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Abstract This paper deals with the existence of periodic solutions of a nonhomogeneous
string with Dirichlet-Neumann condition. The authors consider the case that the period is
irrational multiple of space length and prove that for some irrational number, zero is not
the accumulation point of the spectrum of the associated linear operator. This result can
be used to prove the existence of the periodic solution avoid using Nash-Moser iteration.
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1 Introduction

In this paper, we study the problem of time periodic solution of the nonhomogeneous string
with Dirichlet-Neumann condition:⎧⎨

⎩
ρ(x)utt − (ρ(x)ux)x + g(u) = f(x, t), 0 < x < π, t ∈ R,
u(0, t) = ux(π, t) = 0, t ∈ R,
u(x, t+ T ) = u(x, t), 0 < x < π, t ∈ R

(1.1)

under the following hypotheses: (H1)

ρ(x) ∈ H2(0, π), (1.2)

ρ(x) ≥ 1, ∀x ∈ [0, π], (1.3)

� = ess inf η(x) > 0, (1.4)

where

η(x) =
1
2
ρ′′

ρ
− 1

4

(ρ′
ρ

)2

; (1.5)

(H2) The function g : R → R is continuous and nondecreasing, and

|g(y) − g(z)| ≤ γ|y − z|

for some γ ≥ 0.
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This problem was first studied by Barbu and Pavel [2], which describes the forced vibrations
of a nonhomogeneous string and the propagation of waves in nonisotropic media. After that,
Ji and Li [11–12] and Rudakov [13] considered this equation with various boundary conditions,
but all these papers dealed with the case when the number ω = 2π

T is rational, where T is
the period of the solutions. When ω is irrational number, the spectrum of the associated
linear operator with the system (1.1) may be accumulated to zero. This is a “small divisor
problem”. In order to solve the “small divisor problem”, Baldi and Berti [1] used the technique of
Lyapunov-Schmidt decomposition and Nash-Moser iteration and obtained the periodic solution
for Dirichlet condition. This method was widely used by many people when ρ(x) is a constant
to deal irrational frequencies, even for higher spatial dimensions. About these results, one may
consult Berti and Bolle [5–8], Berti, Bolle and Procesi [9]. But for Dirichlet-Neumann condition,
this method seems to be difficult for solving the bifurcation equation. We will use the method
of Berkovits and Mawhin [4] to prove that 0 is not the accumulation point of the spectrum of
the associated linear operator for some special ω. Then by adapting the method of Barbu and
Pavel [2], we can obtain the existence of the periodic solution. This method avoids the tedious
Nash-Moser iteration, although our result is weaker than that of Baldi and Berti in [1].

This paper is arranged as follows. In Section 2, we will prove some results about the
spectrum of the linear operator associated with the system (1.1), these results are essential for
our proof. In Section 3, we will use the method similar to [2] to complete the proof of our main
results. In Section 4, we will list some notions and properties about continued fractions used
in Section 2.

2 Some Basic Properties of the Linear Operator

Before studying the system (1.1), we need to know the properties of the spectrum of the
associated linear operator A, so we first recall some results from [2]. First, some adapted
complete orthonormal system of eigenfunctions

{ψmϕn | m ∈ Z, n ∈ N}

of this linear operator A will be needed to be taken as a basis for functions space. In order to
define the operator A and this space, some notions will be defined.

Let Ω = [0, π] × [0, T ] and set

D = {u(x, t) ∈ C∞(Ω) | u(0, t) = ux(π, t) = 0,

u(x, 0) = u(x, T ) and ut(x, 0) = ut(x, T )}.

For real number r ≥ 1, we define

‖u‖Lr(Ω) =
{ ∫

Ω

ρ(x)|u(x, t)|rdxdt
} 1

r

, ∀u ∈ D.

The space Lr(Ω) is the closure of D with the norm ‖ · ‖Lr(Ω). Suppose that the constant q
satisfies the condition 1

p + 1
q = 1. For functions u ∈ Lp(Ω) and v ∈ Lq(Ω), we define

(u, v) =
∫

Ω

ρ(x)u(x, t)v(x, t)dxdt.
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Definition 2.1 A function u ∈ L2(Ω) is said to be a weak solution of the problem⎧⎨
⎩
ρ(x)utt − (ρ(x)ux)x = f(x, t), in Ω, f ∈ L2(Ω),
u(0, t) = ux(π, t) = 0, t ∈ [0, T ],
u(x, 0) = u(x, T ), ut(x, 0) = ut(x, T ), x ∈ [0, π],

(2.1)

if ∫
Ω

u(ρϕtt − (ρϕx)x)dxdt =
∫

Ω

fϕdxdt (2.2)

for all ϕ ∈ D.

Conversely, a weak solution of class C2(Ω) satisfies (2.1) in classical sense.
Set

D(Ã) =
{
u ∈ L2(Ω) : There exists f ∈ L2(Ω) such that (2.2) holds

}
. (2.3)

Define Ã : D(Ã) → L2(Ω) by

Ãu = f, u ∈ D(Ã), (2.4)

if and only if ∫
Ω

u(ρϕtt − (ρϕx)x)dxdt =
∫

Ω

Ãuϕdxdt =
∫

Ω

fϕdxdt, (2.5)

and define A by

A = ρ−1Ã. (2.6)

Clearly, D(A) = D(Ã) contains the null function of L2(Ω), and for each u ∈ D(A) there exists
precisely one f ∈ L2(Ω) satisfying (2.2). Therefore the operator A defined by (2.4)–(2.6) is a
linear operator L2(Ω) → L2(Ω) and (2.2) can be written as∫

Ω

uA0ϕdxdt =
∫

Ω

Ãuϕdxdt =
∫

Ω

ρAuϕdxdt, ϕ ∈ D, u ∈ D(A), (2.7)

where

A0ϕ = ρϕtt − (ρϕx)x, ϕ ∈ D.

The operator Ã defined by (2.4)–(2.5) is said to be the linear operator associated with (2.1).
In the following, we consider the spectrum of the operator A on the functions u ∈ L2(Ω)

with the boundary condition

u(0, t) = ux(π, t) = 0, u(x, 0) = u(x, T ), ut(x, 0) = ut(x, T ).

Using the classical method of separation of variables, we set u(x, t) = τ(t)ϕ(x) and derive that
ϕ must satisfy the equation: {−(ρ(x)ϕ′)′ = ρ(x)λ2ϕ,

ϕ(0) = ϕ′(π) = 0. (2.8)
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We denote {λn, ϕn}n∈N the eigenvalues and the eigenfunctions of the Sturm-Liouville problem
(2.8). It was proved in [2] that if conditions (1.2)–(1.4) are satisfied, then there exist constants
b0, b1 > 0 such that

λn = n+
1
2

+ θn, (2.9)

where

0 <
b0

2n+ 1
≤ θn ≤ b1

2n+ 1
, ∀n ∈ N. (2.10)

Consider the complete orthonormal system of functions{ 1√
2π
ϕn(x)ψm(t)

}
n∈N,m∈Z

of space L2(Ω), where

ψm(t) =
√
ωeiμmt, μm = mω. (2.11)

Hence the spectrum of the linear operator A is∑
ω

= {σnm | σnm = λ2
n − (ωm)2, n ∈ N, m ∈ Z}.

The set
∑
ω

has the following properties which is essential to the proof of our main results.

Theorem 2.1 Assume that ω is irrational, and M(ω) < ∞ (the definition of M(ω) is in
Section 4). Set

mω = min
p,q∈Z+

pqM
(p
q
ω
)
. (2.12)

If ω > 2b1mω, 0 is not an accumulation point of
∑
ω

.

Remark 2.1 Notice that it obviously has

mω ≤M(ω)

from the definition of mω. Since M(ω) is invariant under a translation through integers, the
irrational number ω which satisfies the conditions ω > 2b1mω exists.

Proof Assume that 0 is an accumulation point of
∑
ω

. Then we can find a sequence {σk}
of eigenvalues such that σk → 0 if k → ∞. In other words,

σk = λ2
nk

− μ2
mk

=
(
nk +

1
2

+ θnk
−mkω

)(
nk +

1
2

+ θnk
+mkω

)
=

(
nk +

1
2

)2

+ 2
(
nk +

1
2

)
θnk

+ θ2nk
−m2

kω
2 → 0, (2.13)

if k → ∞. Because of lim
k→∞

θnk
= 0, it is equivalent to

lim
k→∞

(
nk +

1
2
−mkω

)(
nk +

1
2

+mkω
)

+ 2
(
nk +

1
2

)
θnk

= 0. (2.14)
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We can write (2.14) in the form

m2
k

(nk +
1
2

mk
− ω

)(nk +
1
2

mk
+ ω

)
+ 2

(
nk +

1
2

)
θnk

→ 0 (2.15)

as k → ∞. We may choose mk ≥ 0. Observing that 2
(
nk + 1

2

)
θnk

is bounded and nk +mkω is
bounded below, then necessarily we have

lim
k→∞

mk

(nk +
1
2

mk
− ω

)
= 0, (2.16)

and hence also

lim
k→∞

nk +
1
2

mk
= ω. (2.17)

Consequently, writing (2.15) in the form

m2
k

(nk +
1
2

mk
− ω

)2

+m2
k

(nk +
1
2

mk
− ω

)
2ω + 2

(
nk +

1
2

)
θnk

→ 0, (2.18)

if k → ∞, we deduce that

lim
k→∞

m2
k

(nk +
1
2

mk
− ω

)
ω +

(
nk +

1
2

)
θnk

= 0. (2.19)

Consequently, for each p, q ∈ Z+, we have

lim
k→∞

(mkq)2
1
pq

((
nk +

1
2

)
p

mkq
− pω

q

)
ω +

(
nk +

1
2

)
θnk

= 0. (2.20)

Let ε > 0, there exists K ∈ N such that

(mkq)2
∣∣∣
(
nk +

1
2

)
p

mkq
− p ω

q

∣∣∣ ≤ p q
(
nk +

1
2

)
ω

θnk
+ ε

≤
pq

(
nk +

1
2

)
ω

b1
2nk + 1

+ ε =
p qb1
2ω

+ ε,

whenever k ≥ K. Write above as∣∣∣ (2nk + 1)p
2mkq

− p ω

q

∣∣∣ ≤ 1

(2mkq)2
1

2p qb1
ω

+ 4ε

.

With this result and the definition of the function M(ω) in Section 4, we see that

1

2p q
b1
ω

+ 4ε
≤M

(p
q
ω
)

(2.21)
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for each ε > 0. Hence

ω

b1
≤ 2p qM

(p
q
ω
)
, ω ≤ 2b1p qM

(p
q
ω
)

for all p, q ∈ Z+, and hence

ω ≤ 2b1mω, (2.22)

a contradiction.

Now, we can prove the main result of the linear operator A.

Proposition 2.1 Let T = 2π
ω , and ω satisfy the condition of Theorem 2.1. Then R(A) is

closed in L2(Ω), A is self-adjoint and (A|R(A))−1 ∈ L(R(A), R(A)). For simplicity, we also
denote (A|R(A))−1 by A−1. Moreover, we have

‖A−1f‖L2 ≤ d−1‖f‖L2, ∀f ∈ R(A), (2.23)

where d = inf{|λ2
l − (ωk)2|;λl 
= |ωk|},

〈A−1f, f〉 ≥ −α−1‖f‖2
L2, ∀f ∈ R(A), (2.24)

〈Ay, y〉 ≥ −α−1‖Ay‖L2, ∀y ∈ D(A), (2.25)

where α = inf{(ωk)2 − λ2
l ;λl < |ωk|},

‖A−1f‖L∞ ≤ C‖f‖L2, ∀f ∈ R(A), (2.26)

‖A−1f‖H1 ≤ C‖f‖H1 , ∀f ∈ H1(Ω) ∩R(A), (2.27)

and

R(A) = N(A)⊥, (2.28)

L2(Ω) = N(A) ⊕R(A). (2.29)

Proof With respect to the orthonormal system {ψkϕl} defined by (2.8) and (2.11), the
equation Ay = f is equivalent to

(λ2
l − (ωk)2)ykl = fkl, (2.30)

where y =
∑
yklψkϕl, f =

∑
fklψkϕl. This implies that the equation Ay = f has a solution y

only if f ∈ N(A)⊥, i.e., fkl = 0 for all (k, l) such that λl = |ωk|. Indeed, this condition is also
sufficient. For the equation Ay = f , if we set

ykl =
fkl

λ2
l − (ωk)2

, λl 
= |ωk|, (2.31)

according to Theorem 2.1, 0 is not an accumulation point of
∑
ω

. So d = inf{|λ2
l − (ωk)2|;λl 
=

|ωk|} > 0, and
∑

λl �=|ωk|
|ykl|2 is convergent. Moreover,

∑
|ykl|2 ≤ 1

d2

∑
|fkl|2 =

1
d2

‖f‖2
L2. (2.32)
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By (2.30),

〈A−1f, f〉 =
∑

λl �=|ωk|

f2
kl

λ2
l − (ωk)2

≥
∑

λl<|ωk|

f2
kl

λ2
l − (ωk)2

, (2.33)

which yields (2.24). Let y = A−1f if f ∈ H1(Ω) ∩R(A). So its weak derivative is

yx =
∑

λl �=|ωk|
yklψkϕ

′
l,

where {ϕ′
l} is orthogonal in L2(0, π) and

‖ϕ′
l‖2

L2 =
∫ π

0

ρ(ϕ′
l)

2dx = −
∫ π

0

ϕlρ(ϕ′
l)xdx = λ2

l .

Therefore

‖yx‖2
L2 =

∑
λl �=|ωk|

λ2
l |ykl|2 =

∑
λl �=|ωk|

λ2
l |fkl|2

(λ2
l − (ωk)2)2

≤ 1
d2

∑
λl �=|ωk|

λ2
l |fkl|2 =

1
d2

‖fx‖2
L2.

Similarly, it also has

‖yt‖2
L2 ≤ 1

d2

∑
λl �=|ωk|

|ωk|2|fkl|2 =
1
d2

‖ft‖2
L2.

So (2.27) is proved.
In order to prove (2.26), notice that

|λ2
l − (ωk)2|2 ≥ d|λ2

l + (ωk)2|, λl 
= |ωk|.

So

∞∑
k,l

λl �=|ωk|

1
|λl − (ωk)|2(λl + (ωk))2

≤ C,

where C is a constant independent of l. Then one has

∞∑
k,l

λl �=|ωk|

|fkl|
|λ2

l − (ωk)2| ≤
( ∑

k,l

|fkl|2
) 1

2
( ∞∑

k,l
λl �=|ωk|

1
|λl − (ωk)|2(λl + (ωk))2

) 1
2

≤ C‖f‖L2.

So (2.26) is proved.
Finally, notice that D(A) is densed in L2(Ω) and A is symmetric and R(A) = N(A)⊥. So

A is self-adjoint.



626 C. Q. Tong and J. Zheng

3 Proof of the Main Result

Now we begin to consider the weak periodic solution of system (1.1). Recall that u ∈ L2(Ω)
is a weak solution of the problem (1.1) if and only if∫

Ω

u(ρϕtt − (ρϕx)x)dxdt+
∫

Ω

g(u)ϕdxdt =
∫

Ω

fϕdxdt, ∀ϕ ∈ D. (3.1)

In order to state our main results, we give an assumption on f and g first.
(H3) f ∈ L∞(Ω) and

g(−∞) + δ ≤ ρ(x)(P (ρ−1f))(x, t) ≤ g(+∞) − δ (3.2)

for some δ > 0. Here P : L2(Ω) → N(A) is the projection operator on N(A).
Now we state our main result of this paper.

Theorem 3.1 Assume T = 2π
ω , where ω is an irrational number which satisfies the con-

dition of Theorem 2.1 and the hypotheses (H1)–(H3) with 0 < γ < α, where α = inf{|ωm|2 −
λ2

n;λn < |ωm|}. Then (1.1) has at least one weak solution y ∈ L∞(Ω).

Proof Let

G(u) =
g(u)
ρ(x)

, a.e. (x, t) ∈ Ω, u ∈ L2(Ω).

In view of (H2), G : L2(Ω) → L2(Ω) is a continuous and monotone operator, i.e.,

〈G(u) −G(v), u − v〉 ≥ 0, ∀u, v ∈ L2(Ω),

‖G(u) −G(v)‖2
L2(Ω) ≤ γ〈G(u) −G(v), u − v〉, ∀u, v ∈ L2(Ω). (3.3)

So u is a weak solution to (1.1) in Ω if and only if

Au+G(u) = ρ−1f. (3.4)

We first consider the following approximation of (3.4):

Au + (G+ εI)(u) = ρ−1f, u ∈ L2(Ω). (3.5)

The proof will be divided into four steps.
Setp 1 To prove the existence of the solution of (3.5)
Letting Gε(u) = G(u) + εu, and according to the hypothesis (H2)

〈Gε(u) −Gε(v), u − v〉 ≥ ε‖u− v‖2
L2 , ∀u, v ∈ L2(Ω),

‖Gε(u) −Gε(v)‖2
L2(Ω) ≤ (γ + ε)〈Gε(u) −Gε(v), u − v〉, ∀u, v ∈ L2(Ω), (3.6)

so

〈G−1
ε (u) −G−1

ε (v), u − v〉 ≥ 1
γ + ε

‖u− v‖2
L2 , ∀u, v ∈ L2(Ω). (3.7)

Furthermore, it obviously has

R(Gε) = L2(Ω). (3.8)
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Using the idea of Brezis [10], (3.5) can be equivalently written as

A−1v + (G+ εI)−1(ρ−1f + v) ∈ N(A), v ∈ R(A). (3.9)

Indeed, if u is a solution of (3.5), we write u = u1 + u2, u1 ∈ N(A), u2 ∈ R(A), then

Au2 +Gεu = ρ−1f, Gεu = ρ−1f −Au2.

Let v = −Au2. Then

u = G−1
ε (ρ−1f + v) = u1 +A−1v,

which shows that (3.5) and (3.9) are equivalent.
On the other hand, (3.9) is equivalent to

A−1v + (G+ εI)−1(ρ−1f + v) + ∂J(v) � 0, v ∈ R(A), (3.10)

where J is the indicator function of R(A), and ∂J is the subdifferential of J . Taking into
account that ∂J(v) is the cone of the normals to R(A) at v, it follows that ∂J(v) = N(A) for
all v ∈ R(A).

Finally, (2.24) shows that A−1 + α−1I is monotone on R(A). So (3.10) can be written in
the equivalent form

(A−1 + α−1)v +Gα(v) + ∂J(v) � 0, v ∈ R(A) (3.11)

with Gαv = (G+ εI)−1(ρ−1f + v) − α−1v. In view of (3.11), Gα satisfies

〈Gαv1 −Gαv2, v1 − v2〉 ≥ ((γ + ε)−1 − α−1)|v1 − v2|2, v1, v2 ∈ R(A). (3.12)

We now prove that (3.11) has a solution vε for each ε < α− γ.
On the basis of (3.12), for ε < α− γ, Gα is coercive and maximal monotone in L2(Ω).
A key step now is to prove that the monotone operator v → Aα + ∂J(v) with Aα =

A−1 + α−1I, D(Aα) = R(A) and ∂J = N(A) is maximal monotone in L2(Ω), i.e., for every
h ∈ L2(Ω) the equation

v +Aαv + ∂J(v) � h (3.13)

has a solution v ∈ R(A). Indeed, this equation is equivalent to

v +Aαv = (I − P )h, v ∈ R(A), (3.14)

which has a unique solution v ∈ R(A). It follows that Aα + ∂J +Gα is maximal monotone in
L2(Ω). Moreover, as Gα is coercive, Aα + ∂J + Gα is onto. Therefore (3.11) has a solution
vε ∈ R(A) which is a solution of (3.10). This means that there exists y1

ε ∈ N(A) such that

A−1vε + (G+ εI)−1(ρ−1 + vε) = y1
ε .

Set
y2

ε = A−1vε.
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Then yε = y1
ε − y2

ε is a solution of (3.5).
Setp 2 Estimate the solution yε

In order to estimate the solution yε of

εyε +Ayε +G(yε) = ρ−1f, (3.15)

we note that by the assumption (H3), there exists ξ = ξ(x, t) with |ξ| ≤ C, such that

ρ(x)(P (ρ−1f))(x, t) + δw = g(ξ) a.e. (x, t) ∈ Ω

for all δ > 0 sufficiently small and |w| = 1. Then the monotonicity of g yields

(g(yε) − ρ(x)P (ρ−1f) − δw)(yε − ξ) ≥ 0 a.e. (x, t) ∈ Ω

with g(yε(x, t)) = ρ(x, t)G(yε)(x, t). So

δwyε ≤ (g(yε) − ρ(x)P (ρ−1f))yε − ξ(g(yε) − g(ξ)) a.e. (x, t) ∈ Ω,

which implies
(
for w = yε(x,t)

|yε(x,t)|
)

that

δ‖yε‖L1(Ω) ≤ 〈Gyε − P (ρ−1f), yε〉 + C‖G(yε)‖L2 + C1 a.e. (x, t) ∈ Ω (3.16)

for some positive constants C and C1.
On the other hand, in view of L2(Ω) = N(A) ⊕ R(A), there exists y1 ∈ D(A) such that

ρ−1f = P (ρ−1f)+Ay1 and ρP (ρ−1f) = g(z) = ρG(z) for some z = z(x, t) in L∞(Ω). Therefore,
(3.15) can be written as

εyε +A(yε − y1) +G(yε) −G(z) = 0 (3.17)

with G(z) = P (ρ−1f). Now we begin to prove that ‖G(yε)‖L2 is bound. By (3.3), (3.17) and
(2.24), we have

γ−1‖Gyε −Gz‖2
L2 ≤ 〈G(yε) −G(z), yε − z〉

= −ε〈yε, yε − z〉 − 〈A(yε − y1), yε − y1〉 + 〈A(yε − y1), z − y1〉
≤ −ε‖yε‖2

L2 + ε〈yε, z〉 + α−1‖A(yε − y1)‖2
L2 + 〈A(yε − y1), z − y1〉. (3.18)

Substituting A(yε − y1) = G(z) −G(yε) − εyε into (3.18) and with the following inequality

ab ≤ εa2 + (4ε)−1b2, ∀ε > 0, a, b ∈ R,

it can be obtained

γ−1‖Gyε −Gz‖2
L2 ≤ 〈G(yε) −G(z), yε − z〉

≤ −ε‖yε‖2
L2 + ε〈yε, z〉 + α−1‖G(z) −G(yε) − εyε‖2

L2 + 〈G(z) −G(yε) − εyε, z − y1〉

=
(ε2
α

− ε
)
‖yε‖2

L2 + ε
〈
yε, y1 +

2
α

(G(yε) −G(z))
〉

+ α−1‖G(yε) −G(z)‖2
L2 + 〈G(yε) −G(z), y1 − z〉

≤ α−1‖G(yε) −G(z)‖2
L2 + C‖G(yε) −G(z)‖2

L2 +
(ε2
α

− ε
)
‖yε‖2

L2
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+ ε
(
k‖yε‖2

L2 +
1
4k

∥∥∥y1 +
2
α

(G(yε) −G(z))
∥∥∥2

L2

)
= α−1‖G(yε) −G(z)‖2

L2 + C‖G(yε) −G(z)‖2
L2 +

(ε2
α

− ε+ εk
)
‖yε‖2

L2

+
ε

4k
‖y1 +

2
α

(G(yε) −G(z))‖2
L2 . (3.19)

Let k = 1 − ε
α in (3.19), it can be obtained

γ−1‖G(yε) −G(z)‖2
L2 ≤ α−1‖G(yε) −G(z)‖2

L2 + C‖G(yε) −G(z)‖2
L2

+
αε

4(α− ε)
‖y1 +

2
α

(G(yε) −G(z))‖2
L2

≤ 1
α− ε

‖G(yε) −G(z)‖2
L2 + C‖G(yε) −G(z)‖2

L2 + C. (3.20)

So for ε small enough, we have

‖G(yε)‖L2 ≤ C. (3.21)

By (3.21), it is easy to obtained the boundedness of |Ayε|. In fact, with (3.17) and (2.24), we
have

‖A(yε − y1)‖2
L2 = −〈A(yε − y1), εyε +G(yε) −G(z)〉

≤ −ε〈A(yε − y1), yε − y1〉 − ε〈A(yε − y1), y1〉 − 〈A(yε − y1), G(yε) −G(z)〉
≤ ε

α
‖A(yε − y1)‖2

L2 + εC‖A(yε − y1)‖L2 + C‖A(yε − y1)‖L2 . (3.22)

For ε small enough, ‖A(yε − y1)‖L2 is bounded, hence ‖Ayε‖L2 is bounded.
Note that

〈G(yε) − P (ρ−1f), yε〉 = 〈G(yε) −G(z), yε〉
= 〈−εyε −A(yε − y1), yε〉
≤ −〈A(yε − y1), yε − y1〉 − 〈A(yε − y1), y1〉
≤ α−1‖A(yε − y1)‖2

L2 + C‖A(yε − y1)‖L2 .

With (3.16), we get

‖yε‖L1 ≤ C. (3.23)

Sept 3 Estimate ‖yε‖L∞

It is now easy to prove that ‖yε‖L∞(Ω) is bounded. To this goal, write yε = y1
ε + y2

ε with
y1

ε ∈ N(A) and y2
ε ∈ R(A). Since Ayε = Ay2

ε is bounded in L2(Ω), y2
ε is bounded in L∞(Ω).

Consequently y1
ε = yε − y2

ε is bounded in L1(Ω). So its Fourier coefficients

y1
εmn =

∫
Ω

y1
ε(x, t)ρ(x)ϕn(x)ψm(t)dxdt

are bounded as |ϕn(x)| ≤ C, |ψm(t)| ≤ C for some C independent of m,n, x and t. Therefore
|y1

εmn| ≤ C‖y1
ε‖L1(Ω) ≤ C1. Taking into account that N(A) is finite dimensional, it follows that

y1
ε is bounded in L∞(Ω), and hence ‖yε‖L∞ ≤ C.
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Setp 4 Taking limit as ε→ 0
We first show that {Ayε} and {Gyε} are Cauchy sequence in L2(Ω). Set zελ = εyε − λyλ,

it is obviously that zελ → 0 in L2(Ω) as λ, ε→ 0. On the other hand, from (3.15) we have

〈A(yε − yλ), yε − yλ〉 + 〈G(yε) −G(yλ), yε − yλ〉 ≤ C‖zελ‖L2. (3.24)

Combination of (3.24), (3.3) and (2.24), it leads to

γ−1‖G(yε) −G(yλ)‖2
L2 ≤ C‖zελ‖L2 + α−1‖A(yε − yλ)‖2

L2 . (3.25)

Substituting

A(yε − yλ) = G(yε) −G(yλ) − zελ

into (3.25) and noticing that γα−1 < 1, we have that |G(yε) − G(yλ)| → 0 as λ, ε → 0, and
therefore A(yε−yλ) is also a Cauchy sequence in L2(Ω). The sequence {yε} is bounded in L2(Ω),
so it contains a weakly convergent subsequence (denoted it again by {yε} for simplicity). Taking
into account that G(yε) is strongly convergent in L2(Ω), it follows that G(yε) → G(y) (strongly)
in L2(Ω). Finally, it follows that y ∈ D(A), Ayε → Ay, and letting ε→ 0, (3.15) implies (3.4).

We now can prove that actually yε → y strongly in L2(Ω). Indeed, Ay2
ε = Ayε → Ay

strongly in L2(Ω). So y2
ε = A−1(Ayε) is also strongly convergent in L2(Ω) (say y2

ε → y2).
Then y2 ∈ R(A). As y1

ε = yε − y2
ε → y − y2 and N(A) is finite dimensional, it follows that

y1
ε → y − y2 = y1 and y1 ∈ N(A). The conclusion is that yε → y is strongly in L2(Ω). On the

other hand, yε is bounded in L∞(Ω), so y ∈ L∞(Ω).

4 Appendix

In this appendix, some basic properties about continued fractions will be listed and one can
consult [3–4] for the proof of these results.

Let α be real number, and put a0 = [α], where [·] denotes the integer part. Then

α = a0 +
1
α1

(4.1)

with some α1 > 1 if α > a0. Put a1 = [α1] and continue the above process. Then, we obtain the
continued decomposition of α. This process does not terminate if and only if α is an irrational
number. Then we obtain the continued fraction decomposition of

α = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

(4.2)

and generally denote it as

α = [a0, a1, a2, a3, · · · ], (4.3)

where a0, a1, a2, a3, · · · are integers and are called the complete quotients of α. Generally, we
denote

pn

qn
= [a0, a1, a2, a3, · · · , an] (4.4)
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with pn, qn relatively prime integers, which are the convergent of α such that pn

qn
→ α as n→ ∞.

It is well known that the pn, qn are recursively defined by the following relations:

p0 = a0, q0 = 1, p1 = a0a1 + 1, q1 = a1,

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2.

About these pn, qn, the following theorems were proved by Ben-Naoum and Mawhin [3].

Theorem 4.1 Each irrational number α corresponds to a unique (extended) number M(α)
∈ [

√
5,∞] having the following properties:

(1) For each positive number μ < M(α), there exist infinitely many pairs (pi, qi) with qi 
= 0,
such that ∣∣∣α− pi

qi

∣∣∣ ≤ 1
μq2i

.

(2) If M(α) is finite, then, for each μ > M(α), there exist only finitely many pairs (pi, qi)
satisfying the inequality ∣∣∣α− pi

qi

∣∣∣ ≤ 1
μq2i

.

The extended real number M(α) is called the Lagrange or the Markov constant of α. If we
set

M(α) =
{
M ∈ R

+
0 : There exist infinitely many (pi, qi) satisfy

∣∣∣α− pi

qi

∣∣∣ ≤ 1
Mq2i

}
,

then M(α) is an interval and Theorem 4.1 says that M(α) = supM(α).

Theorem 4.2 M(α) is finite if and only if the partial quotients sequence (ai)i∈N of α is
bounded.

Any α with bounded partial quotients sequence (ai)i∈N is said to have bounded partial
quotients. Borel and Bernstein have proved that the set of irrational numbers having bounded
partial quotients is a dense uncountable and null subset of the real line.

If α is an irrational number, we need some properties on the behavior of the function M(α)
under the action of the group of transformations T defined by

β = T (α) =
aα+ b

cα+ d
, (4.5)

where a, b, c, d ∈ Z are such that ad− bc 
= 0. Notice that then

α = T−1(β) =
−dβ + b

cβ − a

and

(−d)(−a) − b c = ad− b c.

About this transformation, it has the following results which is proved in [4].
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Theorem 4.3 If β = aα+b
cα+d for some a, b, c, d ∈ Z such that ad− bc 
= 0, then

M(α) ≤ |ad− bc|M(β),

M(β) ≤ |ad− bc|M(α).

The following results are immediately from Theorem 4.3.

Corollary 4.1 If β = aα+b
cα+d for some a, b, c, d ∈ Z such that ad−bc 
= 0, then β has bounded

partial quotients if and only if α has bounded partial quotients.

Corollary 4.2 If p and q ∈ Z, with p, q 
= 0, then

M
(p
q
α
)
≤ |p q|M(α).

The modular group is the group of transformations defined by (4.5) with |ad − bc| = 1.
Theorem 4.3 shows that M(α) is invariant under the action of the modular group. In particular,
when c = 0, d = 1, T (α) is a translation through integers. So the Lagrange constant is invariant
under translations through integers, and if {α} = α− [α], one has

M(α) = M({α}).
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[10] Brézis, H., Periodic solutions of nonlinear vibrating strings and duality principles, Bull. AMS, 8, 1983,
409–426.

[11] Ji, S. and Li, Y., Periodic solutions to one-dimensional wave equation with x-dependent coefficients, J.
Differential Equations, 229, 2006, 466–493.

[12] Ji, S. and Li, Y., Time periodic solutions to one-dimensional wave equation with periodic or anti-periodic
boundary conditions, Proc. Roy. Soc. Edinburgh Sect. Ser. A, 137, 2007, 349–371.

[13] Rudakov, I. A., Periodic solutions of a nonlinear wave equation with nonconstant coefficients, J. Differential
Equations, 229, 2006, 466–493.


