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Global Existence and Pointwise Estimates of Solutions to
Generalized Benjamin-Bona-Mahony Equations in
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Abstract This paper is concerned with the global existence and pointwise estimates of
solutions to the generalized Benjamin-Bona-Mahony equations in all space dimensions.
By using the energy method, Fourier analysis and pseudo-differential operators, the global
existence and pointwise convergence rates of the solution are obtained. The decay rate is
the same as that of the heat equation and one can see that the solution propagates along
the characteristic line.
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1 Introduction

In this paper, we are interested in the global existence and time-asymptotic behavior of
solutions to generalized Benjamin-Bona-Mahony (GBBM) equations in all space dimensions.
The GBBM equation is defined as

Ou — ANdyu —nAu+ (8- 7)u+div f(u) =0, (1.1)

where u € RY, 7 is a positive constant, and 3 is a real constant vector. f(u)=(f1(u), -, fn(u))7T,
and f;(u) = u?, where n is the space dimension. In this paper, n > 1. The initial data is given
by

U= = up(x). (1.2)
The well-known Benjamin-Bona-Mahony (BBM) equation is of the form
Up — Uppt + U +ulU, =0, —00<x <00, t>0. (1.3)

It was proposed and studied in [1] by Benjamin, Bona and Mahony for the special physical
situations in the long wave limit for nonlinear dispersive media. Since then, the existence
and uniqueness of solutions to various generalized BBM equaitons have been proved by many
authors (see [1-4]). The decays of solutions were also studied in [5-9]. However, most of these
studies are in low space dimensions and the decay estimates are in L, norm. The aim of this
paper is to give the global existence and pointwise decay rates of solutions to Cauchy problems
of the GBBM equation in all space dimensions.
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First we introduce some notations. As usual, Fourier transformation to the variable x € R™
is

flet)y= [ flz,t)e” " da,

R?L
and the inverse Fourier transformation to the variable ¢ is

fla,t)y= @)™ [ fle,t)e=ede.

R

We also use F' *l(fA) to denote the inverse Fourier transformation of function f Def =
091092 --- 09 f for multi-index o = (a1, @z, , ). W*P(R™), s € Z;, p € [1,00], denotes

Xy o
the usual Sobelev space with the norm

1w = > ID*fllz,-

x| =0

In particular, W*?2 = H*. We denote the generic constant by C. All the convolutions are about
the spatial variable x in this paper.

We arrange this paper as follows. In Section 2, we derive the solution formula of the Cauchy
problem. We need many inequalities in our analysis. We list the inequalities and their proofs
in Section 3. We construct a solution sequence due to the solution formula of (1.1)—(1.2), and
then prove that the sequence is a Cauchy sequence in a Banach space. Thus it converges to
the solution of our problem. We leave these treatment processes to Section 4 and Section 5.
Finally, we give our conclusion in Section 6.

2 Solution Formula

The aim of this section is to derive the solution formula from the problem (1.1)—(1.2). The
linearized form of (1.1) is

Oru — Noyu — nAu+ (8- 7)u = 0. (2.1)
Taking Fourier transform to variable z of (2.1), we have
O + O, €)*u + mléPu+i(B8- &u = 0. (2.2)
The corresponding initial data is given by
=0 = o (£)- (2.3)
The solution to the problem (2.2)-(2.3) is given by

—— sl 25 ~

ﬂ(f,t) =e P 1+E2 g, (2.4)
~ _mlgl? ,_ iBegt o .
Set G(&,t) = e 11?7 1+1€” . By the Duhamel principle, we get the solution formula for (1.1)—
(1.2):

u(z,t) = Gxug — /0 Gt —s)* (I — A)~'divf(u)(s)ds.

Set ﬁ(f,t) = 1+C|A;£|2' Then

u(z,t) = G*xup — /0 H(t —s)*div f(u)(s)ds. (2.5)
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Due to (2.5), we define a solution sequence {u("™ (x,t)} satisfying

t
u™ (2,t) = G xug — / H(t — s) « div f(u™ V) (s)ds,
. (2.6)
u™ (2,0) = up(x), u®(x,t) =0,
where m > 1. Next we will prove that {u(™)(z,t)} is a Cauchy sequence in a Banach space,

and then it converges to the solution to (1.1)—(1.2). To do so, we shall need many inequalities

We collect them in the following section.

3 Preliminaries
In order to estimate u("™)(z,t), we must analyse the decay property for G, H first. Set

_ 1 <R, _ L k= R+1,
x1(§) = {07 €| > R+1, x2(§) = {07 €| < R,
where X1, X2 are smooth cut-off functions and x1(§) + x2(§) = 1.

Set G; = XzG H;, = XzH fori=1,2.
For G1, Hy, we have the decay property as follows.

Lemma 3.1 There exists a constant C o depending on N, o such that

al _n 1
IDSGH| < Cna(l+1)" 5 % 5 (3.1)
(L By
n 1
L+ 57N

where N is a positive integer. Throughout this paper N > 3.

Conveniently, we next denote By (x,t) = W

Proof When [{] is bounded, using the Taylor expansion, we have

2
MEE e+ ole)*,

14 E
- T = 060~ 1€F + O(l")
Then
@1@,75) = e*W\E\2t716~§t+O(I§I3)t (33)
(3.4)

Hy(&,1) = e "m0 (1 — 12 4 O(g]?)).

We know that e~ ¢t is a parallel operator. It can not contribute to the decay factor, but it has
a physical meaning. So next we will not neglect the effect of the operator. From (3.3)—(3.4),

we get
O(le]1e=18D+ 1 |e]lele’3 ) (1 + |¢]2) 1+ 1Ble—nlélt

DL (G (&, )| <
C(j¢|lel=18D+ 4 |§|\alt%)(1 + |§|2t)1+|5‘e—"|5|2t,

|DZe (Hy (€, t)e )] <
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where (Ja| — |6])+ = {|004| - 18, i IgI i IgI’ From [10, Lemma 3.1], we have
DS E~H(G (€, )™ €)] < C(L+ 1)~ 7 By (a.1),
DS FY(Hy (€, 1) €| < C(1+ )~ By (2, 1),
Then
IDEGh (x, )] = [DIF(Ga (&, 1) ste™ 1€t
= [DIF~H(GL (€, 1)) (@ — Bt 1)
|

< Ona(l+)" 5 =8 By(z — Bt t).

Similarly we get (3.2).
(G2, Hy have the construction as follows.

Lemma 3.2 There exists a positive constant b and distributions gi(z), gb(x) for i = 1,2
such that

|Ga(2,8)] < Ce™ (g1 () + ga(2) + Cod(x)),
|V Ha(z, t)] < Ce™"(gi(x) + g3(2) + C1d(x)),
where 6(x) is Dirac function and
1D2gi(2)] < Ol +|z*)7F, (3-5)
lgzllz: < C, suppgy(x) € {z,|z] < 2¢}
with € being sufficiently small.

Proof When |{] is large enough, using Taylor expansions, we have

2
171€||5|2 =-1(1- 17 o)
Tier =0 (- g o))

Thus we have

(;’2(57 ) —nt "7(‘5‘2+0(‘§‘4))t lﬁ'gﬁ(l ‘5‘2+O(‘§‘4)) (37)

Then there exists a positive constant b such that

|@2(£at)| < Ca |£ﬁ2(£7t)| < Cv
D] < CleI ™+ Ple®, |D(EH:)| < Clel e
with |y| > 1. From [10, Lemma 3.2], we get our results.

When dealing with the convolution with the nonlinearized part, we need the following four
lemmas.

Lemma 3.3 For positive constants b, N, when t is large enough, we have

n+|al
2

e A+ |x)™N <C(1+t)""2 Bn(z—fpt,t).
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Proof Noticing that |z — 8t|? < 2|x|? + 2(|8[t)?, if N,t are large enough, we have

C C

( ) (L + BBy = [+ [ + 57D

Thus we get our lemma.
Lemma 3.4 When ni,ne > % and nz = min{ny,na}, we have

|JU—?J|2>*"1 2y — |z|* \ns
1+ 290 1 n2 <C(1 —) :
/(+ 1+1¢ (L [yl dy < C(1+ 75

[l =gy )y < O )

Proof We just prove (3.8). The proof of (3.9) is similar.
When |z —y| > %, (3.8) is easily got.
When |z —y| < %, we have |y| > % Thus

1+ |y»)™2 <O + |2]?) .

If |2| < v/, we have B,,,(z,t) > C. (3.8) is easily got.
If |2| > v/t, we have
1+ |z|? - 11+t+4|z]?
I+t —2 14t

Thus

2, —
r—Y m —n
(1+ BI04y gy

1+|x—y|2)—”3 2\—
1 n2
_ ( (1 -+ [2)

2 < O
- 1+4+1¢
<O+ |z —y)™ (1 + )" (1 + |2?) ™
<C

]2 \ e
1+t) '

(1 Jz =y~ (1+

Then (3.8) is proved.
Set

n+1
2

0=(1+t—s)" 2 (1+s) ",
P=By(xz—y—p(t—s),t— 5)B2[%]+2(y — 0s, s).
Lemma 3.5

t
/ [/ 9de} ds < C(1+1) 2 Biaja(z — Bt 1).
0 n

Proof We divide the proof into two different cases.
Case 1 |z — 3t| < /.
In this case, B[%]H(m — pt,t) > C. From [11, Lemma 5.2], we have

¢ 5 . ¢ .
/ Hdedsg/ 9(1+s)5d5+/ 0(1+t—s)2ds
0 Jrr 0 L

<Ol +t) 2

n

<C(l+ t)iiB[%]_H({E — B, t).

Case 2 |z — j3t| > /1.

v = O+ |2*) =N |g 2N

663

(3.8)

(3.9)
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We also divide the proof into two different cases.
Case 2.1 s < 3.

z— Gt
If |y — Bs| > %, then
1
B2[g]+2(y — Bs,5) < W
1+s

1 1+s\%
<
=C |z—pBt|? [g}+1(1+t)
( 1+t )

1+s\%
SCB[%]+1($—ﬁt,t)(1+t> :

From [11, Lemma 5.2], we have

// 9deds§0/2[9(1+t—s)%B[%]+1(x—ﬂt,t)](1+S)§ds
0 n 0
< CA+1) 2Bz — Bt,t).

If |y — Bs| < %, then |z —y — B(t — s)| > w We have

/2/ OPdyds < C/2 {/ 9(1+s)%B[%]+1(x—ﬂt,t)dy ds
o Jrr 0o LJge
< C(L+1t) 2Bz — Bt,t).

Case 2.2 s> .
The proof of this part is similar to that of Case 2.1, so we omit it here.

Lemma 3.6 There exists a constant depending only on n such that
By (z — Bs,s) < CBp(x — Bt t)(1+t —s)".
Proof Since |z — Bt]? < 2(|x — Bs|? + |8)*(t — s)?), we have

Ifc—ﬁs|2+|ﬁ|2<t—s)2>*"
1+1¢

_ 2 —n
> 0(1 + % + 18t - s))

> C'min{(t —s)™",1}B,(x — fBs, s).

Bu(w = Bt,1) = C(1+

Thus we get our lemma.
We can now enter into the estimate of the sequence {u(™(z,1)}.

4 Estimate of the Sequence

We first give an estimate for u(*)(z,t), and then use mathematical induction to get the
estimate for {u(™)(z,t)}.

Lemma 4.1 Ifug € H', | > 1+ (2], and |uo|lm = E, |uo| < CE(1 + |z*)~1~15) with E
small enough, then we have

DM (2,0)] < CE(L+ )2 Biajs1(x — Bt,t) for o] <1—1- [g}
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Proof From (2.6), we have
DeuV (z,t) = DEG (x,t) * ug + DEGo(x, ) * ug. (4.1)

From (3.1) and Lemma 3.4, we have

N _ n+lal 1 2 —[2]-1
ID2Ga(at) +uol < CE [[(140) ey 0 D
1+t
_ntlal |z — Bt[2\ —[5]-1
<CE(1+t (1+ =) . 4.2
<opa+o (14 20 (4.2
From (3.7), when |y| > %, we have
|27 D2 Go(z,t) % ug| < C | D7 €% Gatip|d¢
R™N{&;|¢|>R}
<cet [ €l11 o g
R™N{& €[> R}
1 1
<ce ¥ ([ lePlapag)” ( [ 1e-2ag)”
<CEe . (4.3)
If o] <1 —1—[2], we have
[1DZuollzo < Clluolla (4.4)
From Lemma 3.2 and (4.4), we have
|Dg Ga(, 1) * uo| = |Ga * Diuo| < ||Gal|L, | D7 uol| Lo
< Ce ™| D3uol L., < Ce™||uo|| g (4.5)
Taking |y| = 2N in (4.3), from (4.3) and (4.5), we have
|D2Gyo(z, ) % ug| < CEe (1 + |z*)~ .
From Lemma 3.3, we get
|DEGa(,t)  ug| < CE(1+1)" "2 Biays1(x — Bt 1), (4.6)
From (4.2) and (4.6), we get our result.
Lemma 4.2 Form > 1, if
ntlal

|Dgu(m71)|§CE(1+t)i 2 B[%]-{-l(x_ﬂtvt)a

then

n+|a|

+
2 B[%]Jrl(l‘ — 6t,t>.

IDyu™| < CE(1+1t)~

2

Proof Because f;(u) = u?, we have

DS D)< Y0 Dyl Dgr )

loa [+]ez|=|al

< CE(L+1t)" % Byajyalx — Bt,1). (4.7)
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We still denote
O=1+t—s) "2 (1+s) ",
P=Bn(z—y—p(t—s),t—s)Bana(y — Bs,s).
From Lemmas 3.1, 3.5 and (4.7), we have

‘ /Ot DOH\(t — s) * divf(u(m_l))(s)ds‘

< ‘/ VD§H1(1§—S)*f(u(m—l))(S)dS‘ +‘/1t VHy(t = )« DY f(ul™D)(s)ds
;

< CE’ /0 (1 +1t— s)"%‘Pds‘ + CE‘ /1t oP(1 + s)*‘%‘ds\

n+\a\

<CE(1+t)” B[%]Jrl(l‘ — (i, t). (4.8)

From Lemma 3.2, we have

/OtDaHg(t—s)*dlvf( DY (s )ds‘

IN

/01t VHy(t — s) Dg‘f(u(m_l))(s)ds‘

IN

t
/ efb(tfs) (g% 4 g% + Clé(x)) * D;‘f(u(mfl))(s)ds
0

IN

[ g« D2 I 6) + g8 # DEF )
0

+ 1D f(u™ ) (x, 5))ds
:=R1 +Ro + Rs. (49)

From Lemma 3.6 and (4.7), we have

t
o = /0 M (1 4 5)7F By a(a — B, 5)ds

n-HM

<CE(1+1t)"" 2 Bz — Bt.t). (4.10)

From (3.5), (4.7), Lemmas 3.4 and 3.6, we have
! —b(t—s) —n—lal 2\—N
R; < CEe (I+9) 2 (14 [y[*) " Bypzjya(z —y — Bs, s)dyds
0 Rﬂ,

¢
< CE/ e_b(t_s)(l + S)_n_%B[%]+1($ — (s, s)ds
0

< CE(1+1t)"2" Bl (z — i,0). (4.11)

From (3.6), (4.7) and Lemma 3.6, we have

t
Ry < / / CEe_b(t_s)(l + s)_"“?ﬂgg(y)BQ[gHg(x —y — s, s)dyds
{ysly—=[<2¢}

t
Y el
SCE/O e ") (1 4 8) 7" 7 Biayya(x — Bs, )||g3] £, ds

<CE(1+t)"2" Bz — Bt,1). (4.12)

2




Global Existence and Pointwise Estimates 667

Together with (4.9)-(4.12), we get

\ / t DOHy(t — s) % div f(u™ D) (s)ds
0

ntlal

< CE(1+ 1)~ Bl (x — Bt 1), (4.13)

From (2.6), we know that
t
D™ = Doy — / DYH(t — s) « div f(u™ D) (s)ds. (4.14)
0

From (4.8), (4.13)—(4.14) and Lemma 4.1, we get our result.
From Lemmas 4.1 and 4.2, using mathematical induction, we know that for all m > 1 and
lof <l—-1-1%,

ntlal

ID2ul™ (2,1)| < CE(1+1)"" 2 Bz (z — Bt,t). (4.15)

5 Convergence of the Sequence

In this section, we will prove that {u("™)(x,t)} is a Cauchy sequence in a Banach space, and
thus it converges to the solution of (1.1)—(1.2).
From [11, Lemma 5.2], it follows that

1
(/R Bops)ya(a — Bt,t)dx) <o+t (5.1)
From (4.15) and (5.1), we know u(™) (z,t) € Leo(0,00; H=27[2]). Thus {u(™} is in a Banach
space. We next prove that it is a Cauchy sequence.
Lemma 5.1 {u("™} is a Cauchy sequence in Lo (0, 00; H'=2713]),
Proof From (2.6), {u("™} satisfies the following equation
™ — Adul™ — nAu™ + (8- 7)u™ = —div f(um). (5.2)
Thus
9, D2u™ — A9, Dul™ — nADu™ + (8- 7)D2u(™ = —D&div f(ul™"V).
Set v("™) (z,t) = u™ (z,t) — u(™=V(z,t). Then
8, D2v™ — NG, D™ — nADX ™ 4 (3. 7) D™
= —D%div f(u™™ V) + Ddiv f(ul™2). (5.3)

Multiplying D;’v(m) in the two sides of (5 3) and integrating with respect to z in R", we get

HD" 3, . IID“ v o™ E, + 0l v D™,

2 at 20t
- / Ddiv (f(u™m™V) — fum=2))D2v(™dy.

When m > 2, from (2.6) we have v(™ (z,0) = 0. Thus for m > 3, we have
¢
D30I, + D2 7 o™, + [l 7 Do s

< Z / / Dozl (m— 1)Doz2( (m— 1)+u(m 2))Da (m)|dxds
|| +laz|=|al+1 8

= R.
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From (4.15), we know
t 1
R < CE/ / (L4 s)"" 2Bz (z — Bs, s)| D™ |dzds
0 n

t
< CE / (1+5)™""3(1+ 5)F | D20(™ | 1, ds
0

< CE[o™], (5.4)

wo (0,001 28]
If CE < 1, from (5.4) we know that {u{™} is a Cauchy sequence in Banach space Lo (0, 00;
H'=2-[3]), and thus it converges to the solution to (1.1)—(1.2).

6 Conclusion

Theorem 6.1 If |juol|mn = E, 1 > 1+ [2],|luollr.. < CE(L+ |z[?)~" (2] with E small
enough, then (1.1)-(1.2) have a global solution in time u(x,t), for |a| <1 —[5] -2, satisfying

ntlal

|Dgu(z, )] <CE(1+1t)" "2 Bnjy(o — B1).

Remark 6.1 The solution has the same decay rate as the heat kernel, so our estimation
must be optimal.

Remark 6.2 The solution decays much faster away along the characteristic line x = t,
so we can say that the solution propagates along the characteristic line. It coincides with the
physical phenomenon.
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