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Abstract In this paper, the multivariate Bernstein polynomials defined on a simplex are
viewed as sampling operators, and a generalization by allowing the sampling operators
to take place at scattered sites is studied. Both stochastic and deterministic aspects are
applied in the study. On the stochastic aspect, a Chebyshev type estimate for the sampling
operators is established. On the deterministic aspect, combining the theory of uniform
distribution and the discrepancy method, the rate of approximating continuous function
and L? convergence for these operators are studied, respectively.
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1 Introduction

Let S := S, be the simplex in R? (d € N) defined by

d
5= {X = (21,22, ,wa) €ERY 1y 20, x|y =) |mi < 1}'
i=1
The Bernstein polynomials on S are given by
Buaf = Bualf().%) = Y. Pauf(L), xeS nen, (1.1)
1 <n
d
where p:= (u1, po, - -+, ta) with p; nonnegative integers, ||pl|1 := > |ui], and
i=1
n!
P 5= (1 = )"
! pt(n = {lpllr)!
with the convention x# := z{"a4*---ai*, ul := plp! - pg!. For d = 1, the multivariate

Bernstein polynomials given in (1.1) reduce to the classical Bernstein polynomials:

Bu(f,2) = Bua(f,2) = an,k(x)f(g), z €0, 1].
k=0

Manuscript received October 29, 2012. Revised April 17, 2013.

L Corresponding author. Department of Mathematics, China Jiliang University, Hangzhou 310018, China.
E-mail: feilongcao@gmail.com

2Department of Mathematics, China Jiliang University, Hangzhou 310018, China.

E-mail: xiashengjlxy@163.com

*This work was supported by the National Natural Science Foundation of China (Nos. 61272023,
61101240) and the Innovation Foundation of Post-Graduates of Zhejiang Province (No. YK2011070).



608 F. L. Cao and S. Xia

Since Lorentz [1] first introduced the multivariate Bernstein polynomials in 1953, the poly-
nomials have been extensively studied. In particular, the rate of convergence of the polynomials
has been revealed in many literatures, such as [2-10]. On the other hand, the Bernstein poly-
nomials have also been widely applied in many research fields, such as CAGD, approximation
theory, probability, and so on. Recently, Wu, Sun, and Ma [11] viewed the classical Bernstein
polynomials as sampling operators. The main motivation for this is as follows: In many real
world problems, data at equally spaced sites are often unavailable, so are data collected from
what are perceived to be equally spaced sites suffering from random errors due to signal delays,
measurement inaccuracies, and other known or unknown factors. Therefore, they introduced a
new version of classical Bernstein polynomials for which the sampling action takes place at scat-

tered sites: BA(f, ) := Z f(zn i) Pnk(x), where A := (,, 1) is a triangular array and for each

n € N, the numbers z,, i, are arranged in the ascending order: 0 < 2y 0 < 2p1 < -+ < Zpp < 1.
For the general version of the Bernstein polynomials, Wu, Sun, and Ma [11] contemplated from
both probabilistic and deterministic perspectives and obtained some interesting results.

It is natural to introduce multivariate Bernstein polynomials in which the sampling action

takes place at scattered sites x,, , € S:

By,a(f,x) : Z F (@) P (%) (1.2)

llplli<n

Of course, selecting x,,,, = % takes us back to the classical multivariate Bernstein polynomials
(1.1).

The main purpose of this paper is to address the multivariate Bernstein sampling operators
(1.2). Firstly, for each fixed n, we consider z,, , as random variables that take values in S, and
prove a Chebyshev type error estimate. Secondly, we study the approximation orders of the
sampling operators for continuous or Lebesgue integrable function, respectively. Some results
in [11] are extended to the case of higher dimension.

This paper is arranged as follows. A much more general setting for uniformly distributed,
modulus of continuity, and the definition of star discrepancy in simplex S are introduced in
Section 2. In Section 3, we estimate the Chebyshev type error for the sampling operators (1.2).
By mean of the introduced star discrepancy, we discuss the order of approximating continuous
function by such operators in Section 4. Finally, the L? (1 < p < o0) convergence of the

operators is studied in Section 5.

2 Notation

For a Riemann integrable function f on the simplex S, we use the Quasi-Monto Carlo
N

approximation fS f(x)dx =~ % > f(xk) with x1,%9,--- ,xy € S. An idealized model is to
k=1

replace the sequence of nodes x1,- -+ ,xx by an infinite sequence of points x1,x5, -+ in .S, such

that A}im Z fxk) = [of ¢ f(x)dx holds. The resulting condition means that the sequence
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X1,Xa, -+ should be uniformly distributed in the simplex S.
A similar definition states that x;,xs,- - are uniformly distributed in simplex S if
N
RS TN

holds for all sub-domain F' of S, where C is the characteristic function of F', and A\4(F') denotes
the volume of sub-domain F'.
For each fixed n, let P := (x,,) be a triangular array in S. Let J be a family of all

sub-domain of S with the form:
d
J = {(y17y25"' 7yd) “Yi 2 Oa Zyt S «, 0 SO& < 1}
i=1

For arbitrary J € J, we define A(J, P) := > Cj(xy,,), where C is the characteristic function
res

of J. Thus, A(J, P) is the counting function that denotes the number of the points which belong

to J.

The concept of discrepancy is an indispensable tool in the quantitative study of uniform
distribution of a finite sequence. For fixed n, we denote N = #{u : ||p]l1 < n} = (";rd), where

# denotes the number of the points which belong to the set. We now introduce a general notion
of the star discrepancy of a point set P, which is given by
A(J, P)

PiiF) =g

— ()] (2.1)

According to this definition, a triangular array P = (z,, ,) is uniformly distributed in S if and
only if A}im D%, (P) = 0. We refer the readers to [12] for more details about the star discrepancy.
— 00

Let C(S) denote the space of continuous function defined on S with uniform norm

IFlle = max | £ (o).

The continuity modulus of function f € C(S5) is defined as

w(f,0) = max_[f(x) = f(y)l,

Ix—yll2<é

d
where § > 0, and [|[x—y|l2 := (X |o; — yi|2)% is the Euclidean distance. We say that f € Lipl
i=1
if w(f,5) = O() (5 — 04).
It is easy to see that (}irr(l)w(f, 0) =0 and

w(f,A8) < (1+ Nw(f,8), A>0. (2.2)

It is clear that the Bernstein polynomials B, 4(f,x) uniformly converge to f(x) on S while

n approaches infinity. We are delighted to mention the following result (see [13])
1
Bualf) = £69] < 2(f, 7). (2.3)

which will be used in the following.
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3 Chebyshev Type Error Estimate

In this section we study the following problem: Given f € C(S) and ¢ > 0, draw points
Tn,p (0 < |lplli < n) from S independently according to the distributions F,, ,,, respectively,
and estimate the probability

{mnu H Z S (@n ) P (x) — f(X)HC>€}-
lplli<n

To get such estimate, we need estimate the following quantities.

Lemma 3.1 For each pn (0 < ||u|l1 < n), we have
25 .

-z J(x)dx < / , S, jeNy,

/HX H Pu(x) =) (ntd+g) X e e

where C; are positive constants independent of n.

Proof It is easy to find out

e
= W/ B —||x][)"™ ll el

- T T / /H”‘l‘”x” A Z( ) o

L1+m+wd<1

x——H dx

=1 — I + I,

where

I = e HMH I Z / / .. M1+2 ,,xgd,(l _ HXHl)n—Hqudxl - dzg,

L1+m+wd<1

2/./1 i +1 =]l
I = n—HMH 'Z z/ / $ﬁ+ b (1 — |x])" leliqg, - - day

@, g >0
) +otrg<l

and

d
Iy = n_”u” 'Z( ) / /x‘fl---xsd(l—||x||1)"‘||“”1dx1---dxd.

i=1 @1, g >0

z1+Fzg <1

With Liouville formula, we can write

d 1
L= — n 'ZF(,ul+1)"'F(ﬂi+3)"'r(ﬂd+1)/ (1 — w)n Il llullitdtag,,
ph(n = lull)t = L(llully +d +2) 0
d
(n+1)
= 1 2 .
n+d+3;ﬂz+ (i +2)
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Similarly,

r

d
(n+1)
Ip=2——— " (s + 1

and
F'(n+1)
I::
3 n2fn+d+1 ZMZ

Note that Z p? =clpll}, 3 <e <1, then

(i + 1) (s +2) 2ui(pi +1) 2
_El'p, _ Hi
/HX H () dx = n—l—d'Z(n—l—d—l—Z Jn+d+1) n(n+d+1)+n2)
__n ( cllpl? +3llulh +2d 2]l + 2[lplls Cll#ll?)
m+d)!'\(n+d+2)(n+d+1) n(n+d+1) n?
é(1—c)n+c(d+1)(d—f—2)—4§ Ch

(n+1)--(n+d+2) (m+1)---(n+d+1)

We have sufficient evidence to believe that there exists a constant C; such that

/H HQJ (X)dxg(n+1)...c(]ﬁ+d+j)’ j=z2 (3.1)

Lemma 3.2 The random variable x,,, obeys the F,, distribution, in which for each ||p|1 <

n, we denote by F,, the distribution with density function:

x—=m+1)---(n+d)P, u(x), x€S8. (3.2)

Proof Assuming that n € N and x € S are given, we are enable to find a proper J satisfying
the following conditions: D(x,6) :={y : [|[x —y|1 <} C S, N-X¢(D) =N - (25) <1

We can find the probability of the case that the point =, ,, (||u]|x = k) falls into the domain
Dis N - /\d((D)) N - (26)%.

And the probability that k selected points turn out to be in the domain [0,z ,, — 6) X

x [0, 2p,,, — J) can be figured out by the following formula: d! W(x — a)*, where

a=1{0 -0}

Further, the probability of the case that the remains appear in {y : y € S,y > x+ a} is
a1~ [x = 8y,

Therefore, the probabilities of all these three cases mentioned above are independent of each

other, and the probability that all these cases happen simultaneously is

N - (28— (x — ) (1 — [Ix] — 8"l = F (o).

pl(n = pll1)!
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Then the density function of the random variable x,, ,, obeys

o FO)
520 Aa(D)

=n+1)---(n+d)P, ,(x).

The following theorem gives a Chebyshev type error estimate of By, 4(f).

Theorem 3.1 Let ¢ > 0 and f € C(S) be given. Suppose that w(f, \/Lﬁ) < § and that
T, (el < n) are independently drawn from S according to the distributions F), (||ullx < n).
Then there exists a positive constant C independent of n such that the following probability
estimate holds:

ofp L
M 53)

P{(n) + [Bualfx) = Fx)llc > 2} < C——

Proof Using (2.2)—(2.3), we have

1Bn.a(f,x) = f(X)lle < [1Bn,a(f, %) = Bn.a(f, ¥)lc + |1 Bn.a(f, %) = f(x)lc

< 52 st () st #2405 )

> w()

H

IN

5= (s oo~ st 2501 )
< (0 Al 2o )t 240 )

<l D2

n

o 2] ] (s

)

For each fixed x € S, we have

p p
E , ‘ Ty — = || Pnp(x) <max ||z, — =| ,
nllz Les nll2
tes "
which implies that
nllz c T Les nll2
tes

Therefore,
P{(znp) * [|Bna(f.x) = f(x)[lc > €}

1
AT e

SP{(xn,u): pipags

S a2, 3000 5) =
\/ﬁ
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By the assumption of the theorem, we have 3w ( f, -

ﬁ) < . Thus, in order that

Bualf.x) = )| > e

it is necessary that

" 1 1
SRRV R N
e Vinw (f ; %)
Let ;! = 2v/nw(f, ﬁ), we have the following inequality:

P{(@n)  |Bua(f.%) = f()llc > e} < P{(@n) rglgf;\

n

Thus, for each & € S, using Lemmas 3.1-3.2, we obtain

P{(xn,u) : ‘

<-4l

| x— 2l

g — EH > ang} < M/ Py (x)—nl2
nilz [[x— £ |l2>an

2
n! abeb dx
1)
o0t [
<— | P —=d
=  nl s nn(X) afeb x
1
6
- CW (f’ \/ﬁ)

The proof of Theorem 3.1 is completed.

4 Approximation Order

In this section, we will discuss the approximation behavior of B, 4(f) by means of the

property of D}. So, we first give two lemmas.

Lemma 4.1 (see [14]) Let z,y > 0. Then, for 1 < p < oo, we have

217 Pz — y|P < 2P — yP| < pla —yl(aP T+ 4P,

Lemma 4.2 Let P = (z,,,), Q = (Yn,u) be triangular array in S. If there holds ||y, , —

Yn.ulll <€ for any given € > 0 and any xy,, € P, Yn,, € Q, then

|DN(P) = Dy(Q)] < € _2 1!

Proof Consider any domain

d
Ja = {(xmula"' 713”7/1(1) Ty > 07 anm < a} C S.

i=1

I
Tnp— —|| > aneg.
nll2

613
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Whenever z,,, € Jo, then |2, — Ynpuli < € implies y,, € Jage NS. Hence, using the

inequality (4.1), we have

A(Ja, A(Jv,
UN P) ) < % ~ Xa(h) + o+ )~ ]
. 2
Similarly,
A(Jy, P) . 2
N _)\d(Ja)ZDN(Q) (d_1)|€
Therefore, we can deduce
2

Now we give an approximation behavior of B, 4(f).

Theorem 4.1 Let P = (x,,) be a triangular array in S. Then we have that for any

fea(s),

[Bu.a(f,%) = F(x)] < 2max {(1+ 243 )w(f, D (P)*), 20(f, (4.2)

1
7))
Proof For f € C(S), according to the inequality (2.3),

1Bn,a(f, %) = f(x)| < |Bna(f,x) = Bn.a(f, x)| + [Bn.a(f, x) — f(x)|

< Bualf,x) ~ Bualf, )] + 2(1, %).

It suffices to show that

1By.a(f,%) = Bua(f,x)] < (1+ Ca)w(f, Di(P)4).

Denote oo = D}, (P)i, using the property of the continuity modulus, we have

Bualf:%) = Bua(£:0] = | 32 (F@ns) = £(E)) Pou)]
Les

< Z ‘f(mmu) - f(%) P,

o (%)
Les

<> w(r

©

n

<2 (1+4]

N

n

1
_(+ly
(raX

o
SPRITpFIS

L, — %H2>W(fv @) Pp, (%)

T = 5| Pn))(f.0)

1
< (1+—max‘
« Ees

o] Yot
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According to the inequality (4.1), we know

i

d
i DY
i=1

Tn,p; —
IR N\ d
<2* VY [et,, - (4)
i "
i=1

d i\ @
xn,ui_ E

< 2Vd|||n ullf — [lpal1f]7

d
<2vVd)
=1

1

al

2, ull el

d! (n+1)---(n+4d)

<2Vd- (d)7

=

< 2d3 D% (P)7.

The proof of Theorem 4.1 is completed.

5 The LP Convergence

In this section, we will study the LP (1 < p < oo) convergence for the multivariate Bernstein

sampling operators.

Theorem 5.1 Let P = (x,,,) be a triangular array in S. Assume that

. 1 I
1 T
nglgo(n—kl)..-(n—kd)z:s T [

Then for each f € C(S), we have lim ||By.qaf — fll2 = 0.

Proof It suffices to show that lim ||B, qf — Bn,af||: = 0. For this purpose, we find

L1

1Bn.af = Buafler = || 32 (F@ns) = £(E)) Pani)]
Les

< 5 stz - 1(2)] |
Les

)]

1 %
= (n+1)'”(n+d) ;es‘f(-ﬁn,u) _f(g)’
Since f € C(9), for arbitrary € > 0, there exists > 0 such that

‘f(mmu) - f(ﬁ)‘ <e

n
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for ||z, — £fl2 < 7. Thus,

S e -rE) = X Pawn-rE))+ X [fewn- ()]

nes lzn,u—=tll2<n l2n,u="ll2>n

H H
= #{N Ff[Een T EHQ = 77}5+ 2||f||c#{u : ‘ T EHQ - 77}-

For n > 0, it is easy to write

1
Trop = EHQ - 77} = Z ‘

meu—%ﬂz>n

n#{u: ‘

0 0
T = =[ <D o — | -
ni2 ni2
ey

For each £ > 0, from the assumptions of theorem, there exists N7 > 0 such that

HH
Tnu——| <e€
ol

1
(n—l—l)---(n—l—d);:es‘

for n > Ny. Denote M = sup | f(x)|, thus
x€S

| Bn,af — Bn,afllL < (n+1)-%-(n+d) %Z:es‘f(x”’“) _f(%)‘

n!
e

d -1
n 2Mn ‘
< +
*d!(n+1)---(n+d)6 (n+1)---(n+d);€:S
< (1+2Mn e
The proof of Theorem 5.1 is completed.

In order to discuss the case of 1 < p < oo, we give the following lemma.

Lemma 5.1 For 1 < p < oo, there is a constant C = Cp 4 such that

p—2d—1
Cn+1) 2
[ Pnn(X)lL, < — p1 1
,Hl(lh‘ + 1) (n—lulh+1)=
i

Proof With Liouville formula, we can write

d 1

n! ) >

P,,x)|r = —F——"7"—— // mf“" 1 — |x|)P=lml g <-dag

1Prs(9ller = o [T ) L da)
a=>0

Ty, g >

D e

d
T(ppi + 1
- l il:ll (ppi +1)

= = A Tl + d)

! 1
/ (1-— u)p(”*”““l)ul’”“\‘l+d*1du) »
0

T Do+ 00— ) +1)

n! P

= [0 = el Tond i)
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Using Sterlings formula I'(z) ~ e~ %2772 (27) 2, we have

n! _ L(n+1)
pl(n — ) ﬁrm,+n<n—|m1+w
) (27T)7% (n+ 1)n+%

=N

1=

and

ﬂF@m+Uﬂmn—MMH4)

1=

I'(pn+d+1)

(pr + )P pn — ) + D=l

s

i=1

vl

= (2m)

(pn+d+ 1)p”+d+%

Thus, we can bound || P, ,(x)|, as

p—2d—1

(n+1)

HPn,u(X)H;D < vad d b1 p—1
.Hl(ui + 1) (n—|luf +1) =
i—

This completes the proof of Lemma 5.1.

Finally, we prove the LP (1 < p < co) convergence.

Theorem 5.2 Let 1 < p < oco. Let P = (x,,,,) be a triangular array in S. Let

p—2d—1

(n+1)

H (i + D% (=l + 1)

=1

Assume that

: (p)
Jm, > Wil
Les

1
Tn,u— —|| =0.
nll2

Then for each function f € Lipl, we have lim ||B, qaf — f|lL» = 0.
n—oo

Proof It suffices to show that lim |B, qf — Bn,af|/zr = 0.

Using Lemma 5.1, we have

1Buaf = Buafler = || 32 (#ap) = £(2)) Pani)]

Les "

< 3 @) = £(E) 1Pan s

Les

Lpr

(s + 1% (= [y + 1)

617
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n
Les
() H
< Cpa E :Wn,p,,d L, nlly
Les

This completes the proof of Theorem 5.2.
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