact, there exist
also parameter errors unavoidable in factual systems owing to aging of electronic component,
external disturbance and parameter perturbations. It is equally important to ensure that sys-
tem is stable with respect to these uncertainties (see [25–26]). Naturally, aging of electronic
component, external disturbance and parameter perturbations always result in a side-effect
of partially unknown Markovian transition rates. Some of recent literatures investigated the
stability of neural networks with partially unknown Markovian transition rates (see [27–28]).
As far as we know, stochastic stability for the delayed impulsive Markovian jumping Laplace
diffusion CGNN with uncertain parameters has rarely been considered. Besides, the stochastic
exponential stability always remains the key factor of concern owing to its importance in de-
signing a neural network, and such a situation motivates our present study. Motivated by the
above-mentioned literature, particularly by [2, 29–30], we shall investigate the stochastic global
exponential stability criteria for the above-mentioned CGNN via the LMIs approach.

The rest of this paper is organized as follows. In Section 2, new CGNN models are for-
mulated, and some preliminaries are given. In Section 3, new LMI-based stochastic global
exponential stability criterion are presented for the CGNNs. And in Section 4, three numerical
examples are provided to show the higher feasibility and less conservatism of the new criterion
compared with those of [2–3, 29–30]. Finally, some conclusions are presented in Section 5.

2 Model Description and Preliminaries

In 2011, Zhang, Wu and Li in [2] considered the following Cohen-Grossberg neural networks
under Dirichlet boundary condition:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂u

∂t
= ∇ · (D ◦ ∇u(t, x)) − Ã(u(x, t))[B̃(u(t, x)) − Cf̃(u(t, x))

−Dg̃(u(t− τ(t), x)) + J ] for all t ≥ t0, t �= tk, x ∈ Ω,

u(tk, x) = Mku(t−k , x) +Nh̃(u(t−k − τ(t), x)), k = 1, 2, · · · ,
(2.1)

where u = u(t, x) = (u1(t, x), u2(t, x), · · · , un(t, x))T, f̃(u) = (f̃1(u1), f̃2(u2), · · · , f̃n(un))T,
g̃(u) = (g̃1(u1), g̃2(u2), · · · , g̃n(un))T.

Generally, there exist the following assumptions for the system (2.1) (see [2]):
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(H1) Ã(u(t, x)) is a bounded, positive and continuous diagonal matrix, i.e., there exist two
positive definite diagonal matrices A and A, such that 0 < A ≤ Ã(u(t, x)) ≤ A.

(H2) B̃(u(t, x)) = (̃b1(u1(t, x)), b̃2(u2(t, x)), · · · , b̃n(un(t, x)))T such that there exists a pos-
itive definite matrix B̃ = diag(B̃1, B̃2, · · · , B̃n) satisfying

b̃j(r1) − b̃j(r2)
r1 − r2

≥ Bj , ∀r1, r2 ∈ R, r1 �= r2, j = 1, 2, · · · .

(H3) There exist diagonal matrices

F̃ =diag(F̃1, F̃2, · · · , F̃n) > 0, G̃k =diag(G̃1, G̃2, · · · , G̃n) > 0, H=diag(H1, H2, · · · , Hn),

such that

0 ≤ h̃j(r1) − h̃j(r2)
r1 − r2

≤ Hj , ∀r1, r2 ∈ R, r1 �= r2

and

0 ≤ f̃j(r1) − f̃j(r2)
r1 − r2

≤ F̃j , 0 ≤ g̃j(r1) − g̃j(r2)
r1 − r2

≤ G̃j , ∀j = 1, 2, · · · , n. (2.2)

In this paper, we always assume h̃ ≡ 0 for some rational reason (see Remark 2.3), and
consider to replace (H3) with the following more flexible condition:

(H3*) There exist constant diagonal matrices

Gk = diag(G(k)
1 , G

(k)
2 , · · · , G(k)

n ), Fk = diag(F (k)
1 , F

(k)
2 , · · · , F (k)

n ), k = 1, 2

with
|F (1)

j | ≤ F
(2)
j , |G(1)

j | ≤ G
(2)
j , j = 1, 2, · · · , n,

such that

F
(1)
j ≤ f̃j(r1) − f̃j(r2)

r1 − r2
≤ F

(2)
j , G

(1)
j ≤ g̃j(r1) − g̃j(r2)

r1 − r2
≤ G

(2)
j , j = 1, 2, · · · , n.

According to [2, Definition 2.1], a constant vector u∗ ∈ R
n is said to be an equilibrium point

of system (2.1) if

B̃(u∗) − Cf̃(u∗) +Dg̃(u∗) + J = 0, (Mk − I)u∗ +Nh̃(u∗) = 0. (2.3)

Let v = u− u∗, then the system (2.1) with h̃ ≡ 0 can be transformed into⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂v

∂t
= ∇ · (D ◦ ∇v(t, x)) −A(v(x, t))[B(v(t, x)) − Cf(v(t, x)) −Dg(v(t− τ(t), x))]

for all t ≥ t0, t �= tk, x ∈ Ω,

v(tk, x) = Mkv(t−k , x), k = 1, 2, · · · ,
(2.4)

where v = v(t, x) = (v1(t, x), v2(t, x), · · · , vn(t, x))T, u∗ = (u∗1, u
∗
2, · · · , u∗n)T, A(v(t, x)) =

Ã(v(t, x) + u∗) = Ã(u(t, x)),

B(v(t, x)) = B̃(u(t, x)) − B̃(u∗),

f(v(t, x)) = f̃(u(t, x)) − f̃(u∗),

g(v(t, x)) = g̃(u(t, x)) − g̃(u∗)

(2.5)
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and
f(v) = (f1(v1), f2(v2), · · · , fn(vn))T, g(v) = (g1(v1), g2(v2), · · · , gn(vn))T.

Then, according to [2, Definition 2.1], v ≡ 0 is an equilibrium point of system (2.4). Hence,
below we only need consider the stability of the null solution of Cohen-Grossberg neural net-
works. Naturally we propose the following hypotheses on the system (2.4) with h ≡ 0, which
are perhaps derived by the assumptions (H1)–(H2) and (H3*).

(A1) A(v(t, x)) is a bounded, positive and continuous diagonal matrix, i.e., there exist two
positive diagonal matrices A and A, such that 0 < A ≤ A(v(t, x)) ≤ A.

(A2) B(v(t, x)) = (b1(v1(t, x)), b2(v2(t, x)), · · · , bn(vn(t, x)))T, such that there exists a pos-
itive definite matrix B = diag(B1, B2, · · · , Bn)T ∈ R

n satisfying

bj(r)
r

≥ Bj , ∀j = 1, 2, · · · , n, r ∈ R.

(A3) There exist constant diagonal matrices

Gk = diag(G(k)
1 , G

(k)
2 , · · · , G(k)

n ), Fk = diag(F (k)
1 , F

(k)
2 , · · · , F (k)

n ), k = 1, 2

with |F (1)
j | ≤ F

(2)
j , |G(1)

j | ≤ G
(2)
j , j = 1, 2, · · · , n, such that

F
(1)
j ≤ fj(r)

r
≤ F

(2)
j , G

(1)
j ≤ gj(r)

r
≤ G

(2)
j , ∀j = 1, 2, · · · , n, r ∈ R.

Remark 2.1 In many previous literatures, e.g. [2], authors always assume

0 ≤ fj(r)
r

≤ Fj , 0 ≤ gj(r)
r

≤ Gj , ∀i = 1, 2, · · · , n,

which may be correspond to (H3). However, F (1)
j , G

(1)
j in (A3) may not be positive constants,

and hence the functions f, g are more generic.

Remark 2.2 It is obvious from (2.5) that B(0) = 0 = f(0) = g(0), and then B(0)−Cf(0)−
Dg(0) = 0.

Very recently, Wang, Rao and Zhong [3] studied stochastic CGNN with nonlinear p-Laplace
diffusion (p > 1) under Neumann boundary condition:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dv(t, x) = {∇ · D(t, x, v) ◦ ∇pv) −A(v(t, x))[B(v(t, x)) − Cf(v(t, x))

+Dg(v(t− τ(t), x))]}dt + σ(v(t, x))dw(t), t ∈ [tk, tk+1),

v(t+k , x) = Mkv(t−, x), t = tk,

v(t0 + θ, x) = ϕ(θ, x), (θ, x) ∈ [−τ, 0] × Ω,
∂vi(t, x)
∂ν

= 0, (t, x) ∈ [−τ,+∞) × ∂Ω, i = 1, 2, · · · , n.

(2.6)

Since stochastic noise disturbance and parameter errors are unavoidable in the practical
neural networks, it is necessary to consider the stability of the null solution of the following
Markovian jumping CGNN:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dv(t, x) = {∇ · (D(t, x, v) ◦ ∇pv(t, x)) −A(v(x, t))[B(v(t, x)) − C(r(t), t)f(v(t, x))

−D(r(t), t)g(v(t − τ(t), x))]}dt + σ(t, v(t, x), v(t − τ(t), x), r(t))dw(t),

for all t ≥ t0, t �= tk, x ∈ Ω,

v(tk, x) = Mk(r(t))v(t−k , x), k = 1, 2, · · · .

(2.7)
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The initial conditions and the boundary conditions are given by

v(θ, x) = φ(θ, x), (θ, x) ∈ [−τ, 0] × Ω (2.7b)

and
B[vi(t, x)] = 0, (t, x) ∈ [−τ,+∞) × ∂Ω, i = 1, 2, · · · , n, (2.7c)

respectively, where p > 1 is a given scalar, and Ω ∈ R
m is a bounded domain with a smooth

boundary ∂Ω of class C2 by Ω, v(t, x) = (v1(t, x), v2(t, x), · · · , vn(t, x))T ∈ R
n, where vi(t, x)

is the state variable of the ith neuron at time t and in space variable x. Matrix D(t, x, v) =
(Djk(t, x, v))n×m satisfies Djk(t, x, v) ≥ d > 0 for all j, k, (t, x, v), where the smooth functions
Djk(t, x, v) are diffusion operators. Similarly as that of [3], we denote ∇pv = (∇pv1, · · · ,∇pvn)T

with ∇pvi =
(|∇vi|p−2 ∂vi

∂x1
, · · · , |∇vi|p−2 ∂vi

∂xm

)T. And D(t, x, v) ◦ ∇pv =
(Djk(t, x, v)|∇vi|p−2·

∂vi
∂xk

)
n×m

denotes the Hadamard product of matrix D(t, x, v) and ∇pv. For matrix Y =
(Y1, · · · , Yn)T with Yi = (yi1, · · · , yim)T (i = 1, 2, · · · , n), we denote ∇ · Y = (∇ · Y1,∇ ·
Y2, · · · ,∇ · Yn)T, where ∇ · Yi =

m∑
k=1

∂yik
∂xk

. Particularly, ∇pv = ∇v if p = 2.

Denote w(t) = (w(1)(t), w(2)(t), · · · , w(n)(t))T , where w(j)(t) is scalar standard Brownian
motion defined on a complete probability space (Ω∗,F ,P) with a natural filtration {Ft}t≥0.

Noise perturbations σ : R
+×R

n×R
n×S → R

n×n is a Borel measurable function. {r(t), t ≥ 0}
is a right-continuous Markov process on the probability space which takes values in the finite
space S = {1, 2, · · · , s} with the generator Π = {πij} given by

P(r(t+ δ) = j | r(t) = i) =
{
πijδ + o(δ), i �= j,
1 + πijδ + o(δ), i = j,

where πij ≥ 0 is transition probability rate from i to j (j �= i) and πii = −
s∑
j=1
j �=i

πij , δ > 0

and lim
δ→0

o(δ)
δ = 0. In addition, the transition rates of the Markovian chain are considered to

be partially available, namely, some elements in transition rates matrix Π are time-invariant
but unknown. For instance, a system with three operation modes may have the transition rate
matrix Π as follows:

Π =

⎡⎣π11 ? ?
? π22 ?
π31 π32 π33

⎤⎦,
where “?” represents the inaccessible element. For natation clarity, we denote S = Si

kn∪Si
un

with Si
kn � {j, ifπij is known} and Si

un � {j, ifπij is unknown, and j �= i} for a given i ∈ S.

Denote α̃i ≥ max
j∈Siun

πij . The time-varying delay τ(t) satisfies 0 ≤ τ(t) ≤ τ with τ̇ (t) ≤ κ < 1.

A(v(t, x)) = diag(a1(v1(t, x)), a2(v2(t, x)), · · · , an(vn(t, x))),

B(v(t, x)) = (b1(v1(t, x)), b2(v2(t, x)), · · · , bn(vn(t, x)))T,

where aj(vj(t, x)) represents an amplification function, and bj(vj(t, x)) is an appropriately be-
havior function. C(r(t), t), D(r(t), t) are denoted by Ci(t), Di(t) with Ci(t)=(cilk(t))n×n, Di(t)
= (di

lk(t))n×n, respectively, and cilk(t), di
lk(t) denote the connection strengths of the kth neu-

ron on the lth neuron at time t in the mode r(t) = i, respectively. Denote vector func-
tions f(v(t, x)) = (f1(v1(t, x)), f2(v2(t, x)), · · · , fn(vn(t, x)))T, g(v(t, x)) = (g1(v1(t, x)), · · · ,
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gn(vn(t, x)))T, where fj(v2(t, x)), gj(vj(t, x)) are neuron activation functions of the jth unit
at time t and in space variable x.

For any mode r(t) = i ∈ S, we assume that Ci, Di are real constant matrices of appropriate
dimensions, and ΔCi(t),ΔDi(t) are real-valued matrix functions which represent time-varying
parameter uncertainties, satisfying

Ci(t) = Ci + ΔCi(t), Di(t) = Di + ΔDi(t). (2.8)

In addition, we always assume that t0 = 0, and v(t+k , x) = v(tk, x) for all k = 1, 2, · · · , where
v(t−k , x) and v(t+k , x) represent the left-hand and right-hand limits of v(t, x) at tk, respectively.
And each tk (k = 1, 2, · · · ) is an impulsive moment, satisfying 0 < t1 < t2 < · · · < tk < · · ·
and lim

k→∞
tk = +∞. The boundary condition (2.7c) is called Dirichlet boundary condition if

B[vi(t, x)] = vi(t, x), and Neumann boundary condition if B[vi(t, x)] = ∂vi(t,x)
∂ν , where ∂vi(t,x)

∂ν =(∂vi(t,x)
∂x1

, ∂vi(t,x)
∂x2

, · · · , ∂vi(t,x)
∂xm

)T denotes the outward normal derivative on ∂Ω. It is well-known
that the stability of neural networks with Neumann boundary condition has been widely studied.
The Dirichlet boundary conditions describe the situation, where the space is totally surrounded
by a region in which the states of the neuron equal zero on the boundary. And the stability
analysis of delayed reaction-diffusion neural networks with the Dirichlet boundary conditions
is very important in theories and applications, and also has attracted much attention (see [2,
31–34]). So in this paper, we consider the CGNN under Neumann boundary condition and
Dirichlet boundary condition, respectively.

Remark 2.3 If all stochastic factors and uncertain factors are ignored, the system (2.7) with
p = 2 was studied by [2] though there is a little difference between Dirichlet boundary condition
and Neumann boundary condition. However, our impulsive assumption u(t+k , x) = Mu(t−k , x)
is more natural than that of [2], which will result in some difference in methods (see, e.g. [3]).

Particularly, if p = 2, the system (2.7) is reduced to the following CGNN:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dv(t, x) = {∇ · (D(t, x, v) ◦ ∇v(t, x)) −A(v(x, t))[B(v(t, x)) − C(r(t), t)f(v(t, x))

−D(r(t), t)g(v(t − τ(t), x))]}dt + σ(t, v(t, x), v(t − τ(t), x), r(t))dw(t),

for all t ≥ t0, t �= tk, x ∈ Ω,

v(tk, x) = Mk(r(t))v(t−k , x), k = 1, 2, · · · .

(2.9)

For convenience’s sake, we need introduce some standard notations.
(1) L2(R × Ω): The space of real Lebesgue measurable functions of R × Ω, it is a Banach

space for the 2-norm ‖v(t)‖2 =
( n∑

i=1

‖vi(t)‖
) 1

2 with ‖vi(t)‖ =
( ∫

Ω
|vi(t, x)|2dx

) 1
2 , where | · | is

the Euclid norm.
(2) L2

F0
([−τ, 0]× Ω; Rn): The family of all F0-measurable C([−τ, 0]× Ω; Rn)-value random

variable ξ = {ξ(θ, x) : −τ ≤ θ ≤ 0, x ∈ Ω} such that sup
−τ≤θ≤0

E‖ξ(θ)‖2
2 < ∞, where E{·} stands

for the mathematical expectation operator with respect to the given probability measure P .
(3) Q = (qij)n×n > 0 (< 0): A positive (negative) definite matrix, i.e., yTQy > 0 (< 0) for

any 0 �= y ∈ R
n.

(4) Q = (qij)n×n ≥ 0 (≤ 0): A semi-positive (semi-negative) definite matrix, i.e., yTQy ≥
0 (≤ 0) for any y ∈ R

n.
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(5) Q1 ≥ Q2 (Q1 ≤ Q2): This means Q1 − Q2 is a semi-positive (semi-negative) definite
matrix.

(6) Q1 > Q2 (Q1 < Q2): This means Q1 −Q2 is a positive (negative) definite matrix.
(7) λmax(Φ) and λmin(Φ) denote the largest and the smallest eigenvalues of matrix Φ, re-

spectively.
(8) Denote |C| = (|cij |)n×n for any matrix C = (cij)n×n;

|u(t, x)| = (|u1(t, x)|, |u2(t, x)|, · · · , |un(t, x)|)T

for any u(t, x) = (u1(t, x), u2(t, x), · · · , un(t, x))T.
(9) I: Identity matrix with compatible dimension.
(10) The symmetric terms in a symmetric matrix are denoted by ∗.
Throughout this paper, we assume (A1)–(A3) and the following conditions hold:
(A4) For any mode i ∈ S, the parameter uncertainties considered here are norm-bounded

and of the following forms:

(ΔCi(t) ΔDi(t)) = EiK(t)(Ni1 Ni2), ∀i ∈ S,

where K(t) is an unknown matrix function satisfying |KT(t)||K(t)| ≤ I, and Ei, Ni1, Ni2 are
known real constant matrices.

(A5) There exist symmetrical matrices Rj ≥ 0 with |Rj | = Rj , j = 1, 2, such that for any
mode i ∈ S,

trace[σT(t, v(t, x), v(t − τ(t), x), i)σ(t, v(t, x), v(t − τ(t), x), i)]

≤ vT(t, x)R1v(t, x) + vT(t− τ(t), x)R2v(t− τ(t), x). (2.10)

(A6) σ(t, 0, 0, i) = 0 for all i ∈ S.

Remark 2.4 The condition |H | = H is not too stringent for a semi-positive definite matrix
H = (hij)n×n ≥ 0. Indeed, all hij ≥ 0 imply |H | = H .

Similarly as that of [2, Definition 2.1], we can see from (A6) that the system (2.7) has the
null solution as its equilibrium point. Let v(t, x ;φ, i0) be the state trajectory from the initial
condition r(0) = i0, v(θ, x ;φ) = φ(θ, x) on −τ ≤ θ ≤ 0 in L2

F0
([−τ, 0] × Ω; Rn). Below, we

always assume that v(t, x ;φ, i0) is a solution of system (2.7).

Definition 2.1 For any given scalar p > 1, the null solution of system (2.7) is said to
be stochastically globally exponentially stable in the mean square if for every initial condition
φ ∈ L2

F0
([−τ, 0] × Ω; Rn), r(0) = i0, there exist scalars β > 0 and γ > 0 such that for any

solution v(t, x ;φ, i0),

E(‖v(t, x ;φ, i0)‖2
2) ≤ γe−βt

[
sup

−τ≤θ≤0
E(‖φ(θ, x)‖2

2)
]
, t ≥ t0.

Notice that if p = 2, the system (2.7) is just the system (2.9). And the following Poincaré
inequality lemma and Hardy-Poincaré inequality lemma may play role in judging the stability
of system (2.9).



582 R. F. Rao

Lemma 2.1 (see [35]) (Poincaré Inequality) Let Ω be a bounded domain of R
m with a

smooth boundary ∂Ω of class C2 by Ω. ψ(x) is a real-valued function belonging to H1
0 (Ω) and

satisfies B[ψ(x)]|∂Ω = 0. Then

λ1

∫
Ω

|ψ(x)|2dx ≤
∫

Ω

|∇ψ(x)|2dx,

where λ1 is the lowest positive eigenvalue of the boundary value problem{
−Δψ(x) = λψ(x), x ∈ Ω,
B[ψ(x)] = 0, x ∈ ∂Ω.

Notice that H1
0 (Ω) is the Sobolev space W 1,p

0 (Ω) with p = 2, and W 1,p
0 (Ω) is the completion

of C∞
0 (Ω) with respect to the norm ‖ψ‖W 1,p

0 (Ω) =
( ∫

Ω
|∇ψ|pdx) 1

p . Thereby, the norm of

H1
0 (Ω) is ‖ψ‖H1

0(Ω) =
( ∫

Ω
|∇ψ|2dx) 1

2 . Note that we always denote the L2(Ω)-norm by ‖ψ‖ =( ∫
Ω ψ

2dx
) 1

2 .

Lemma 2.2 (see [36]) (Hardy-Poincaré Inequality) For any bounded domain Ω in R
m,

any dimension m ≥ 2 and for every ψ(x) ∈ H1
0 (Ω), we have∫

Ω

|∇ψ|2dx− (m− 2)2

4

∫
Ω

ψ2

|x|2 dx ≥ Λ2

( ωm

meas(Ω)

) 2
m

∫
Ω

ψ2dx,

where the constant Λ2 is the first eigenvalue of the Laplacian in the unit ball in m = 2, and ωm

denotes the measure of the unit ball in R
m.

Lemma 2.3 Let Pi = diag(pi1, pi2,· · · , pin) be a positive definite matrix for a given i, and
v be a solution of system (2.7). Then we have∫

Ω

vTPi(∇ · (D(t, x, v) ◦ ∇pv))dx = −
m∑

k=1

n∑
j=1

∫
Ω

pijDjk(t, x, v)|∇vj |p−2
( ∂vj

∂xk

)2

dx

=
∫

Ω

(∇ · (D(t, x, v) ◦ ∇pv))TPivdx .

Proof Since v is a solution of system (2.7), we can see it by Gauss formula and Dirichlet
or Neumann boundary condition that∫

Ω

vTPi(∇ · (D(t, x, v) ◦ ∇pv))dx

=
∫

Ω

vTPi

( m∑
k=1

∂

∂xk

(
D1k(t, x, v)|∇v1|p−2 ∂v1

∂xk

)
, · · · ,

m∑
k=1

∂

∂xk

(
Dnk(t, x, v)|∇vn|p−2 ∂vn

∂xk

))T

dx

=
∫

Ω

n∑
j=1

pijvj

m∑
k=1

∂

∂xk

(
Djk(t, x, v)|∇vj |p−2 ∂vj

∂xk

)
dx

= −
m∑

k=1

n∑
j=1

∫
Ω

pijDjk(t, x, v)|∇vj |p−2
( ∂vj

∂xk

)2

dx.

Similarly, we can prove

−
m∑

k=1

n∑
j=1

∫
Ω

pijDjk(t, x, v)|∇vj |p−2
( ∂vj

∂xk

)2

dx =
∫

Ω

(∇ · (D(t, x, v) ◦ ∇pv))TPivdx.
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Lemma 2.4 (see [37]) Let ε > 0 be any given scalar, and M,E and K be matrices with
appropriate dimensions. If KTK ≤ I, then we have

MKE + ETKTMT ≤ ε−1MMT + εETE.

3 Main Results

In order to compare with the main results of [2], we may give a prior consideration on the
conventional linear Laplace diffusion system (2.9).

Theorem 3.1 The null solution of system (2.9) is stochastically globally exponential stable
in the mean square if there exist positive scalars λ ≤ λ1, β > 0, a sequence of positive scalars
αi, αi (i ∈ S) and positive definite diagonal matrices Pi = diag(pi1, pi2, · · · , pin) (i ∈ S), L1, L2

and Q such that the following LMI conditions hold:⎛⎜⎜⎜⎜⎜⎜⎝
Ai1 0 (F1 + F2)L1 + PiA|Ci| PiA|Di| PiA|Ei| 0
∗ Ai2 0 (G1 +G2)L2 0 0
∗ ∗ −2L1 0 0 |NT

i1|
∗ ∗ ∗ −2L2 0 |NT

i2|
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −I

⎞⎟⎟⎟⎟⎟⎟⎠ < 0,

∀i ∈ S,

(3.1)

Pi > αiI, ∀i ∈ S, (3.2)

Pi < αiI, ∀i ∈ S, (3.3)

MT
jkPrMjk − Pl < 0, ∀r, j, l ∈ S, (3.4)

where

Ai1 = −2λαidI − 2PiAB + αiR1 +
∑

j∈Sikn

πijPj + α̃i

∑
j∈Siun

Pj + βPi +Q− 2F1L1F2,

Ai2 = αiR2 − (1 − κ)e−τβQ− 2G1L2G2, d = min
i,j

{
inf

[t0,+∞)×Ω×R

Dij(t, x, v)
}
.

Proof Consider the Lyapunov-Krasovskii functional

V (t, v(t, x), i) = V1i + V2i, ∀i ∈ S,

where

V1i = eβt

∫
Ω

vT(t, x)Piv(t, x)dx,

V2i = eβt

∫
Ω

∫ 0

−τ(t)

eβθvT(t+ θ, x)Qv(t + θ, x)dθdx.

Then by Itô formula, we get the following stochastic differential:

dV (t, v(t, x), i) = LV (t, v(t, x), i)dt + Vv(t, v(t, x), i)σ(t, v(t, x), v(t − τ(t), x), i)dw(t),

Vv(t, v(t, x), i) =
(∂V (t, v(t, x), i)

∂v1
, · · · , ∂V (t, v(t, x), i)

∂vn

)
.
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L is the weak infinitesimal operator such that LV (t, v(t, x), i) = LV1i +LV2i for any given i ∈ S.

Next, it follows by Lemma 2.3 (p = 2) and (2.9) that for t �= tk,

LV1i = eβt
{
−

m∑
k=1

n∑
j=1

∫
Ω

2pijDjk(t, x, v)
( ∂vj

∂xk

)2

dx− 2
∫

Ω

vTPiA(v(t, x))B(v(t, x))dx

+ 2
∫

Ω

[vTPiA(v(t, x))Ci(t)f(v(t, x)) + vTPiA(v(t, x))Di(t)g(v(t− τ(t), x))]dx

+
∫

Ω

vT
(∑

j∈S

πijPj

)
vTdx

+
∫

Ω

trace[σT(t, v(t, x), v(t − τ(t), x), i)Piσ(t, v(t, x), v(t, x), v(t − τ(t), x), i)]dx
}

+ βeβt

∫
Ω

vTPivdx. (3.5)

Here, v = v(t, x) is a solution of system (2.9). And for t �= tk,

LV2i

= eβt

∫
Ω

vT(t, x)Qv(t, x)dx − (1 − τ̇ (t))eβ(t−τ(t))

∫
Ω

vT(t− τ(t), x)Qv(t − τ(t), x)dx

≤ eβt
[ ∫

Ω

vT(t, x)Qv(t, x)dx − (1 − κ)e−τβ

∫
Ω

vT(t− τ(t), x)Qv(t − τ(t), x)dx
]

= eβt
[ ∫

Ω

|vT(t, x)|Q|v(t, x)|dx − (1 − κ)e−τβ

∫
Ω

|vT(t− τ(t), x)|Q|v(t − τ(t), x)|dx
]
, (3.6)

Moreover, we can get by Poincaré inequality and 0 < λ ≤ λ1,∫
Ω

−
m∑

k=1

n∑
j=1

∫
Ω

2pijDjk(t, x, v)
( ∂vj

∂xk

)2

dx

≤ −
∫

Ω

n∑
j=1

(2λ1αidI)v
2
j dx ≤ −

∫
Ω

|vT|(2λαidI)|v|dx. (3.7)

It follows by (A1)–(A2) that∫
Ω

vTPiA(v(t, x))B(v(t, x))dx ≥
∫

Ω

vTPiABvdx =
∫

Ω

|vT|PiAB|v|dx. (3.8)

In addition, we have

2
∫

Ω

vTPiA(v(t, x))Ci(t)f(v(t, x))dx

≤ 2
∫

Ω

|vT|PiA(v(t, x))|Ci(t)||f(v(t, x))|dx

≤ 2
∫

Ω

[|vT|PiA(|Ci| + |ΔCi(t)|)|f(v(t, x))|]dx

≤ 2
∫

Ω

[|vT|PiA(|Ci| + |Ei||K(t)||Ni1|)|f(v(t, x))|]dx. (3.9)
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Similarly,

2
∫

Ω

vTPiA(v(t, x))Di(t)g(v(t− τ(t), x))dx

≤ 2
∫

Ω

(|vT|PiA(|Di| + |Ei||K(t)||Ni2|)|g(v(t − τ(t), x))|)dx. (3.10)

From (A3), we have

2|fT(v(t, x))|L1|f(v(t, x))| − 2|vT(t, x)|(F1 + F2)L1|f(v(t, x))|
+ 2|vT(t, x)|F1L1F2|v(t, x)| ≤ 0, (3.11)

2|gT(v(t− τ(t), x))|L2|g(v(t− τ(t), x))|
− 2|vT(t− τ(t), x)|(G1 +G2)L2|g(v(t− τ(t), x))|
+ 2|vT(t− τ(t), x)|G1L2G2|v(t− τ(t), x)| ≤ 0. (3.12)

From πii < 0 and the definition of α̃i, it is clear that∑
j∈S

πijPj ≤
∑

j∈Sikn

πijPj + α̃i

∑
j∈Siun

Pj . (3.13)

(A5) derives∫
Ω

trace[σT(t, v(t, x), v(t − τ(t), x), i)Piσ(t, v(t, x), v(t, x), v(t − τ(t), x), i)]dx

≤
∫

Ω

(vT(t, x)αiR1v(t, x) + vT(t− τ(t), x)αiR2v(t− τ(t), x))dx

≤
∫

Ω

(|vT(t, x)|αiR1|v(t, x)| + |vT(t− τ(t), x)|αiR2|v(t− τ(t), x)|)dx. (3.14)

Combining (3.5)–(3.14) results in

LV (t, v(t, x), i) ≤ eβt

∫
Ω

ζT(t, x)Aiζ(t, x)dx, (3.15)

where

Ai =

⎛⎜⎜⎝
Ai1 0 (F1 + F2)L1 + PiA(|Ci| + |Ei||K(t)||Ni1|) PiA(|Di| + |Ei||K(t)||Ni2|)
∗ Ai2 0 (G1 +G2)L2

∗ ∗ −2L1 0
∗ ∗ ∗ −2L2

⎞⎟⎟⎠
and ζ(t, x) = (|vT(t, x)|, |vT(t− τ(t), x)|, |fT(v(t, x))|, |gT(v(t− τ(t), x))|)T.

Next we claim that Ai < 0.
For convenience, we denote

Ωi1 =

⎛⎜⎜⎝
Ai1 0 (F1 + F2)L1 + PiA|Ci| PiA|Di|
∗ Ai2 0 (G1 +G2)L2

∗ ∗ −2L1 0
∗ ∗ ∗ −2L2

⎞⎟⎟⎠ ,

ΔΩi1 =

⎛⎜⎜⎝
0 0 PiA|Ei||K(t)||Ni1| PiA|Ei||K(t)||Ni2|
∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

⎞⎟⎟⎠ ,
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M =

⎛⎜⎜⎝
PiA|Ei|

0
0
0

⎞⎟⎟⎠ , E =

⎛⎜⎜⎝
0
0

|NT
i1|

|NT
i2|

⎞⎟⎟⎠
T

.

By applying Schur complement to (3.1), we can get from Lemma 2.4,

Ai = Ωi1 + ΔΩi1 = Ωi1 + M|K(t)|E + ET|KT(t)|MT ≤ Ωi1 + MMT + ETE < 0,

which proves our claim. And then LV (t, v(t, x), i) ≤ 0. Define

V(t, v(t, x), i) =
∫

Ω

vT(t, x)Piv(t, x)dx +
∫

Ω

∫ 0

−τ(t)

eβθvT(t+ θ, x)Qv(t+ θ, x)dθdx.

Then we have V (t, v(t, x), i) = eβtV(t, v(t, x), i), satisfying

L(eβtV(t, v(t, x), i)) = LV (t, v(t, x), i) ≤ 0.

Now, by applying the Dynkin formula, we can derive that for any i ∈ S,

eβt
EV(t) − EV(t0) = E

∫ t

t0

L(eβsV(s))ds ≤ 0, ∀β > 0, t �= tk. (3.16)

In fact, due to v(t+k , x) = v(tk, x), we might as well assume tk−1 ≤ t < tk for any given
k ∈ {1, 2, · · · }. And then we have

0 ≥ E

∫ t

t0

L(eβsV(s))ds = E

∫ t−1

t0

L(eβsV(s))ds+ E

∫ t1

t−1

L(eβsV(s))ds+ E

∫ t−2

t1

L(eβsV(s))ds

+ · · · + E

∫ t−k−1

tk−2

L(eβsV(s))ds+ E

∫ tk−1

t−k−1

L(eβsV(s))ds+ E

∫ t

tk−1

L(eβsV(s))ds

= eβt1EV(t−1 ) − EV(t0) + eβt1 [EV(t1) − EV(t−1 )] + eβt2EV(t−2 ) − eβt1EV(t1)

+ · · · + eβtk−1EV(t−k−1) − eβtk−2EV(tk−2)

+ eβtk−1 [EV(tk−1) − EV(t−k−1)] + eβt
EV(t) − eβtk−1EV(tk−1)

= eβt
EV(t) − EV(t0),

which proves (3.16). On the other hand, we claim

V(tk, v(tk, x), j) ≤ V(t−k , v(t
−
k , x), i) for all i, j ∈ S, k = 1, 2, · · · . (3.17)

Indeed, we can get by the assumptions on Mjk:∫
Ω

(vT(tk, x)Pjv(tk, x) − vT(t−k , x)Piv(t−k , x))dx

≤
∫

Ω

(vT(t−k , x)(M
T
ikPjMik − Pi)v(t−k , x))dx ≤ 0,∫

Ω

∫ 0

−τ(tk)

eβθvT(tk + θ, x)Qv(tk + θ, x)dθdx

−
∫

Ω

∫ 0

−τ(t−k )

eβθvT(t−k + θ, x)Qv(t−k + θ, x)dθdx
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=
∫

Ω

∫ tk

tk−τ(tk)

eβ(ξ−tk)vT(ξ, x)Qv(ξ, x)dξdx

−
∫

Ω

∫ t−k

t−k −τ(t−k )

eβ(ξ−t−k )vT(ξ, x)Qv(ξ, x)dξdx

= 0.

Thus, we prove the claim (3.17). Owing to (3.16)–(3.17), we get

eβtkEV(tk, v(tk, x), j) ≤ eβt−k EV(t−k , v(t
−
k , x), i) ≤ EV(t0), ∀i, j ∈ S. (3.18)

Hence, combining (3.16) and (3.18) implies

eβt
EV(t) ≤ EV(t0) for all t ≥ t0. (3.19)

Now, for any φ(θ, x) ∈ L2
F0

([−τ, 0] × Ω; Rn) and any system mode i ∈ S, the solution
v(t, x, φ, i0) of system (2.9) with the initial value φ satisfies

min
i∈S

{αi}eβt
E(‖v(t, x, φ, i0)‖2

2) ≤ αie
βt

E(‖v(t, x, φ, i0)‖2
2)

≤ eβt
EV(t, v(t, x), i) ≤ EV(t0, v(t0, x), i)

≤ E
(
αi‖φ(0)‖2

2

)
+ E

( ∫ 0

−τ

∫
Ω

eβθ[φT(θ, x)Qφ(θ, x)]dxdθ
)

≤
(

max
i∈S

{αi} + λmaxQ
)

sup
−τ≤θ≤0

E(‖φ(θ)‖2
2), t ≥ t0 (3.20)

or
E(‖v(t, x ;φ, i0)‖2

2) ≤ γe−βt sup
−τ≤θ≤0

E(‖φ(θ, x)‖2
2), t ≥ t0, (3.21)

where scalars γ = 1
min
i∈S

{αi}
(
max
i∈S

{αi} + λmaxQ
)
> 0, β > 0. Therefore, we can see it by (3.21)

and Definition 2.1 that the null solution of system (2.9) is globally stochastically exponentially
stable in the mean square.

Remark 3.1 In Theorem 3.1, the magnitude of λ1 is determined by the bounded domain
Ω ∈ R

m. However, if m ≥ 3, the exact computation of λ1 is usually not possible. Nevertheless,
we can estimate the value of λ1. For instance, under the Dirichlet boundary assumption, we
may fix λ = Λ2

(
ωm

meas(Ω)

) 2
m in Theorem 3.1 due to Hardy-Poincaré inequality. In fact, from

λ1 = inf
ψ∈H1

0 (Ω)
‖ψ‖=1

∫
Ω
|∇ψ|2dx, we know that 0 < λ ≤ λ1, satisfying

∫
Ω
|∇ψ|2dx ≥ λ

∫
Ω
ψ2dx for

all ψ ∈ H1
0 (Ω). In many recent literatures (see [2, 31–34]), Ω ∈ R

m is restricted to be a cube.
Moreover, in their numerical examples, the dimension m is restricted to be 1 or 2. Now, in this
paper, we abolish these limitations thanks to the synthetic application of Poincaré inequality
and Hardy-Poincaré inequality. Below, Example 4.3 will show the effectiveness of Theorem 3.1,
where Ω is assumed to be a spheroid and not a sphere. Notice that if Ω is a ball, the constants
of Hardy-Poincaré inequality are optimal (see [36, Theorem 4.1]). But Theorem 3.1 admits

actually λ < λ1, and then we may fix λ = Λ2

(
ωm

meas(Ω)

) 2
m . So we need not assume in numerical

examples that Ω is the similar ball as that of [29–30]. To the best of our knowledge, it is the
first time to apply both Poincaré inequality and Hardy-Poincaré inequality to stability analysis
of the reaction-diffusion neural networks.
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Remark 3.2 Below, Example 4.3 is given to show that Theorem 3.1 is more effective and
less conservative than some existing results due to significant improvement in the allowable
upper bounds of delays.

If D(t, x, v) ≡ D is a diagonal constant matrix, the system (2.9) is perhaps reduced to the
following system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dv(t, x) = {DΔv(t, x)) −A(v(x, t))[B(v(t, x)) − C(r(t), t)f(v(t, x))

−D(r(t), t)g(v(t − τ(t), x))]}dt + σ(t, v(t, x), v(t − τ(t), x), r(t))dw(t)

for all t ≥ t0, t �= tk, x ∈ Ω,

v(tk, x) = Mk(r(t))v(t−k , x), k = 1, 2, · · · ,

(3.22)

where Δv(t, x) = (Δv1(t, x),Δv2(t, x), · · · ,Δvn(t, x))T, and Δvj(t, x) =
m∑

k=1

∂
∂xk

(∂vj(t,x)
∂xk

)
.

Similarly to (3.7), we have

2
∫

Ω

vT(t, x)PDΔv(t, x)dx ≤ −2
∫

Ω

n∑
k=1

pkkDkk

m∑
j=1

(∂vk(t, x)
∂xj

)2

dx

≤ −2λ
∫

Ω

|vT|(PD)|v|dx, (3.7*)

where both constant matrices D = diag(D11,D22, · · · ,Dnn) and P = diag(p11, p22, · · · , pnn) are
positive definite.

Hence, similarly to the proof of Theorem 3.1, we can prove the following similar result.

Theorem 3.2 The null solution of system (3.22) is stochastically globally exponential stable
in the mean square if there exist positive scalars λ ≤ λ1, β > 0, a sequence of positive scalars
αi, αi (i ∈ S) and positive definite diagonal matrices Pi = diag(pi1, pi2, · · · , pin) (i ∈ S), L1, L2

and Q such that the following LMI conditions hold:⎛⎜⎜⎜⎜⎜⎜⎝
Ai1 0 (F1 + F2)L1 + PiA|Ci| PiA|Di| PiA|Ei| 0
∗ Ai2 0 (G1 +G2)L2 0 0
∗ ∗ −2L1 0 0 |NT

i1|
∗ ∗ ∗ −2L2 0 |NT

i2|
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −I

⎞⎟⎟⎟⎟⎟⎟⎠ < 0, ∀i ∈ S,

Pi > αiI, ∀i ∈ S,

Pi < αiI, ∀i ∈ S,

MT
jkPrMjk − Pl < 0, ∀r, j, l ∈ S,

where

Ai1 = −2λPiD − 2PiAB + αiR1 +
∑

j∈Sikn

πijPj + α̃i

∑
j∈Siun

Pj + βPi +Q− 2F1L1F2.

Consider the deterministic system (2.4) with h ≡ 0,⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂v

∂t
= DΔv(t, x) −A(v(x, t))[B(v(t, x)) − Cf(v(t, x)) −Dg(v(t− τ(t), x))]

for all t ≥ t0, t �= tk, x ∈ Ω,

v(tk, x) = Mkv(t−k , x), k = 1, 2, · · · .
(3.23)
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Then, from Theorem 3.2, we can deduce the following corollary.

Corollary 3.3 The null solution of system (3.23) is stochastically globally exponential stable
in the mean square if there exist positive scalars λ ≤ λ1, β > 0, and positive definite diagonal
matrices P , L1, L2 and Q such that the following LMI conditions hold:⎛⎜⎜⎝

Â1 0 (F1 + F2)L1 + PA|C| PA|D|
∗ Â2 0 (G1 +G2)L2

∗ ∗ −2L1 0
∗ ∗ ∗ −2L2

⎞⎟⎟⎠ < 0, (3.24)

MT
k PMk − P < 0, (3.25)

where

Â1 = −2λPD − 2PAB + βP +Q− 2F1L1F2, Â2 = −(1 − κ)e−τβQ− 2G1L2G2.

Remark 3.3 In [2, Theorem 3.1], Ω is restricted to be a cube Ω = {(x1, x2, · · · , xm)T ∈
R

m : |xj | < lj , j = 1, 2, · · · ,m}, and F1 = G1 are assumed to be 0. Under the Dirichlet
boundary condition, the null solution of system (3.23) is exponentially stable if all (C1)–(C3)
(see [2, Theorem 3.1]) are satisfied, where⎛⎝−2lPD− 2PAB + F 2

2 PA|C| PA|D|
∗ −I 0
∗ ∗ −I

⎞⎠ < 0 (C1)

and l =
m∑

j=1

1
l2j

. Here, we point out that in comparison with Corollary 3.3, conditions (C1)–(C3)

(see [2, Theorem 3.1]) are too complicated to be satisfied. LMI condition (3.24) is more feasible
than (C1) of [2, Theorem 2.1]. Below we shall give a numerical example for it (see Example
4.1).

Finally, we consider the LMI criterion for the system (2.7) with p-Laplace diffusion (p > 1).

Theorem 3.4 The null solution of system (2.7) is stochastically globally exponential stable in
the mean square if there exists a positive scalar β > 0, a sequence of positive scalars αi, αi (i ∈
S) and positive definite diagonal matrices Pi = diag(pi1, pi2, · · · , pin) (i ∈ S), L1, L2 and Q

such that the following LMI conditions hold:⎛⎜⎜⎜⎜⎜⎜⎝
Ãi1 0 (F1 + F2)L1 + PiA|Ci| PiA|Di| PiA|Ei| 0
∗ Ai2 0 (G1 +G2)L2 0 0
∗ ∗ −2L1 0 0 |NT

i1|
∗ ∗ ∗ −2L2 0 |NT

i2|
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −I

⎞⎟⎟⎟⎟⎟⎟⎠ < 0,

∀i ∈ S,

(3.1*)

Pi > αiI, ∀i ∈ S, (3.2*)

Pi < αiI, ∀i ∈ S, (3.3*)

MT
jkPrMjk − Pl < 0, ∀r, j, l ∈ S, (3.4*)



590 R. F. Rao

where
Ãi1 = −2PiAB + αiR1 +

∑
j∈Si

kn

πijPj + α̃i

∑
j∈Siun

Pj + βPi +Q− 2F1L1F2.

Proof First, we may construct the same Lyapunov-Krasovskii functional as that of the
proof for Theorem 3.1. Second, we can get by Lemma 2.3:∫

Ω

vTPi(∇ · (D(t, x, v) ◦ ∇pv))dx =
∫

Ω

(∇ · (D(t, x, v) ◦ ∇pv))TPiudx ≤ 0.

And then we have the similar inequality as (3.5):

LV1i ≤ eβt
{
0 − 2

∫
Ω

vTPiA(v(t, x))B(v(t, x))dx

+ 2
∫

Ω

[vTPiA(v(t, x))Ci(t)f(v(t, x)) + vTPiA(v(t, x))Di(t)g(v(t− τ(t), x))]dx

+
∫

Ω

vT
(∑

j∈S

πijPj

)
vdx

+
∫

Ω

trace[σT(t, v(t, x), v(t − τ(t), x), i)Piσ(t, v(t, x), v(t, x), v(t − τ(t), x), i)]dx
}

+ βeβt

∫
Ω

vTPivdx. (3.5*)

The rest of the proof is completely similar as that of Theorem 3.1. We can derive those
similar inequalities as (3.6)–(3.21).And then, based on Definition 2.1, the null solution of system
(2.7) is globally stochastically exponentially stable in the mean square.

If Markovian jumping phenomena and parametric uncertainties are ignored, the system (2.7)
is reduced to the following system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dv(t, x) = {∇ · (D(t, x, v) ◦ ∇pv(t, x)) −A(v(x, t))[B(v(t, x)) − Cf(v(t, x))

−Dg(v(t− τ(t), x))]}dt + σ(t, v(t, x), v(t − τ(t), x), r(t))dw(t)

for all t ≥ t0, t �= tk, x ∈ Ω,

v(tk, x) = Mk(r(t))v(t−k , x), k = 1, 2, · · · .

(3.26)

Then we get the following lemma from Theorem 3.4.

Corollary 3.5 The null solution of system (3.26) is stochastically globally exponential stable
in the mean square if there exist positive scalars β > 0, α, α, and positive definite diagonal
matrices P , L1, L2 and Q such that the following LMI conditions hold:⎛⎜⎜⎝

A∗
1 0 (F1 + F2)L1 + PA|C| PA|D|
∗ A∗

2 0 (G1 +G2)L2

∗ ∗ −2L1 0
∗ ∗ ∗ −2L2

⎞⎟⎟⎠ < 0, (3.1**)

P > αI, (3.2**)

P < αI, (3.3**)

MT
k PMk − P < 0, (3.4**)
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where

A∗
1 = −2PAB + αR1 + βP +Q− 2F1L1F2, A∗

2 = αR2 − (1 − κ)e−τβQ− 2G1L2G2. (3.27)

Remark 3.4 In [3, Theorem 2.1], R2 in (2.10) is assumed to be 0. In addition, F1 = G1

is also assumed to be 0. If there exist positive definite diagonal matrices P1, P2 such that the
following LMI holds:⎛⎝−2P1AB + P1R1 + P2 + F 2

2 P1A|C| P1A|D|
∗ −I 0
∗ ∗ −I

⎞⎠ < 0, (C1*)

and other two complicated conditions similar to (C2) and (C3) in [2, Theorem 3.1]. Below,
Example 4.2 shows that Corollary 3.5 is better than [3, Theorem 2.1] due to less conservativeness
and more feasibility.

Remark 3.5 The nonlinear p-Laplace diffusions in Theorem 3.4 bring a great difficulty
establishing LMI conditions for the stability criterion. However, it is the first attempt to present
the LMI-based criterion for the uncertain CGNNs with nonlinear p-Laplace diffusion. Below,
Example 4.3 is given to show that Theorem 3.4 possesses less conservatism due to significant
improvement in the allowable upper bounds of delays.

4 Numerical Examples and Comparisons

In this section, we shall give three numerical examples (Examples 4.1–4.3) for Corollaries
3.3 and 3.5 in comparison with [2, Theorem 3.1] and [3, Theorem 2.1]. Finally, Example
4.3 is presented to illustrate that Theorems 3.1 and 3.4 possess more effectiveness and less
conservatism due to significant improvement in the allowable upper bounds of delays.

Example 4.1 Comparing Corollary 3.3 with the main result of [2].
Under the Dirichlet boundary condition, we consider the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎝
∂v1
∂t
∂v2
∂t

⎞⎟⎠
= DΔv(t, x) −

(
a1(v1) 0

0 a2(v2)

)[(
b1(v1)
b2(v2)

)
− Cf(v(t, x)) −Dg(v(t− 0.65, x))

]
for all t ≥ t0, t �= tk, x ∈ Ω,

v(tk, x) = Mkv(t−k , x), k = 1, 2, · · · ,

(4.1)

φ(s, x) =
(
x2(1 − cos(5πx2)) cos189(x2 − 0.25)e−100s

(1 − x) sin2(4πx2) cos201(x2 − 0.55)e−100s

)
, −0.65 ≤ s ≤ 0, (4.2)

where v = (vT
1 (t, x), vT

2 (t, x))T ∈ R
2, Ω = {(x1, x2)T ∈ R

2 : |xj | <
√

2, j = 1, 2}, and then
l = 1, λ1 = π2 = 9.8696 (see [35]). In addition, a1(v1) = 0.13 + 0.07 sin2(tx2), a2(v2) =
0.14+ 0.06 cos2(tx2), b1(v1) = 0.02v1 + 2v1 sin2(t2 + x2)), b2(v2) = 0.016v2 + 12v2 sin2(t2 + x2),
f(v) = g(v) = (0.1v1, 0.1v2 + 0.1v2 sin2(tx2))T, and

D =
(

0.003 0
0 0.0032

)
, C = D =

(
0.11 −0.003

−0.003 0.12

)
, Mk =

(
0.68 0.01
0.01 0.55

)
,
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and hence

A =
(

0.13 0
0 0.14

)
, A =

(
0.2 0
0 0.2

)
, B =

(
0.02 0
0 0.016

)
,

F1 = G1 =
(

0.1 0
0 0.1

)
, F2 = G2 =

(
0.1 0
0 0.2

)
.

We might as well assume that λ = 9.8 < λ1, β = 0.01, t0 = 0, tk− tk−1 = 0.525, τ(t) ≡ 0.65 = τ

and then κ = 0 for all t ≥ t0. We may take λ = 9.8. Now, by using Matlab LMI toolbox to solve
the LMI (C1), we get tmin = 0.0144 > 0, which implies the LMI (C1) is found infeasible. But by
using Matlab LMI toolbox to solve the LMIs (3.24) and (3.25), the result is tmin = −0.1182 < 0,
and

P =
(

86.1682 0
0 83.8211

)
, L1 =

(
35.2742 0

0 33.7609

)
,

L2 =
(

35.5378 0
0 34.6527

)
, Q =

(
2.8991 0

0 2.7795

)
.

Hence, Corollary 3.3 derives that the null solution of system (4.1) is stochastically globally
exponential stable in the mean square (see Figures 1–3).

Figure 1 Computer simulations of the states v1(t, x) and v2(t, x)

Remark 4.1 The stability of the null solution of system (4.1) can not be judged by [2,
Theorem 3.1], for the first LMI (C1) of three conditions (C1)–(C3) is found infeasible. But
all LMI conditions are only sufficient ones, not necessary for the stability. Corollary 3.3 shows
that the null solution of system (4.1) is stochastically globally exponential stable in the mean
square. Hence, Corollary 3.3 is really effective and less conservative than [2, Theorem 3.1].

Example 4.2 Comparing Corollary 3.5 with the main result of [3].
Under the Neumann boundary condition and the initial condition (4.2), we consider the

system (3.26) with the following parameters:
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Figure 2 Sectional curve of the state variable v1(t, x)
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Figure 3 Sectional curve of the state variable v2(t, x)

A =
(

1.3 0
0 1.4

)
, A =

(
2 0
0 2

)
, B =

(
1.8 0
0 1.88

)
,

F1 = G1 =
(

0 0
0 0

)
, F2 =

(
7.38 0
0 7.48

)
, G2 =

(
2 0
0 3

)
,

D(t, x, v) =
(

0.0007 0.0006
0.0008 0.0009

)
, C = D =

(
0.11 −0.003

−0.003 0.12

)
,

Mk =
(

0.57 0.01
0.01 0.65

)
, R1 =

(
0.01 0.0012

0.0012 0.01

)
, R2 =

(
0.01 0.001
0.001 0.015

)
.

Assume, in addition, β = 0.01, τ = 0.65, k = 0.
By using Matlab LMI toolbox to solve the LMI (C1*), the result is tmin = 0.0050 > 0, which

implies the LMI (C1*) is found infeasible. But by solving LMIs (3.1**)–(3.4**), one can obtain
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tmin = −0.0037 < 0, and α = 2.1189, α = 7.6303,

P =
(

4.4085 0
0 4.0900

)
, L1 =

(
0.1571 0

0 0.1393

)
,

L2 =
(

0.8179 0
0 0.4227

)
, Q =

(
3.7133 0

0 3.9282

)
.

Hence, Corollary 3.5 derives that the null solution of system (3.26) is stochastically globally
exponential stable in the mean square.

Remark 4.2 The stability of the null solution of system (3.26) with the above mentioned
data can not be judged by [3, Theorem 2.1], for the first LMI (C1) of three conditions (C1)–
(C3) is found infeasible. But all LMI conditions are only sufficient ones, not necessary for the
stability. Hence, Corollary 3.5 is really more effective and less conservative than [3, Theorem
2.1] for the same reason as that of Remark 4.1.

Example 4.3 Comparing the allowable upper bound of Theorem 3.1 (p > 1) with that of
Theorem 3.4 (p = 2).

Under the Dirichlet boundary condition, we consider the system (2.7) with the following
parameters:

D(t, x, v) =
(

0.003 0.005 0.003
0.004 0.0006 0.005

)
, A =

(
0.13 0
0 0.14

)
, A =

(
0.2 0
0 0.2

)
,

B =
(

5.160 0
0 5.160

)
, C1 =

(
0.11 −0.003

−0.003 0.12

)
= D1,

C2 =
(

0.15 −0.003
−0.003 0.15

)
= D2, C3 =

(
0.16 −0.003

−0.003 0.16

)
= D3,

E1 = E2 = E3 =
(

0.11 0.003
0.003 0.12

)
, N11 =

(
0.1 −0.1
−0.1 0.12

)
, N12 =

(
0.12 0.1
0.1 0.1

)
,

N21 =
(

0.1 −0.13
−0.13 0.12

)
, N22 =

(
0.12 0.1
0.1 0.15

)
,

N31 =
(

0.13 −0.1
−0.1 0.12

)
, N32 =

(
0.125 0.1
0.1 0.1

)
,

F1 =
(

0 0
0 0

)
= G1, F2 =

(
0.100 0

0 0.200

)
= G2,

R1 =
(

0.01 0.0001
0.0001 0.012

)
, R2 =

(
0.01 0.0001

0.0001 0.015

)
,

Mk(r(t)) =
(

0.91 0.01
0.01 0.95

)
, ∀r(t) = i ∈ S = {1, 2, 3}, k = 1, 2, · · · .

The transition matrix is considered as

Π =

⎛⎝π11 π12 π13

π21 π22 π23

π31 π32 π33

⎞⎠ =

⎛⎝−0.6 ? ?
0.2 ? ?
? 0.3 ?

⎞⎠ . (4.3)

Then we have d = 0.003, α̃1 = 0.6, α̃2 = 0.8, α̃3 = 0.7. Assume, in addition, β = 0.01.
Denote v = v(t, x) = (v1(t, x), v2(t, x))T, and x = (x1, x2, x3)T ∈ Ω =

{
x ∈ R

3 : x2
1

1.03 + x2
2

1.2 +
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x2
3

1.1 ≤ 1
}
. A direct computation yields Λ2 = 5.7832, ω3 = 4

3π, meas(Ω) = 4.8842, and then

λ = Λ2

(
ω3

meas(Ω)

) 2
3 = 5.2203.

Let τ(t) ≡ 100.29, and then κ = 0. Now we use the Matlab LMI toolbox to solve the LMIs
(3.1∗)–(3.4∗). The results show tmin = −0.0418 < 0, and α1 = 1.8714, α1 = 0.7246, α2 =
1.9114, α2 = 0.7669, α3 = 1.8892, α3 = 0.7450,

P1 =
(

1.4688 0
0 1.4296

)
, P2 =

(
1.5544 0

0 1.5133

)
,

P3 =
(

1.5082 0
0 1.4716

)
, Q =

(
0.2288 0

0 0.3194

)
,

L1 =
(

0.6175 0
0 0.6072

)
, L2 =

(
0.6194 0

0 0.6110

)
.

Then we can conclude from Theorem 3.4 that the null solution of system (2.7) is stochastically
globally exponential stable in the mean square for the maximum allowable upper bounds τ =
100.29. This shows that the approach developed in Theorem 3.4 is effective and less conservative
than some existing results.

Particularly, if p = 2 in the system (2.7), τ(t) ≡ 100.59, and κ = 0, one can solve LMIs
(3.1)–(3.4), and obtain tmin = −0.0426 < 0, and α1 = 1.8760, α1 = 0.7331, α2 = 1.9165, α2 =
0.7825, α3 = 1.8945, α3 = 0.7616,

P1 =
(

1.4738 0
0 1.4344

)
, P2 =

(
1.5605 0

0 1.5191

)
,

P3 =
(

1.5148 0
0 1.4779

)
, Q =

(
0.2454 0

0 0.3364

)
,

L1 =
(

0.6186 0
0 0.6082

)
, L2 =

(
0.6205 0

0 0.6121

)
.

Then we can conclude from Theorem 3.1 that the null solution of system (2.9) (or system
(2.7) with p = 2) is stochastically globally exponential stable in the mean square for the
maximum allowable upper bounds τ = 100.59, which shows that Theorem3.1 is effective and
less conservative than some existing results.

Table 1 Allowable upper bound of τ for Theorems 3.1 and 3.4

p Theorem 3.1 Theorem 3.4
= 2 100.59 100.29
> 1 100.29

Remark 4.3 In this numerical example, Ω is an ellipsoid in R
3. But in recent related

literatures (see [29–30]), only the sphere is considered in their numerical examples. Moreover,
in many recent literatures (see [32–36]), Ω is restricted to be a cube in R

1 or R
2 in their

numerical examples. Now in this paper, due to the synthetic application of Poincaré inequality
and Hardy-Poincaré inequality, we abolish these limitations. As far as we know, it is the first
time to consider an ellipsoid in numerical simulation.
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Remark 4.4 Table 1 in this numerical example shows that the allowable upper bound of
τ for Theorem 3.1 is bigger than that of Theorem 3.4 (with p = 2), which implies the diffusion
item plays an active role in the stability criterion.

Remark 4.5 Example 4.3 illustrates that the allowable upper bound of time delays for
Theorem 3.1 or Theorem 3.4 is far greater than that of any recent literatures related to delay-
dependent stability criteria (see [27, 38–43]).

5 Conclusions

In this paper, the stochastic global exponential stability for delayed impulsive Markovian
jumping reaction-diffusion Cohen-Grossberg neural networks is investigated, in which uncertain
parameters and partially unknown transition rates and even the nonlinear p-Laplace diffusion
bring a great difficulty in judging the stability. By using a novel Lyapunov-Krasovskii func-
tional approach, linear matrix inequality technique, Itô formula, some new stability criteria are
obtained. Particularly, the synthetic application of Poincaré inequality and Hardy-Poincaré
inequality admits ellipsoid domains to be considered in numeral simulation (see Remarks 3.1
and 4.3). Note that if p = 2, the p-Laplace diffusion is just the conventional linear Laplace
diffusion studied by many previous literatures. And even if p = 2, the LMI-based criteria have
advantages over some previous ones thanks to the less conservatism and higher computational
efficiency (see Remark 4.3). The diffusion item plays an active role in judging the stability (see
Remark 4.4). As pointed out in Remarks 3.1 and 4.3, Poincaré inequality and Hardy-Poincaré
inequality are linked judiciously in judging the stability of reaction-diffusion neural networks for
the first time so that Ω can be a spheroid and not a sphere in numerical examples. In addition,
the feasibility of the LMI conditions of new criteria can be easily checked by the Matlab LMI
toolbox. Examples 4.1–4.2 show that corollaries of the main results obtained in this paper are
more feasible and effective than the main results of some recent related literatures (see Re-
marks 4.1–4.2). Finally, Example 4.3 illustrates that the allowable upper bound of time delays
for Theorem 3.1 or Theorem 3.4 is far greater than that of any previous related literature (see
Remark 4.5). All these numerical examples show the effectiveness and the less conservatism of
all the proposed methods.

Acknowledgement The author thanks the anonymous reviewers for their valuable sug-
gestions and comments which have led to a much improved paper.
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