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Abstract Let (Ω∗(M), d) be the de Rham cochain complex for a smooth compact closed
manifolds M of dimension n. For an odd-degree closed form H , there is a twisted de
Rham cochain complex (Ω∗(M), d + H∧) and its associated twisted de Rham cohomology
H∗(M, H). The authors show that there exists a spectral sequence {Ep,q

r , dr} derived from
the filtration Fp(Ω∗(M)) =

⊕
i≥p

Ωi(M) of Ω∗(M), which converges to the twisted de Rham

cohomology H∗(M, H). It is also shown that the differentials in the spectral sequence
can be given in terms of cup products and specific elements of Massey products as well,
which generalizes a result of Atiyah and Segal. Some results about the indeterminacy of
differentials are also given in this paper.
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Differential
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1 Introduction

Let M be a smooth compact closed manifold of dimension n, and Ω∗(M) be the space of
smooth differential forms over R on M . We have the de Rham cochain complex (Ω∗(M), d),
where d : Ωp(M) → Ωp+1(M) is the exterior differentiation, and its cohomology H∗(M) (the
de Rham cohomology). The de Rham cohomology with coefficients in a flat vector bundle is
an extension of the de Rham cohomology.

The twisted de Rham cohomology was first studied by Rohm and Witten [13] for the an-
tisymmetric field in superstring theory. By analyzing the massless fermion states in the string
sector, Rohm and Witten obtained the twisted de Rham cochain complex (Ω∗(M), d + H3) for
a closed 3-form H3, and mentioned the possible generalization to a sum of odd closed forms.
A key feature in the twisted de Rham cohomology is that the theory is not integer-graded but
(like K-theory) is filtered with the grading mod 2. This has a close relation with the twisted
K-theory and the Atiyah-Hirzebruch spectral sequence (see [1]).
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Let H be
[ n−1

2 ]∑
i=1

H2i+1, where H2i+1 is a closed (2i + 1)-form. Then one can define a new

operator D = d + H on Ω∗(M), where H is understood as an operator acting by exterior
multiplication (for any differential form w, H(w) = H ∧ w). As in [1, 13], there is a filtration
on (Ω∗(M), D) as follows:

Kp = Fp(Ω∗(M)) =
⊕
i≥p

Ωi(M). (1.1)

This filtration gives rise to a spectral sequence

{Ep,q
r , dr} (1.2)

converging to the twisted de Rham cohomology H∗(M, H) with

Ep,q
2

∼=
{

Hp(M), q is even,
0, q is odd.

(1.3)

For convenience, we first fix some notations in this paper. The notation [r] denotes the
greatest integer part of r ∈ R. In the spectral sequence (1.2), for any [yp]k ∈ Ep,q

k , [yp]k+l

represents its class to which [yp]k survives in Ep,q
k+l. In particular, as in Proposition 3.2, for

xp ∈ Ep,q
1 , [xp]2 = [xp]3 ∈ Ep,q

2 = Ep,q
3 represents the de Rham cohomology class [xp]. dr[xp]

represents a class in Ep+r,q−r+1
2 , which survives to dr[xp]r ∈ Ep+r,q−r+1

r .
In [13, Appendix I], Rohm and Witten first gave a description of the differentials d3 and

d5 for the case D = d + H3. Atiyah and Segal [1] showed a method about how to construct
the differentials in terms of Massey products, and gave a generalization of Rohm and Witten’s
result: The iterated Massey products with H3 give (up to sign) all the higher differentials
of the spectral sequence for the twisted cohomology (see [1, Proposition 6.1]). Mathai and

Wu [9, p. 5] considered the general case of H =
[ n−1

2 ]∑
i=1

H2i+1 and claimed, without proof, that

d2 = d4 = · · · = 0, while d3, d5, · · · are given by the cup products with H3, H5, · · · and
the higher Massey products with them. Motivated by the method in [1], we give an explicit
description of the differentials in the spectral sequence (1.2) in terms of Massey products.

We now describe our main results. Let A denote a defining system for the n-fold Massey
product 〈x1, x2, · · · , xn〉, and c(A) denote its related cocycle (see Definition 5.1). Then

〈x1, x2, · · · , xn〉 = {c(A) | A is a defining system for 〈x1, x2, · · · , xn〉} (1.4)

by Definition 5.2. To obtain our desired theorems by specific elements of Massey products, we
restrict the allowable choices of defining systems for Massey products (see [14]). By Theorems
4.1–4.2 in this paper, there are defining systems for the two Massey products that we need
(see Lemma 5.1). The notation 〈H3, · · · , H3︸ ︷︷ ︸

t+1

, xp〉A in Theorem 1.1 below denotes a cohomology

class in H∗(M) represented by c(A), where A is a defining system obtained by Theorem 4.1 (see
Definition 5.3). Similarly, the notation 〈H2s+1, · · · , H2s+1︸ ︷︷ ︸

l

, xp〉A in Theorem 1.2 below denotes

a cohomology class in H∗(M) represented by c(A), where A is a defining system obtained by
Theorem 4.2 (see Definition 5.3).
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Theorem 1.1 For H =
[ n−1

2 ]∑
i=1

H2i+1 and [xp]2t+3 ∈ Ep,q
2t+3 (t ≥ 1), the differential of the

spectral sequence (1.2), i.e., d2t+3 : Ep,q
2t+3 → Ep+2t+3,q−2t−2

2t+3 , is given by

d2t+3[xp]2t+3 = (−1)t[〈H3, · · · , H3︸ ︷︷ ︸
t+1

, xp〉A]2t+3,

and [〈H3, · · · , H3︸ ︷︷ ︸
t+1

, xp〉A]2t+3 is independent of the choice of the defining system A obtained from

Theorem 4.1.

Specializing Theorem 1.1 to the case H = H2s+1 (s ≥ 2), we obtain

d2t+3[xp]2t+3 = (−1)t[〈0, · · · , 0︸ ︷︷ ︸
t+1

, xp〉A]2t+3. (1.5)

Obviously, much information has been concealed in the above expression. In particular, we
give a more explicit expression of differentials for this special case, which is compatible with
Theorem 1.1 (see Remark 5.6).

Theorem 1.2 For H = H2s+1 (s ≥ 1) only and [xp]2t+3 ∈ Ep,q
2t+3 (t ≥ 1), the differential

of the spectral sequence (1.2), i.e., d2t+3 : Ep,q
2t+3 → Ep+2t+3,q−2t−2

2t+3 , is given by

d2t+3[xp]2t+3 =

⎧⎪⎪⎨⎪⎪⎩
[H2s+1 ∧ xp]2t+3, t = s − 1,
(−1)l−1[〈H2s+1, · · · , H2s+1︸ ︷︷ ︸

l

, xp〉B ]2t+3, t = ls − 1 (l ≥ 2),

0, otherwise,

and [〈H2s+1, · · · , H2s+1︸ ︷︷ ︸
l

, xp〉B]2t+3 is independent of the choice of the defining system B obtained

from Theorem 4.2.

Atiyah and Segal [1] gave the differential expression in terms of Massey products when
H = H3 (see [1, Proposition 6.1]). Obviously, the result of Atiyah and Segal is a special case
of Theorem 1.2.

Some of the results above are known to experts in this field, but there is a lack of mathe-
matical proof in the literature.

This paper is organized as follows. In Section 2, we recall some backgrounds about the
twisted de Rham cohomology. In Section 3, we consider the structure of the spectral sequence
converging to the twisted de Rham cohomology, and give the differentials di (1 ≤ i ≤ 3) and
d2k (k ≥ 1). With the formulas of the differentials in Ep,q

2t+3 in Section 4, Theorems 1.1 and
1.2 are proved in Section 5. In Section 6, we discuss the indeterminacy of differentials of the
spectral sequence (1.2).

2 Twisted de Rham Cohomology

For completeness, in this section, we recall some knowledge about the twisted de Rham
cohomology. Let M be a smooth compact closed manifold of dimension n, and Ω∗(M) be the
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space of smooth differential forms on M . We have the de Rham cochain complex (Ω∗(M), d)
with the exterior differentiation d : Ωp(M) → Ωp+1(M), and its cohomology H∗(M) (the de
Rham cohomology).

Let H denote
[ n−1

2 ]∑
i=1

H2i+1, where H2i+1 is a closed (2i + 1)-form. Define a new operator

D = d + H on Ω∗(M), where H is understood as an operator acting by exterior multiplication
(for any differential form w, H(w) = H ∧ w, also denoted by H∧). It is easy to show that

D2 = (d + H)2 = d2 + dH + Hd + H2 = 0.

However, D is not homogeneous on the space of smooth differential forms Ω∗(M) =
⊕
i≥0

Ωi(M).

Define Ω∗(M) to be a new (mod 2) grading as follows:

Ω∗(M) = Ωo(M) ⊕ Ωe(M), (2.1)

where

Ωo(M) =
⊕
i≥0

i≡1 (mod 2)

Ωi(M), Ωe(M) =
⊕
i≥0

i≡0 (mod 2)

Ωi(M).
(2.2)

Then D is homogenous for this new (mod 2) grading,

Ωe(M) D−→ Ωo(M) D−→ Ωe(M).

Define the twisted de Rham cohomology groups of M as follows:

Ho(M, H) =
ker[D : Ωo(M) → Ωe(M)]
im[D : Ωe(M) → Ωo(M)]

, (2.3)

He(M, H) =
ker[D : Ωe(M) → Ωo(M)]
im[D : Ωo(M) → Ωe(M)]

. (2.4)

Remark 2.1 (i) The twisted de Rham cohomology groups H∗(M, H) (∗ = o, e) depend on
the closed form H but not just on its cohomology class. If H and H ′ are cohomologous, then
H∗(M, H) ∼= H∗(M, H ′) (see [1, Section 6]).

(ii) The twisted de Rham cohomology is also an important homotopy invariant (see [9,
Section 1.4]).

Let E be a flat vector bundle over M , and Ωi(M, E) be the space of smooth differential
i-forms on M with values in E. A flat connection on E gives a linear map

∇E : Ωi(M, E) → Ωi+1(M, E),

such that for any smooth function f on M and any ω ∈ Ωi(M, E),

∇E(fω) = df ∧ ω + f · ∇Eω, ∇E ◦ ∇E = 0.

Similarly, define Ω∗(M, E) to be a new (mod 2) grading as follows:

Ω∗(M, E) = Ωo(M, E) ⊕ Ωe(M, E), (2.5)
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where

Ωo(M, E) =
⊕
i≥0

i≡1 (mod 2)

Ωi(M, E), Ωe(M, E) =
⊕
i≥0

i≡0 (mod 2)

Ωi(M, E). (2.6)

Then DE = ∇E + H∧ is homogenous for the new (mod 2) grading,

Ωe(M, E) DE−→ Ωo(M, E) DE−→ Ωe(M, E).

Define the twisted de Rham cohomology groups of E as follows:

Ho(M, E, H) =
ker[DE : Ωo(M, E) → Ωe(M, E)]
im[DE : Ωe(M, E) → Ωo(M, E)]

, (2.7)

He(M, E, H) =
ker[DE : Ωe(M, E) → Ωo(M, E)]
im[DE : Ωo(M, E) → Ωe(M, E)]

. (2.8)

Results proved in this paper are also true for the twisted de Rham cohomology groups H∗(M, E,

H) (∗ = o, e) with twisted coefficients in E without any change.

3 A Spectral Sequence for Twisted de Rham Cohomology and Its Dif-
ferentials di (1 ≤ i ≤ 3), d2k (k ≥ 1)

Recall D = d + H and H =
[ n−1

2 ]∑
i=1

H2i+1, where H2i+1 is a closed (2i + 1)-form. Define the

usual filtration on the graded vector space Ω∗(M) to be

Kp = Fp(Ω∗(M)) =
⊕
i≥p

Ωi(M),

and K = K0 = Ω∗(M). The filtration is bounded and complete,

K ≡ K0 ⊃ K1 ⊃ K2 ⊃ · · · ⊃ Kn ⊃ Kn+1 = {0}. (3.1)

We have D(Kp) ⊂ Kp and D(Kp) ⊂ Kp+1. The differential D(= d + H) does not preserve the
grading of the de Rham complex. However, it does preserve the filtration {Kp}p≥0.

The filtration {Kp}p≥0 gives an exact couple (with bidegree) (see [12]). For each p, Kp is a
graded vector space with

Kp = (Kp ∩ Ωo(M)) ⊕ (Kp ∩ Ωe(M)) = Ko
p ⊕ Ke

p,

where Ko
p = Kp ∩ Ωo(M) and Ke

p = Kp ∩ Ωe(M). The cochain complex (Kp, D) is induced
by D : Ω∗(M) −→ Ω∗(M). In a way similar to (2.4), there are two well-defined cohomology
groups He

D(Kp) and Ho
D(Kp). Note that a cochain complex with grading

Kp/Kp+1 = (Ko
p/Ko

p+1) ⊕ (Ke
p/Ke

p+1)

derives cohomology groups Ho
D(Kp/Kp+1) and He

D(Kp/Kp+1). Since D(Kp) ⊂ Kp+1, we have
D = 0 in the cochain complex (Kp/Kp+1, D).
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Lemma 3.1 For the cochain complex (Kp/Kp+1, D), we have

Ho
D(Kp/Kp+1) ∼=

{
Ωp(M), p is odd,
0, p is even,

He
D(Kp/Kp+1) ∼=

{
Ωp(M), p is even,
0, p is odd.

Proof If p is odd, then

Kp ∩ Ωe(M) = Kp+1 ∩ Ωe(M) and (Kp ∩ Ωe(M)) /(Kp+1 ∩ Ωe(M)) = 0.

We have

(Kp ∩ Ωo(M)) /(Kp+1 ∩ Ωo(M)) = Ko
p/Ko

p+1
∼= Ωp(M),

Ho
D(Kp/Kp+1) ∼= Ωp(M), He

D(Kp/Kp+1) = 0.

Similarly, for even p, we have

He
D(Kp/Kp+1) ∼= Ωp(M), Ho

D(Kp/Kp+1) = 0.

By the filtration (3.1), we obtain a short exact sequence of cochain complexes

0 −→ Kp+1
i−→ Kp

j−→ Kp/Kp+1 −→ 0, (3.2)

which gives rise to a long exact sequence of cohomology groups

· · · −→ Hp+q
D (Kp+1)

i∗−→ Hp+q
D (Kp)

j∗−→ Hp+q
D (Kp/Kp+1)

δ−→ Hp+q+1
D (Kp+1)

i∗−→ Hp+q+1
D (Kp)

j∗−→ · · · . (3.3)

Note that in the exact sequence above,

Hi
D(Kp) =

{
He

D(Kp), i is even,
Ho

D(Kp), i is odd,

Hi
D(Kp/Kp+1) =

{
He

D(Kp/Kp+1), i is even,
Ho

D(Kp/Kp+1), i is odd.

Let

Ep,q
1 = Hp+q

D (Kp/Kp+1), Dp,q
1 = Hp+q

D (Kp), i1 = i∗, j1 = j∗, k1 = δ. (3.4)

We get an exact couple from the long exact sequence (3.3)

D∗,∗
1

i1 �� D∗,∗
1

j1����
��

��
��

E∗,∗
1

k1

����������
(3.5)
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with i1 of bidegree (−1, 1), j1 of bidegree (0, 0) and k1 of bidegree (1, 0).
We have d1 = j1k1 : E∗,∗

1 −→ E∗,∗
1 with bidegree (1, 0), and d2

1 = j1k1j1k1 = 0. By (3.5),
we have the derived couple

D∗,∗
2

i2 �� D∗,∗
2

j2����
��

��
��

E∗,∗
2

k2

����������
(3.6)

by the following:
(1) D∗,∗

2 = i1D
∗,∗
1 , E∗,∗

2 = Hd1(E
∗,∗
1 ).

(2) i2 = i1|D∗,∗
2

, also denoted by i1.
(3) If a2 = i1a1 ∈ D∗,∗

2 , define j2(a2) = [j1a1]d1 , where [ ]d1 denotes the cohomology class
in Hd1(E

∗,∗
1 ).

(4) For [b]d1 ∈ E∗,∗
2 = Hd1(E

∗,∗
1 ), define k2([b]d1) = k1b ∈ D∗,∗

2 .
The derived couple (3.6) is also an exact couple, and j2 and k2 are well defined (see [6, 12]).

Proposition 3.1 (i) There exists a spectral sequence (Ep,q
r , dr) derived from the filtration

{Kn}n≥0, where Ep,q
1 = Hp+q

D (Kp/Kp+1), d1 = j1k1, and Ep,q
2 = Hd1(E

p,q
1 ), d2 = j2k2. The

bidegree of dr is (r, 1 − r).
(ii) The spectral sequence {Ep,q

r , dr} converges to the twisted de Rham cohomology⊕
p+q=1

Ep,q
∞ ∼= Ho(M, H),

⊕
p+q=0

Ep,q
∞ ∼= He(M, H). (3.7)

Proof Since the filtration is bounded and complete, the proof follows from the standard
algebraic topology method (see [12]).

Remark 3.1 (1) Note that

Hi
D(Kp) =

{
He

D(Kp), i is even,
Ho

D(Kp), i is odd,

Hi
D(Kp/Kp+1) =

{
He

D(Kp/Kp+1), i is even,
Ho

D(Kp/Kp+1), i is odd.

Then we have that Hi
D(Kp) and Hi

D(Kp/Kp+1) are 2-periodic on i. Consequently, the spectral
sequence {Ep,q

r , dr} is 2-periodic on q.
(2) There is also a spectral sequence converging to the twisted cohomology H∗(M, E, H)

for a flat vector bundle E over M .

Proposition 3.2 For the spectral sequence in Proposition 3.1,
(i) The E∗,∗

1 -term is given by

Ep,q
1 = Hp+q

D (Kp/Kp+1) ∼=
{

Ωp(M), q is even,
0, q is odd,

and d1xp = dxp for any xp ∈ Ep,q
1 .
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(ii) The E∗,∗
2 -term is given by

Ep,q
2 = Hd1(E

p,q
1 ) ∼=

{
Hp(M), q is even,
0, q is odd,

and d2 = 0.
(iii) Ep,q

3 = Ep,q
2 and d3[xp] = [H3 ∧ xp] for [xp]3 ∈ Ep,q

3 .

Proof (i) By Lemma 3.1, we have the E∗,∗
1 -term as desired, and by definition, we obtain

d1 = j1k1 : Ep,q
1 → Ep+1,q

1 . We only need to consider the case when q is even, otherwise d1 = 0.

By (3.2) for odd p (the case, when p is even, is similar), we have a large commutative diagram

...
...

...

0 �� Ke
p+1

D

��

i �� Ke
p

D

��

j �� 0

D

��

�� 0

0 �� Ko
p+1

D

��

i �� Ko
p

D

��

j �� Ωp(M)

D

��

�� 0

0 �� Ke
p+1

D

��

i �� Ke
p

D

��

j �� 0

D

��

�� 0

...

D

��

...

D

��

...

D

��

(3.8)

where the rows are exact and the columns are cochain complexes.
Let xp ∈ Ωp(M) ∼= Hp+q

D (Kp/Kp+1) ∼= Ep,q
1 , and

x =
[ n−p

2 ]∑
i=0

xp+2i (3.9)

be an (inhomogeneous) form, where xp+2i is a (p + 2i)-form (0 ≤ i ≤ [n−p
2 ]). Then x ∈ Ko

p ,
jx = xp and Dx ∈ Ke

p. Also Dx ∈ Ke
p+1. By the definition of the homomorphism δ in (3.3),

we have

k1xp = [Dx]D, (3.10)

where [ ]D is the cohomology class in H∗
D(Kp+1). The class [Dx]D is well defined and inde-

pendent of the choices of xp+2i (1 ≤ i ≤ [n−p
2 ]) (see [3, p. 116]).

Choose xp+2i = 0 (1 ≤ i ≤ [n−p
2 ]). Then we have

k1xp = [Dx]D

= [dxp + H ∧ xp]D

=
[
dxp +

[ n−1
2 ]∑

l=1

H2l+1 ∧ xp

]
D
∈ Hp+q+1

D (Kp+1).
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Thus, one obtains

d1xp = (j1k1)xp = j1(k1(xp)) = j1

[
dxp +

[ n−1
2 ]∑

l=1

H2l+1 ∧ xp

]
D

= dxp.

(ii) By the definition of the spectral sequence and (i), one obtains that Ep,q
2

∼= Hp(M) when
q is even, and Ep,q

2 = 0 when q is odd. Note d2 : Ep,q
2 → Ep+2,q−1

2 . It follows that d2 = 0 by
degree reasons.

(iii) Note that [xp]3 ∈ Ep,q
3 implies dxp = 0. Choosing xp+2i = 0 for 1 ≤ i ≤ [n−p

2 ], we get

[Dx]D = [H ∧ xp]D =
[ [ n−1

2 ]∑
l=1

H2l+1 ∧ xp

]
D

∈ Hp+q+1
D (Kp+1),

where x is given in the proof of (i). Note

Hp+q+1
D (Kp+1) Hp+q+1

D (Kp+3)
i21�� j1 �� Hp+q+1

D (Kp+3/Kp+4)

[Dx]D
(i−1

1 )2 �� [Dx]D
j1 �� H3 ∧ xp.

(3.11)

It follows that

d3[xp]3 = j3k3[xp]3 = j3(k1xp) = j3[Dx]D = [j1((i−1
1 )2[Dx]D)]3 = [H3 ∧ xp]3, (3.12)

where the first, second and fourth identities follow from the definitions of d3, k3 and j3, re-
spectively, and the third and last identities follow from (3.10) and (3.11), respectively. By (ii),
d2 = 0, so Ep,q

3 = Ep,q
2 . Then we have

d3[xp] = [H3 ∧ xp].

Corollary 3.1 d2k = 0 for k ≥ 1. Therefore, for k ≥ 1,

Ep,q
2k+1 = Ep,q

2k . (3.13)

Proof Note d2k : Ep,q
2k −→ Ep+2k,q+1−2k

2k . By Proposition 3.2(ii), if q is odd, then Ep,q
2 = 0,

which implies that Ep,q
2k = 0. By degree reasons, we have d2k = 0 and Ep,q

2k+1 = Ep,q
2k for k ≥ 1.

The differential d3 for the case H = H3 is shown in [1, Section 6], and the Ep,q
2 -term is also

known.

4 Differentials d2t+3 (t ≥ 1) in Terms of Cup Products

In this section, we will show that the differentials d2t+3 (t ≥ 1) can be given in terms of cup
products.



642 W. P. Li, X. G. Liu and H. Wang

We first consider the general case of H =
[ n−1

2 ]∑
i=1

H2i+1. For [xp]2t+3 ∈ Ep,q
2t+3, we let x =

[ n−p
2 ]∑

j=0

xp+2j ∈ Fp(Ω∗(M)). Then we have

Dx =
(
d +

[ n−1
2 ]∑

i=1

H2i+1

)( [ n−p
2 ]∑

j=0

xp+2j

)

= dxp +
[ n−p

2 ]−1∑
j=0

(
dxp+2j+2 +

j+1∑
i=1

H2i+1 ∧ xp+2(j−i)+2

)
. (4.1)

Denote y = Dx =
[ n−p

2 ]∑
j=0

yp+2j+1, where

⎧⎪⎪⎨⎪⎪⎩
yp+1 = dxp,

yp+2j+3 = dxp+2j+2 +
j+1∑
i=1

H2i+1 ∧ xp+2(j−i)+2, 0 ≤ j ≤
[n − p

2

]
− 1.

(4.2)

Theorem 4.1 For [xp]2t+3 ∈ Ep,q
2t+3 (t ≥ 1), there exist xp+2i = x

(t)
p+2i (1 ≤ i ≤ t), such

that yp+2j+1 = 0 (0 ≤ j ≤ t) and

d2t+3[xp]2t+3 =
[ t∑

i=1

H2i+1 ∧ x
(t)
p+2(t−i)+2 + H2t+3 ∧ xp

]
2t+3

,

where the (p + 2i)-form x
(t)
p+2i depends on t.

Proof The theorem is shown by mathematical induction on t.
When t = 1, [xp]2t+3 = [xp]5. [xp]5 ∈ Ep,q

5 implies that dxp = 0 and d3[xp] = [H3 ∧ xp] = 0
by Proposition 3.2. Thus there exists a (p + 2)-form v1, such that H3 ∧ xp = d(−v1). We can
choose x

(1)
p+2 = v1 to get yp+3 = dx

(1)
p+2 + H3 ∧ xp = dv1 + H3 ∧ xp = 0 from (4.2). Noting

Hp+q+1
D (Kp+1) Hp+q+1

D (Kp+5)
i41�� j1 �� Hp+q+1

D (Kp+5/Kp+6)

[Dx]D
(i−1

1 )4 �� [Dx]D
j1 �� yp+5,

(4.3)

we obtain

d5[xp]5 = j5k5[xp]5 = j5(k1xp) = j5[Dx]D = [j1(i−1
1 )4[Dx]D]5 = [yp+5]5. (4.4)

The reasons for the identities in (4.4) are similar to those of (3.12). Thus, we have

d5[xp]5 = [dxp+4 + H3 ∧ x
(1)
p+2 + H5 ∧ xp]5 = [H3 ∧ x

(1)
p+2 + H5 ∧ xp]5,

where the first identity follows from (4.4) and the definition of yp+5 in (4.2), and the second
one follows from the fact that dxp+4 vanishes in E∗,∗

5 . Hence the result holds for t = 1.
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Suppose that the result holds for t ≤ m − 1. Now we show that the theorem also holds for
t = m.

From [xp]2m+3 ∈ Ep,q
2m+3, we have [xp]2m+1 ∈ Ep,q

2m+1 and d2m+1[xp]2m+1 = 0. By induction,
there exist x

(m−1)
p+2i (1 ≤ i ≤ m − 1), such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y
(m−1)
p+1 (xp) = dxp = 0,

y
(m−1)
p+3 (xp) = dx

(m−1)
p+2 + H3 ∧ xp = 0,

y
(m−1)
p+2i+1(xp) = dx

(m−1)
p+2i +

i−1∑
j=1

H2j+1 ∧ x
(m−1)
p+2(i−j) + H2i+1 ∧ xp

= 0 (2 ≤ i ≤ m − 1),

d2m+1[xp]2m+1 =
[ m−1∑

i=1

H2i+1 ∧ x
(m−1)
p+2(m−i) + H2m+1 ∧ xp

]
2m+1

= 0.

(4.5)

By d2m = 0 and the last equation in (4.5), there exists a (p + 2)-form wp+2, such that

[ m−1∑
i=1

H2i+1 ∧ x
(m−1)
p+2(m−i) + H2m+1 ∧ xp

]
2m−1

= d2m−1[wp+2]2m−1. (4.6)

By induction and [wp+2]2m−1 ∈ Ep+2,q−2
2m−1 , there exist w

(m−2)
p+2(i+1) (1 ≤ i ≤ m − 2), such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y
(m−2)
p+3 (wp+2) = dwp+2 = 0,

y
(m−2)
p+5 (wp+2) = dw

(m−2)
p+4 + H3 ∧ wp+2 = 0,

y
(m−2)
p+2i+3(wp+2) = dw

(m−2)
p+2(i+1) +

i−1∑
j=1

H2j+1 ∧ w
(m−2)
p+2(i−j+1) + H2i+1 ∧ wp+2

= 0 (2 ≤ i ≤ m − 2),

d2m−1[wp+2]2m−1 =
[ m−2∑

i=1

H2i+1 ∧ w
(m−2)
p+2(m−i) + H2m−1 ∧ wp+2

]
2m−1

.

(4.7)

By (4.6) and the last equation in (4.7), we obtain

[ m−2∑
i=1

H2i+1 ∧ (x(m−1)
p+2(m−i) − w

(m−2)
p+2(m−i)) + H2m−1 ∧ (x(m−1)

p+2 − wp+2) + H2m+1 ∧ xp

]
2m−1

= 0.

Note that d2m−2 = 0, and it follows that there exists a (p + 4)-form wp+4, such that

[ m−2∑
i=1

H2i+1 ∧ (x(m−1)
p+2(m−i) − w

(m−2)
p+2(m−i)) + H2m−1 ∧ (x(m−1)

p+2 − wp+2) + H2m+1 ∧ xp

]
2m−3

= d2m−3[wp+4]2m−3.

Keeping the same iteration process as mentioned above, we have

[ 2∑
i=1

(
H2i+1 ∧

(
x

(m−1)
p+2(m−i) −

m−3∑
j=1

w
(m−1−j)
p+2(m−i)

))
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+
m−1∑
i=3

(
H2i+1 ∧

(
x

(m−1)
p+2(m−i) −

m−1−j∑
j=1

w
(m−1−j)
p+2(m−i) − wp+2(m−i)

))
+ H2m+1 ∧ xp

]
7

= 0.

By d6 = 0, it follows that there exists a (p + 2(m − 2))-form wp+2(m−2), such that

[ 2∑
i=1

(
H2i+1 ∧

(
x

(m−1)
p+2(m−i) −

m−3∑
j=1

w
(m−1−j)
p+2(m−i)

))
+

m−1∑
i=3

(
H2i+1 ∧

(
x

(m−1)
p+2(m−i)

−
m−i−1∑

j=1

w
(m−1−j)
p+2(m−i) − wp+2(m−i)

))
+ H2m+1 ∧ xp

]
5

= d5[wp+2(m−2)]5. (4.8)

By induction and [wp+2(m−2)]5 ∈ E
p+2(m−2),q−2(m−2)
5 , there exists w

(1)
p+2(m−1), such that⎧⎪⎨⎪⎩

y
(1)
p+2m−3(wp+2(m−2)) = dwp+2(m−2) = 0,

y
(1)
p+2m−1(wp+2(m−2)) = dw

(1)
p+2(m−1) + H3 ∧ wp+2(m−2) = 0,

d5[wp+2(m−2)]5 = [H3 ∧ w
(1)
p+2(m−1) + H5 ∧ wp+2(m−2)]5.

(4.9)

By (4.8), the last equation in (4.9) and d4 = 0, it follows that there exists a (p+2(m−1))-form
wp+2(m−1), such that

[(
H3 ∧

(
x

(m−1)
p+2(m−1) −

m−2∑
j=1

w
(m−1−j)
p+2(m−1)

))
+

m−1∑
i=2

(
H2i+1 ∧

(
x

(m−1)
p+2(m−i)

−
m−i−1∑

j=1

w
(m−1−j)
p+2(m−i) − wp+2(m−i)

))
+ H2m+1 ∧ xp

]
= d3[wp+2(m−1)] = [H3 ∧ wp+2(m−1)]

and y
(0)
p+2m−1(wp+2(m−1)) = dwp+2(m−1) = 0. Thus there exists a (p + 2m)-form wp+2m, such

that

m−1∑
i=1

(
H2i+1 ∧

(
x

(m−1)
p+2(m−i) −

m−i−1∑
j=1

w
(m−1−j)
p+2(m−i) − wp+2(m−i)

))
+ H2m+1 ∧ xp = dwp+2m. (4.10)

Comparing (4.10) with (4.2), we choose at this time⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xp+2 = x
(m)
p+2 = x

(m−1)
p+2 − wp+2,

xp+2i = x
(m)
p+2i = x

(m−1)
p+2i −

i−1∑
j=1

w
(m−1−j)
p+2i − wp+2i (2 ≤ i ≤ m − 1),

xp+2m = x
(m)
p+2m = −wp+2m.

(4.11)

From (4.2), by a direct computation, we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

yp+1 = y
(m−1)
p+1 (xp) = 0,

yp+2i−1 = y
(m−1)
p+2i−1(xp) −

i−1∑
j=1

y
(m−1−j)
p+2i−1 (wp+2j) = 0 (2 ≤ i ≤ m),

yp+2m+1 = 0.

(4.12)
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Note

Hp+q+1
D (Kp+1) Hp+q+1

D (Kp+2m+3)
i
2(m+1)
1�� j1 �� Hp+q+1

D (Kp+2m+3/Kp+2m+4)

[Dx]D
(i−1

1 )2(m+1)

�� [Dx]D
j1 �� yp+2m+3.

(4.13)

By the similar reasons as in (3.12), the following identities hold:

d2m+3[xp]2m+3 = j2m+3k2m+3[xp]2m+3

= j2m+3(k1xp)

= j2m+3[Dx]D

= [j1(i−1
1 )2(m+1)[Dx]D]2m+3

= [yp+2m+3]2m+3. (4.14)

So we have

d2m+3[xp]2m+3 = [yp+2m+3]2m+3

=
[
dxp+2m+2 +

m∑
i=1

H2i+1 ∧ x
(m)
p+2(m−i+1) + H2m+3 ∧ xp

]
2m+3

(by (4.2))

=
[ m∑

i=1

H2i+1 ∧ x
(m)
p+2(m−i+1) + H2m+3 ∧ xp

]
2m+3

,

showing that the result also holds for t = m.
The proof of the theorem is completed.

Remark 4.1 Note that x
(t)
p+2i (1 ≤ i ≤ t) depend on t, and that x

(t1)
p+2i �= x

(t2)
p+2i depend on

the condition t1 �= t2 generally. x
(t)
p+2i (1 ≤ i ≤ t) are related to x

(t−1)
p+2j (1 ≤ j ≤ t − 1, j ≤ i).

Now we consider the special case in which H = H2s+1 (s ≥ 1) only. For this special case,
we will give a more explicit result which is stronger than Theorem 4.1.

For x =
[ n−p

2 ]∑
j=0

xp+2j , we have

Dx = (d + H2s+1)
( [ n−p

2 ]∑
j=0

xp+2j

)
=

s−1∑
j=0

dxp+2j +
[ n−p

2 ]∑
j=s

(dxp+2j + H2s+1 ∧ xp+2(j−s)).

Denote ⎧⎨⎩
yp+2j+1 = dxp+2j , 0 ≤ j ≤ s − 1,

yp+2j+3 = dxp+2j+2 + H2s+1 ∧ xp+2(j−s)+2, s − 1 ≤ j ≤
[n − p

2

]
− 1.

(4.15)

Then Dx =
[ n−p

2 ]∑
j=0

yp+2j+1.
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Theorem 4.2 For H = H2s+1 (s ≥ 1) only and [xp]2t+3 ∈ Ep,q
2t+3 (t ≥ 1), there exist

xp+2is = x
([ t

s ])
p+2is, xp+2(i−1)s+2j = 0 and xp+2[ t

s ]s+2k = 0 for 1 ≤ i ≤ [
t
s

]
, 1 ≤ j ≤ s − 1 and

1 ≤ k ≤ t − [
t
s

]
s, such that yp+2u+1 = 0 (0 ≤ u ≤ t) and

d2t+3[xp]2t+3 =

⎧⎪⎨⎪⎩
[H2s+1 ∧ xp]2s+1, t = s − 1,

[H2s+1 ∧ x
(l−1)
p+2(l−1)s]2t+3, t = ls − 1 (l ≥ 2),

0, otherwise,

where the (p + 2is)-form x
([ t

s ])
p+2is depend on

[
t
s

]
.

Proof We prove the theorem by mathematical induction on s.
When s = 1, the result follows from Theorem 4.1.

When s ≥ 2, we prove the result by mathematical induction on t. We first show that the
result holds for t = 1. Note that [xp]5 ∈ Ep,q

5 implies yp+1 = dxp = 0. Choose xp+2 = 0 and
make yp+3 = 0.

(i) When s = 2, by (4.4), we have

d5[xp]5 = [yp+5]5 = [dxp+4 + H5 ∧ xp]5 = [H5 ∧ xp]5.

(ii) When s ≥ 3, by (4.4), we have

d5[xp]5 = [yp+5]5 = [dxp+4]5 = 0.

Combining (i) and (ii), we have that the theorem holds for t = 1.
Suppose that the theorem holds for t ≤ m − 1. Now we show that the theorem also holds

for t = m.
Case 1 2 ≤ m ≤ s − 1.
By induction, the theorem holds for 1 ≤ t ≤ m − 1. Choosing xp+2i = 0 (1 ≤ i ≤ m), from

(4.15), we easily get that yp+2j+1 = 0 (0 ≤ j ≤ m). By (4.14)–(4.15), we have

d2m+3[xp]2m+3 = [yp+2m+3]2m+3

=

{
[dxp+2(m+1)]2m+3, 2 ≤ m ≤ s − 2,

[dxp+2(m+1) + H2s+1 ∧ xp]2m+3, m = s − 1

=

{
0, 2 ≤ m ≤ s − 2,

[H2s+1 ∧ xp]2s+1, m = s − 1.

Case 2 m = ls− 1 (l ≥ 2).

By induction, the theorem holds for t = m − 1 = ls − 2. Thus, there exist xp+2is =

x
([ m−1

s ])
p+2is = x

(l−1)
p+2is, xp+2(i−1)s+2j = 0 and xp+2(l−1)s+2k = 0 for 1 ≤ i ≤ l − 1, 1 ≤ j ≤ s − 1 and

1 ≤ k ≤ s − 2, such that yp+2u+1 = 0 (0 ≤ u ≤ ls− 2). Choosing xp+2(ls−1) = 0, by (4.15), we
get

yp+2(ls−1)+1 = dxp+2(ls−1) + H2s+1 ∧ xp+2(l−1)s−2 = 0 + H2s+1 ∧ 0 = 0.
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Then we have

d2(ls−1)+3[xp]2(ls−1)+3 = [yp+2ls+1]2(ls−1)+3 (by (4.14))

= [dxp+2ls + H2s+1 ∧ x
(l−1)
p+2(l−1)s]2(ls−1)+3 (by (4.15))

= [H2s+1 ∧ x
(l−1)
p+2(l−1)s]2(ls−1)+3.

Case 3 m = ls (l ≥ 1).

By induction, there exist xp+2is = x
([ ls−1

s ])
p+2is = x

(l−1)
p+2is, xp+2(i−1)s+2j = 0 and xp+2(l−1)s+2k =

0 for 1 ≤ i ≤ l−1, 1 ≤ j ≤ s−1 and 1 ≤ k ≤ s−1, such that yp+2u+1 = 0 (0 ≤ u ≤ ls−1). By
the same method as in Theorem 4.1, one has that there exist xp+2is = x

(l)
p+2is, xp+2(i−1)s+2j = 0

and xp+2(l−1)s+2k = 0 for 1 ≤ i ≤ l, 1 ≤ j ≤ s − 1 and 1 ≤ k ≤ s − 1, such that yp+2u+1 = 0
(0 ≤ u ≤ ls). By (4.14)–(4.15) and xp+2ls−2s+2 = 0, we have

d2ls+3[xp]2ls+3 = [yp+2ls+3]2ls+3

= [dxp+2ls+2 + H2s+1 ∧ xp+2ls−2s+2]2ls+3

= 0.

Case 4 ls < m < (l + 1)s − 1 (l ≥ 1).
By induction, there exist xp+2is = x

([ m−1
s ])

p+2is = x
(l)
p+2is, xp+2(i−1)s+2j = 0 and xp+2ls+2k = 0

for 1 ≤ i ≤ l, 1 ≤ j ≤ s − 1 and 1 ≤ k ≤ m − ls − 1, such that yp+2u+1 = 0 (0 ≤ u ≤ m − 1).
Choose xp+2m = 0 and make yp+2m+1 = 0. By (4.14)–(4.15) and xp+2m−2s+2 = 0, we have

d2m+3[xp]2m+3 = [yp+2m+3]2m+3

= [dxp+2m+2 + H2s+1 ∧ xp+2m−2s+2]2m+3

= 0.

Combining Cases 1–4, we have that the result holds for t = m, and the proof is completed.

Remark 4.2 (1) Theorems 4.1–4.2 show that the differentials in the spectral sequence (1.2)
can be computed in terms of cup products with H2i+1’s. The existence of x

(t)
p+2i’s and x

([ t
s ])

p+2is’s in
Theorems 4.1–4.2 plays an essential role in proving Theorems 1.1–1.2, respectively. Theorems
4.1–4.2 give a description of the differentials at the level of Ep,q

2t+3 for the spectral sequence (1.2),
which was ignored in the previous studies of the twisted de Rham cohomology in [1, 9].

(2) Note that Theorem 4.2 is not a corollary of Theorem 4.1, and it can not be obtained
from Theorem 4.1 directly.

5 Differentials d2t+3 (t ≥ 1) in Terms of Massey Products

The Massey product is a cohomology operation of higher order introduced in [8], which
generalizes the cup product. May [10] showed that the differentials in the Eilenberg-Moore
spectral sequence associated with the path-loop fibration of a path connected, simply connected
space are completely determined by higher order Massey products. Kraines and Schochet [5]
also described the differentials in Eilenberg-Moore spectral sequence by Massey products. In



648 W. P. Li, X. G. Liu and H. Wang

order to describe the differentials d2t+3 (t ≥ 1) in terms of Massey products, we first recall
briefly the definition of Massey products (see [4, 10–12]). Then the main theorems in this
paper will be shown.

Because of different conventions in the literature used to define Massey products, we present
the following definitions. If x ∈ Ωp(M), the symbol x will denote (−1)1+degxx = (−1)1+px. We
first define the Massey triple product.

Let x1, x2, x3 be closed differential forms on M of degrees r1, r2, r3 with [x1][x2] = 0 and
[x2][x3] = 0, where [ ] denotes the de Rham cohomology class. Thus, there are differential forms
v1 of degree r1 + r2 − 1 and v2 of degree r2 + r3 − 1, such that dv1 = x1 ∧x2 and dv2 = x2 ∧x3.
Define the (r1 + r2 + r3 − 1)-form

ω = v1 ∧ x3 + x1 ∧ v2. (5.1)

Then ω satisfies

d(ω) = (−1)r1+r2dv1 ∧ x3 + (−1)r1x1 ∧ dv2

= (−1)r1+r2x1 ∧ x2 ∧ x3 + (−1)r1+r2+1x1 ∧ x2 ∧ x3

= 0.

Hence a set of all the cohomology classes [ω] obtained by the above procedure is defined to be
the Massey triple product 〈x1, x2, x3〉 of x1, x2 and x3. Due to the ambiguity of vi, i = 1, 2,
the Massey triple product 〈x1, x2, x3〉 is a representative of the quotient group

Hr1+r2+r3−1(M)/([x1]Hr2+r3−1(M) + Hr1+r2−1(M)[x3]).

Definition 5.1 Let (Ω∗(M), d) be de Rham complex, and x1, x2, · · · , xn be closed differ-
ential forms on M with [xi] ∈ Hri(M). A collection of forms, A = (ai,j) for 1 ≤ i ≤ j ≤ k and
(i, j) �= (1, n), is said to be a defining system for the n-fold Massey product 〈x1, x2, · · · , xn〉 if

(1) ai,j ∈ Ωri+ri+1+···+rj−j+i(M),
(2) ai,i = xi for i = 1, 2, · · · , k,

(3) d(ai,j) =
j−1∑
r=i

ai,r ∧ ar+1,j .

The (r1 + · · · + rn − n + 2)-dimensional cocycle, c(A), defined by

c(A) =
n−1∑
r=1

a1,r ∧ ar+1,n ∈ Ωr1+···+rn−n+2(M) (5.2)

is called the related cocycle of the defining system A.

Remark 5.1 There is a unique matrix associated to each defining system A as follows:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1,1 a1,2 a1,3 · · · a1,n−2 a1,n−1

a2,2 a2,3 · · · a2,n−2 a2,n−1 a2,n

a3,3 · · · a3,n−2 a3,n−1 a3,n

. . .
...

...
...

an−2,n−2 an−2,n−1 an−2,n

an−1,n−1 an−1,n

an,n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

.
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Definition 5.2 The n-fold Massey product 〈x1, x2, · · · , xn〉 is said to be defined, if there
is a defining system for it. If it is defined, then 〈x1, x2, · · · , xn〉 consists of all classes w ∈
Hr1+r2+···+rn−n+2(M) for which there exists a defining system A, such that c(A) represents w.

Remark 5.2 There is an inherent ambiguity in the definition of the Massey product arising
from the choices of defining systems. In general, the n-fold Massey product may or may not be
a coset of a subgroup, but its indeterminacy is a subset of a matrix Massey product (see [10,
Section 2]).

Based on Theorems 4.1–4.2, we have the following lemma on defining systems for the two
Massey products we consider in this paper.

Lemma 5.1 (1) For [xp]2t+3 ∈ Ep,q
2t+3 (t ≥ 1), there are defining systems for 〈H3, · · · , H3︸ ︷︷ ︸

t+1

,

xp〉 obtained from Theorem 4.1.

(2) For [xp]2t+3 ∈ Ep,q
2t+3, when t = ls − 1 (l ≥ 2), there are defining systems for

〈H2s+1, · · · , H2s+1︸ ︷︷ ︸
l

, xp〉 obtained from Theorem 4.2.

Proof (1) From Theorem 4.1, there exist x
(t)
p+2j (1 ≤ j ≤ t), such that yp+2i+1 = 0

(0 ≤ i ≤ t) and d2t+3[xp]2t+3 =
[ t∑

i=1

H2i+1 ∧ x
(t)
p+2(t−i+1) + H2t+3 ∧ xp

]
2t+3

. By Theorem 4.1

and (4.2), there exists a defining system A = (ai,j) for 〈H3, · · · , H3︸ ︷︷ ︸
t+1

, xp〉 as follows:

⎧⎪⎨⎪⎩
at+2,t+2 = xp,

ai,i+k = (−1)kH2k+3, 1 ≤ i ≤ t + 1 − k, 0 ≤ k < t,

ai,t+2 = (−1)t+2−ix
(t)
p+2(t+2−i), 2 ≤ i ≤ t + 1,

(5.3)

to which the matrix associated is given by

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H3 −H5 H7 · · · (−1)t−1H2t+1 (−1)tH2t+3

H3 −H5 · · · (−1)t−2H2t−1 (−1)t−1H2t+1 (−1)tx
(t)
p+2t

H3 · · · (−1)t−3H2t−3 (−1)t−2H2t−1 (−1)t−1x
(t)
p+2t−2

. . .
...

...
...

H3 −H5 (−1)2x(t)
p+4

H3 −x
(t)
p+2

xp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(t+2)×(t+2)

. (5.4)

The desired result follows.

(2) By Theorem 4.2, there exist xp+2is = x
(l−1)
p+2is, xp+2(i−1)s+2j = 0 and xp+2(l−1)s+2k = 0

for 1 ≤ i ≤ l − 1, 1 ≤ j ≤ s − 1 and 1 ≤ k ≤ s − 1, such that yp+2i+1 = 0 (0 ≤ i ≤ t) and
d2t+3[xp]2t+3 = [H2s+1∧x

(l−1)
p+2(l−1)s]2t+3. By Theorem 4.2 and (4.15), there also exists a defining
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system A = (ai,j) for 〈H2s+1, · · · , H2s+1︸ ︷︷ ︸
l

, xp〉 as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ai,j = 0, 1 ≤ i < j ≤ l,

ai,i = H2s+1, 1 ≤ i ≤ l,

al+1,l+1 = xp,

ai,l+1 = (−1)l+1−ix
(l−1)
p+2(l+1−i)s, 2 ≤ i ≤ l,

(5.5)

to which the matrix associated is given by⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H2s+1 0 0 · · · 0 0
H2s+1 0 · · · 0 0 (−1)l−1x

(l−1)
p+2(l−1)s

H2s+1 · · · 0 0 (−1)l−2x
(l−1)
p+2(l−2)s

. . .
...

...
...

H2s+1 0 (−1)2x(l−1)
p+4s

H2s+1 (−1)x(l−1)
p+2s

xp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(l+1)×(l+1)

. (5.6)

The desired result follows.
To obtain our desired theorems by specific elements of Massey products, we restrict the

allowable choices of defining systems for the two Massey products in Lemma 5.1 (see [14]). By
Lemma 5.1, we give the following definitions.

Definition 5.3 (1) Given a class [xp]2t+3 ∈ Ep,q
2t+3 (t ≥ 1), a specific element of (t + 2)-

fold Massey product 〈H3, · · · , H3︸ ︷︷ ︸
t+1

, xp〉, denoted by 〈H3, · · · , H3︸ ︷︷ ︸
t+1

, xp〉A, is a class in Hp+2t+3(M)

represented by c(A), where A is a defining system obtained from Theorem 4.1. We define the
(t+2)-fold allowable Massey product 〈H3, · · · , H3︸ ︷︷ ︸

t+1

, xp〉� to be the set of all the cohomology classes

w ∈ Hp+2t+3(M) for which there exists a defining system A obtained from Theorem 4.1, such
that c(A) represents w.

(2) Similarly, given a class [xp]2t+3 ∈ Ep,q
2t+3 (t ≥ 1), when t = ls − 1 (l ≥ 2), we define

the specific element of (l + 1)-fold Massey product 〈H2s+1, · · · , H2s+1︸ ︷︷ ︸
l

, xp〉 and the (l + 1)-fold

allowable Massey product 〈H2s+1, · · · , H2s+1︸ ︷︷ ︸
l

, xp〉� by replacing Theorem 4.1 by Theorem 4.2 in

(1).

Remark 5.3 (1) From Definition 5.3, we can get the following:

〈H3, · · · , H3︸ ︷︷ ︸
t+1

, xp〉� ⊆ 〈H3, · · · , H3︸ ︷︷ ︸
t+1

, xp〉.

(2) The allowable Massey product 〈H3, · · · , H3︸ ︷︷ ︸
t+1

, xp〉� is less ambiguous than the general

Massey product 〈H3, · · · , H3︸ ︷︷ ︸
t+1

, xp〉. Take 〈H3, H3, xp〉� in Definition 5.3 for example. Suppose
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H =
[ n−1

2 ]∑
i=1

H2i+1. By Theorem 4.1 and (4.2), there exist x
(1)
p+2j , such that yp+2i+1 = 0 (0 ≤ i ≤ 1)

and d5[xp]5 = [H3∧x
(1)
p+2+H5∧xp]5. By Lemma 5.1, we get a defining system A for 〈H3, H3, xp〉

and its related cocycle c(A) = −H3 ∧ x
(1)
p+2 − H5 ∧ xp. Thus, we have

〈H3, H3, xp〉A = [−H3 ∧ x
(1)
p+2 − H5 ∧ xp]. (5.7)

Obviously, the indeterminacy of the allowable Massey product 〈H3, H3, xp〉� is [H3]Hp+2(M).
However, in the general case, the indeterminacy of the Massey product 〈H3, H3, xp〉 is
[H3]Hp+2(M) + H5(M)[xp].

Similarly, the allowable Massey product 〈H2s+1, · · · , H2s+1︸ ︷︷ ︸
l

, xp〉� is less ambiguous than the

general Massey product 〈H2s+1, · · · , H2s+1︸ ︷︷ ︸
l

, xp〉.

Now we begin to prove our main theorems.

Proof of Theorem 1.1 By Lemma 5.1(1), there exist defining systems for 〈H3, · · · , H3︸ ︷︷ ︸
t+1

, xp〉

given by Theorem 4.1. For any defining system A = (ai,j) given by Theorem 4.1, by (5.4), we
have

c(A) = (−1)t
( t∑

i=1

H2i+1 ∧ x
(t)
p+2(t−i+1) + H2t+3 ∧ xp

)
.

By Definition 5.3, we have

〈H3, · · · , H3︸ ︷︷ ︸
t+1

, xp〉A = [c(A)]. (5.8)

Then by Theorem 4.1, we have

d2t+3[xp]2t+3 =
[ t∑

i=1

H2i+1 ∧ x
(t)
p+2(t−i+1) + H2t+3 ∧ xp

]
2t+3

= (−1)t[〈H3, · · · , H3︸ ︷︷ ︸
t+1

, xp〉A]2t+3.

Thus, we have d2t+3[xp]2t+3 = (−1)t[〈H3, · · · , H3︸ ︷︷ ︸
t+1

, xp〉A]2t+3.

By the arbitrariness of A, we have that [〈H3, · · · , H3︸ ︷︷ ︸
t+1

, xp〉A]2t+3 is independent of the choice

of the defining system A obtained by Theorem 4.1.

Example 5.1 For formal manifolds, which are manifolds with vanishing Massey products,
it is easy to get

Ep,q
4

∼= Ep,q
∞

by Theorem 1.1. Note that simply connected compact Kähler manifolds are an important class
of formal manifolds (see [2]).
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Remark 5.4 (1) From the proof of Theorem 1.1, we have that the specific element

〈H3, · · · , H3︸ ︷︷ ︸
t+1

, xp〉A

represents a class in E∗,∗
2t+3. For two different defining systems A1 and A2 given by Theorem

4.1, we have
〈H3, · · · , H3︸ ︷︷ ︸

t+1

, xp〉A1 �= 〈H3, · · · , H3︸ ︷︷ ︸
t+1

, xp〉A2

generally. However, in the spectral sequence (1.2), we have

[〈H3, · · · , H3︸ ︷︷ ︸
t+1

, xp〉A1 ]2t+3 = [〈H3, · · · , H3︸ ︷︷ ︸
t+1

, xp〉A2 ]2t+3.

(2) Since the indeterminacy of 〈H3, · · · , H3︸ ︷︷ ︸
t+1

, xp〉� does not affect our results, we will not

analyze the indeterminacy of Massey products in this paper.
(3) By Theorem 1.1, d2t+3[xp]2t+3 = (−1)t[〈H3, · · · , H3︸ ︷︷ ︸

t+1

, xp〉A]2t+3 for t ≥ 1, which is ex-

pressed only by H3 and xp. From the proof of Theorem 1.1, we know that the above expression
conceals some information, because the other H2i+1’s affect the result implicitly.

We have the following corollary (see [1, Proposition 6.1]).

Corollary 5.1 For H = H3 only and [xp]2t+3 ∈ Ep,q
2t+3 (t ≥ 1), we have that in the spectral

sequence (1.2),
d2t+3[xp]2t+3 = (−1)t[〈H3, · · · , H3︸ ︷︷ ︸

t+1

, xp〉A]2t+3,

and [〈H3, · · · , H3︸ ︷︷ ︸
t+1

, xp〉A]2t+3 is independent of the choice of the defining system A obtained from

Theorem 4.1.

Remark 5.5 (1) Because the definition of Massey products is different from the definition
in [1], the expression of differentials in Corollary 5.1 differs from the one in [1, Proposition 6.1].

(2) The two specific elements of 〈H3, · · · , H3︸ ︷︷ ︸
t+1

, xp〉 in Theorem 1.1 and Corollary 5.1 are

completely different, and equal [c(A1)] and [c(A2)], respectively, where c(Ai) (i = 1, 2) are
related cocycles of the defining systems Ai (i = 1, 2) obtained from Theorem 4.1. The matrices
associated to the two defining systems are given by⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H3 −H5 H7 · · · (−1)t−1H2t+1 (−1)tH2t+3

H3 −H5 · · · (−1)t−2H2t−1 (−1)t−1H2t+1 (−1)tx
(t)
p+2t

H3 · · · (−1)t−3H2t−3 (−1)t−2H2t−1 (−1)t−1x
(t)
p+2t−2

. . .
...

...
...

H3 −H5 (−1)2x(t)
p+4

H3 (−1)x(t)
p+2

xp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(t+2)×(t+2)
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and ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H3 0 0 · · · 0 0
H3 0 · · · 0 0 (−1)tx

(t)
p+2t

H3 · · · 0 0 (−1)t−1x
(t)
p+2t−2

. . .
...

...
...

H3 0 (−1)2x(t)
p+4

H3 (−1)x(t)
p+2

xp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(t+2)×(t+2)

,

respectively. Here x
(t)
p+2i (1 ≤ i ≤ t) in the first matrix are different from those in the second

one.

For H = H2s+1 (s ≥ 2) only (i.e., in the case Hi = 0, i �= 2s + 1) and [xp]2t+3 ∈ Ep,q
2t+3

(t ≥ 1), we make use of Theorem 1.1 to get

d2t+3[xp]2t+3 = (−1)t[〈0, · · · , 0︸ ︷︷ ︸
t+1

, xp〉A]2t+3. (5.9)

Obviously, some information has been concealed in the expression above. Another description
of the differentials for this special case is shown in Theorem 1.2.

Proof of Theorem 1.2 When t = s − 1, the result follows from Theorem 4.2.
When t = ls − 1 (l ≥ 2), from Lemma 5.1(2), we know that there exist defining systems

for 〈H2s+1, · · · , H2s+1︸ ︷︷ ︸
l

, xp〉 obtained from Theorem 4.2. For any defining system B given by

Theorem 4.2, by (5.6), we get c(B) = (−1)l−1H2s+1 ∧ x
(l−1)
p+2(l−1)s. By Definition 5.3,

〈H2s+1, · · · , H2s+1︸ ︷︷ ︸
l

, xp〉B = [c(B)]. (5.10)

Then by Theorem 4.2, we have

d2t+3[xp]2t+3 = [H2s+1 ∧ x
(l−1)
p+2(l−1)s]2t+3

= (−1)l−1[〈H2s+1, · · · , H2s+1︸ ︷︷ ︸
l

, xp〉B ]2t+3.

Thus

d2t+3[xp]2t+3 = (−1)l−1[〈H2s+1, · · · , H2s+1︸ ︷︷ ︸
l

, xp〉B ]2t+3.

By the arbitrariness of B, we have that [〈H2s+1, · · · , H2s+1︸ ︷︷ ︸
l

, xp〉B]2t+3 is independent of the

choice of the defining system B obtained from Theorem 4.2.
For the rest cases of t, the results follow from Theorem 4.2.

The proof of this theorem is completed.
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Remark 5.6 We now use the special case H = H5 and d9[xp]9 to illustrate the compatibility
between Theorems 1.1 and 1.2 for s = 2 and t = 3.

Note that in this case, we have H3 = 0 and Hi = 0 for i > 5. By Theorem 1.1, we get the
corresponding matrix associated to the defining system A for 〈0, 0, 0, 0, xp〉A is⎛⎜⎜⎜⎜⎜⎝

0 −H5 0 0
0 −H5 0 −x

(3)
p+6

0 −H5 x
(3)
p+4

0 −x
(3)
p+2

xp

⎞⎟⎟⎟⎟⎟⎠
5×5

(5.11)

and

d̃9[xp]9 = −[〈0, 0, 0, 0, xp〉A]9. (5.12)

By Theorem 1.2, in this case, the matrix associated to the defining system B for 〈H5, H5,

xp〉B is ⎛⎝H5 0
H5 −x

(1)
p+4

xp

⎞⎠
3×3

(5.13)

and

d9[xp]9 = −[〈H5, H5, xp〉B ]9. (5.14)

We claim that 〈H5, H5, xp〉� = 〈0, 0, 0, 0, xp〉�. For any defining system B above, there is a
defining system B̃ ⎛⎜⎜⎜⎜⎝

0 −H5 0 0
0 −H5 0 0

0 −H5 x
(1)
p+4

0 0
xp

⎞⎟⎟⎟⎟⎠
5×5

for 〈0, 0, 0, 0, xp〉, which can be obtained from Theorem 4.1, such that

〈0, 0, 0, 0, xp〉B̃ = 〈H5, H5, xp〉B .

Hence 〈H5, H5, xp〉� ⊆ 〈0, 0, 0, 0, [xp]〉�. On the other hand, for any defining system A above,
there also exists a defining system A⎛⎝H5 0

H5 −x
(3)
p+4

xp

⎞⎠
3×3

for 〈H5, H5, xp〉, which can be obtained from Theorem 4.2, such that

〈H5, H5, xp〉A = 〈0, 0, 0, 0, xp〉A.
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Therefore 〈0, 0, 0, 0, xp〉� ⊆ 〈H5, H5, xp〉�, and thus the claim follows.
By Theorem 1.1 and Remark 5.3, we have

d̃5[yp]5 = −[〈0, 0, yp〉A]5 = −[−H5 ∧ yp]5 = [H5 ∧ yp]5.

By Theorem 1.2, d5[yp]5 = [H5 ∧ yp]5. By Proposition 3.4, d̃1 = d1 = d and d̃3 = d3 = 0. It
follows that d̃5 = d5.

By Theorems 1.1 and 4.1, we have

d̃7[zp]7 = [〈0, 0, 0, zp〉A]7 = [−H5 ∧ z
(2)
p+2]7,

where z
(2)
p+2 is an arbitrary (p + 2)-form satisfying d(z(2)

p+2) = 0∧ zp. By Remark 5.4(2), we take
z
(2)
p+2 = 0. Then we have d̃7[zp]7 = 0, i.e., d̃7 = 0. At the same time, we also have d7 = 0 from

Theorem 1.2. Thus d̃7 = d7 = 0.
By Ẽp,q

1 = E
p,q

1 , d̃i = di for 1 ≤ i ≤ 7 and 〈H5, H5, xp〉� = 〈0, 0, 0, 0, xp〉�, we can conclude
that d̃9 = d9 from (5.12) and (5.14).

6 The Indeterminacy of Differentials in the Spectral Sequence (1.2)

Let [xp]r ∈ Ep,q
r . The indeterminacy of [xp] is a normal subgroup G of H∗(M), which means

that if there is another element [yp] ∈ Hp(M), which also represents the class [xp]r ∈ Ep,q
r , then

[yp] − [xp] ∈ G.

In this section, we will show that for H =
[ n−1

2 ]∑
i=1

H2i+1 and [xp]2t+3, the indeterminacy of

the differential d2t+3[xp] ∈ Ep+2t+3,q−2t−2
2 is a normal subgroup of H∗(M).

From the long exact sequence (3.3), we have a commutative diagram

...

i∗

��

...

i∗

��
· · · δ�� Hp+q

D (Kp+1)

i∗

��

j∗ �� Hp+q
D (Kp+1/Kp+2)

δ �� Hp+q+1
D (Kp+2)

i∗

��

j∗ �� · · ·

· · · δ �� Hp+q
D (Kp)

i∗

��

j∗ �� Hp+q
D (Kp/Kp+1)

δ �� Hp+q+1
D (Kp+1)

i∗

��

j∗ �� · · ·

· · · δ�� Hp+q
D (Kp−1)

i∗

��

j∗ �� Hp+q
D (Kp−1/Kp)

δ �� Hp+q+1
D (Kp)

i∗

��

j∗ �� · · ·

...
...

(6.1)

in which any sequence consisting of a vertical map i∗ followed by two horizontal maps j∗ and
δ and then a vertical map i∗ followed again by j∗, δ, and iteration of this is exact. From this
diagram, there is a spectral sequence, in which Ep,q

1 = Hp+q
D (Kp/Kp+1) and for r ≥ 2, Ep,q

r is
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defined to be the quotient Zp,q
r /Bp,q

r , where

Zp,q
r = δ−1(i∗r−1Hp+q+1

D (Kp+r)),
Bp,q

r = j∗(ker[i∗r−1 : Hp+q
D (Kp) → Hp+q

D (Kp−r+1)]).
(6.2)

We also have a sequence of inclusions

Bp,q
2 ⊂ · · · ⊂ Bp,q

r ⊂ Bp,q
r+1 ⊂ · · · ⊂ Zp,q

r+1 ⊂ Zp,q
r ⊂ · · · ⊂ Zp,q

2 . (6.3)

By [6–7], the E∗,∗
r -term defined above is the same as the one in the spectral sequence (1.2). A

similar argument about a homology spectral sequence is given in [15, p. 472–473].

Theorem 6.1 Let H =
[ n−1

2 ]∑
i=1

H2i+1 and [xp]r ∈ Ep,q
r (r ≥ 3). Then the indeterminacy of

[xp] ∈ Ep,q
2

∼= Hp(M) is the following normal subgroup of Hp(M) :

im[δ : Hp+q−1
D (Kp−r+1/Kp) → Hp+q

D (Kp/Kp+1)]
im[d : Ωp−1(M) → Ωp(M)]

,

where d is just the exterior differentiation, and δ is the connecting homomorphism of the long
exact sequence induced by the short exact sequence of cochain complexes

0 −→ Kp/Kp+1
i−→ Kp−r+1/Kp+1

j−→ Kp−r+1/Kp −→ 0.

Proof From the above tower (6.3), we get a tower of subgroups of Ep,q
2

Bp,q
3 /Bp,q

2 ⊂ · · · ⊂ Bp,q
r /Bp,q

2 ⊂ · · · ⊂ Zp,q
r /Bp,q

2

⊂ Zp,q
3 /Bp,q

2 ⊂ Zp,q
2 /Bp,q

2 = Ep,q
2 .

Note

Ep,q
r

∼= (Zp,q
r /Bp,q

2 )/(Bp,q
r /Bp,q

2 ).

It follows that the indeterminacy of [xp] is the normal subgroup Bp,q
r /Bp,q

2 of Hp(M).

From the short exact sequences of cochain complexes

0 −→ Kp
i′−→ Kp−r+1

j′−→ Kp−r+1/Kp −→ 0,

0 −→ Kp/Kp+1
i−→ Kp−r+1/Kp+1

j−→ Kp−r+1/Kp −→ 0,

we can get the following long exact sequence of cohomology groups:

· · · δ′−→ Hs
D(Kp)

i′∗−→ Hs
D(Kp−r+1)

j′∗−→ Hs
D(Kp−r+1/Kp)

δ′−→ · · · ,

· · · δ−→ Hs
D(Kp/Kp+1)

i
∗

−→ Hs
D(Kp−r+1/Kp+1)

j
∗

−→ Hs
D(Kp−r+1/Kp)

δ−→ · · · ,

(6.4)

where δ′ and δ are the connecting homomorphisms.
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Combining (3.3) and (6.4), we have the following commutative diagram of long exact se-
quences:

Hp+q−1
D (Kp−r+1/Kp)

δ ����������������
δ′

�� Hp+q
D (Kp)

j∗

��

i′∗ �� Hp+q
D (Kp−r+1)

Hp+q
D (Kp/Kp+1)

δ

�� i
∗

����������������

Hp+q+1
D (Kp+1) Hp+q

D (Kp−r+1/Kp+1)

(6.5)

Using the above commutative diagram and the fact that i∗
r−1

= i′∗, we have

Bp,q
r = j∗(ker[i∗

r−1
: Hp+q

D (Kp) → Hp+q
D (Kp−r+1)])

= j∗(ker[ i′∗ : Hp+q
D (Kp) −→ Hp+q

D (Kp−r+1)])
∼= j∗(im[δ′ : Hp+q−1

D (Kp−r+1/Kp) → Hp+q
D (Kp)])

∼= im[δ : Hp+q−1
D (Kp−r+1/Kp) → Hp+q

D (Kp/Kp+1)].

When r = 2, from (6.5), we have

δ = δ′j∗ : Hp+q−1
D (Kp−1/Kp) → Hp+q

D (Kp/Kp+1).

From (3.4), it follows that δ = d1. By Proposition 3.2, δ = d. Thus, we have

Bp,q
2

∼= im[δ : Hp+q−1
D (Kp−1/Kp) → Hp+q

D (Kp/Kp+1)]
∼= im[d : Ωp−1(M) → Ωp(M)].

The desired result follows.

By Theorem 6.1, we obtain the following corollary.

Corollary 6.1 In Theorem 1.1, for d2t+3[xp]2t+3 ∈ Ep+2t+3,q−2t−2
2t+3 , we have that the inde-

terminacy of d2t+3[xp] is a normal subgroup of Hp+2t+3(M)

im[δ : Hp+q
D (Kp+1/Kp+2t+3) → Hp+q+1

D (Kp+2t+3/Kp+2t+4)]
im[d : Ωp+2t+2(M) → Ωp+2t+3(M)]

,

where d is just the exterior differentiation, and δ is the connecting homomorphism of the long
exact sequence induced by the short exact sequence of cochain complexes

0 −→ Kp+2t+3/Kp+2t+4
i−→ Kp+1/Kp+2t+4

j−→ Kp+1/Kp+2t+3 −→ 0.

Proof In Theorem 6.1, r, p and q are replaced by 2t+3, p+2t+3 and q−2t−2, respectively.
Then the desired result follows.
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