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Lower Bounds on the (Laplacian) Spectral Radius of
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Abstract The weighted graphs, where the edge weights are positive numbers, are con-
sidered. The authors obtain some lower bounds on the spectral radius and the Laplacian
spectral radius of weighted graphs, and characterize the graphs for which the bounds are
attained. Moreover, some known lower bounds on the spectral radius and the Laplacian
spectral radius of unweighted graphs can be deduced from the bounds.
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1 Introduction

In this paper, we consider a simple connected weighted graph in which the edge weights
are positive numbers. Let G = (V, E) be a simple connected weighted graph with a vertex set

V ={vi,v2, -+ ,vn}. We denote by w;; the weight of the edge v;v; and assume w;; = wj;. For
short, we write ¢ ~ j if the vertices v; and v; are adjacent. For v; € V', let w; = w(v;) = ) wi;.
i

If G is a weighted graph with w; = w; for any v;,v; € V, then G is called a regular weighted
graph. If G = (X UY, E) is a weighted bipartite graph with w; = w; for any v;,v; € X and
wy, = wy for any vg,v; € Y, then G is called a semiregular weighted bipartite graph.

For v; € V, let v = v(v;) = Y wijw;. If G is a weighted graph with J]— = Z}—Jj for any

ji
v;,v; € V, then G is called a pseudo-regular weighted graph. If G = (X UY, E) is a weighted
bipartite graph with 2+ = I for any v;,v; € X and & = o for any vg, vy € Y, then

G is called a pseudo—semiregujlar weighted bipartite graph. Obviously, any regular weighted
graph is a pseudo-regular weighted graph and any semiregular weighted bipartite graph is a
pseudo-semiregular weighted bipartite graph.

The adjacency matrix A(G) of a weighted graph G is defined as A(G) = (@ij)nxn, Where

Qi = Wiy, leN]a
v 0, otherwise.

Let W(G) = diag(wy,wa, -+ ,wy). Then the Laplacian matrix L(G) of a weighted graph G
is L(G) = W(G) — A(G). The signless Laplacian matrix Q(G) of a weighted graph G is
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Q(G) = W(Q@)+A(G). Clearly, A(G), L(G) and Q(G) are real symmetric matrices. Hence their
eigenvalues are real numbers. We denote by \; (M) the largest eigenvalue of a real symmetric
matrix M. For a weighted graph G, we denote by \1 (G), u1(G) and ¢1 (G) the largest eigenvalues
of A(G), L(G) and Q(G), respectively, and call them the spectral radius, the Laplacian spectral
radius and the signless Laplacian spectral radius of G, respectively. When G is connected, A(G)
and Q(QG) are irreducible matices and so by Perron-Frobenius Theorem, A\ (G) and ¢;(G) are
simple with the positive eigenvectors.

If w;; = 1 for all edges v;v;, then G is an unweighted graph. For an unweighted graph,
w; = w(v;) = d; is the degree of v; € V(G), and +; is the 2-degree of v;. There exists a vast
literature that studies the bounds of the spectral radius, the Laplacian spectral radius and the
signless spectral radius. We refer the reader to [1, 7-8, 10-13, 15-16, 21] for more information.

For weighted graphs, Yang, Hu and Hong [19] gave the upper and lower bounds of the
spectral radius of the weighted trees; Das and Bapat [6] and Sorgun and Biiyiikkése [17] gave
some upper bounds of the spectral radius; Rojo [14] and Das [4-5] gave some upper bounds of
the Laplacian spectral radius.

The remainder of this paper is organized as follows. In Section 2, we give some useful
lemmas. In Section 3, we present some lower bounds of the spectral radius of weighted graphs.
In Section 4, we give some lower bounds of the signless Laplacian spectral radius of weighted
graphs, from which we can get some lower bounds of the Laplacian spectral radius of weighted
graphs. From these bounds, we can deduce some known lower bounds on the spectral radius
and the Laplacian spectral radius of unweighted graphs.

2 Some Lemmas
The following are some useful lemmas.

Lemma 2.1 (see [10]) Let A be a nonnegative symmetric matriz and x be a unit vector of
R™. If M(A) = 2T Az, then Ax = \(A)x.

Lemma 2.2 (see [18]) Let G be a simple connected weighted bipartite graph. Then pui(G) =
a1 (G).

Proof Let G = (X UY,FE) be a connected weighted bipartite graph with n vertices and
suppose that X = {vi,v2, - ,vx}, ¥ = {vpq1, 0642, -+ ,0n}. Let U = (u;;) be the n x n
diagonal matrix with u; = 1if 1 <i < kand uy = —1if k+1<1i¢ < n. Itis easy to see
that U'L(G)U = Q(G), which implies that L(G) and Q(G) have the same spectrum. Hence
1m(G) = a1(G).

Lemma 2.3 (see [2]) Let M = (my;) be an n x n irreducible nonnegative matriz with the
spectral radius p(M), and R;(M) be the i-th row sum of M for 1 <i <n. Then

min{R;(M) : 1 <i<n} <p(M) <max{R;(M):1<i<n}.

Moreover, either equality holds if and only if the row sums of M are all equal.
By Lemma 2.3, the following result holds immediately.

Lemma 2.4 Let G be a simple connected weighted graph. Then
min{2w; : 1 <i <n} < ¢ (G) < max{2w; : 1 <i<n}.

Moreover, either equality holds if and only if G is a reqular weighted graph.
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Lemma 2.5 (see [5]) Let G be a simple connected weighted graph. Then
w1 (G) <max{w; +w; i~ j, 1<i,j<n},
where the equality holds if and only if G is a regular weighted bipartite graph or a semireqular

weighted bipartite graph.

3 Lower Bounds of the Spectral Radius
The following theorem is one of our main results.

Theorem 3.1 Let G be a simple connected weighted graph of order n. Then

where the equality holds if and only if G is a pseudo-reqular weighted graph or a pseudo-
semiregular weighted bipartite graph.

Proof Let A(G) be the adjacency matrix of G and X = (z1,22, - ,2,)" be the unit
positive eigenvector of A(G) corresponding to A1 (A(G)). For short, we write A(G) as A in the
following proof. Take

1
n
> wi®
i=1

(wlan) e 7wn)T'

Noting that C' is a unit positive vector, we have

AM(G) = M (A) = VA (A2) = VXTA2X > VCOTA2C.

Since

1

AC = | —
> w;?

n n T
(E :wljwja"'aE :wnjwj) =
=1 j=1

we have

AM(G) = M (A) = VA (A2) > VOTA2C =

If the equality holds, then
M (A%) = ot A%C.
By Lemma 2.1, A2C' = \;(A%)C. If the multiplicity of \;(A?) is one, then X = C, which
implies v; = A\ (G)w; (1 < i < n). Hence G is a pseudo-regular weighted graph. Otherwise,
the multiplicity of A\;(A42) = (A1(A))? is two, which implies that —\;(A) is also an eigenvalue
of G. Then G is a connected bipartite graph by a theorem of Frobenius (see, for example, [3,
Theorem 0.3]). Without loss of generality, we assume

A= (g o)
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where B = (b; ;) is an n1 X ny matrix with n; +nge =n. Let

_ (X
=%, )

and
where X1 = (21,22, ,Zn,) s Xo = (Tn,41,Tny42, > 2n) ", C1 = (w1, ws, - ,wy,,)T and
Cy = (Wny 41, Wny 42, ,wn)T. Since

» ( BBT 0

A 7( 0 BTB )’
we have
BBTCy = A1 (A%)Cy, BTBC, = A\ (A?)Cs

and

BBTX, =\ (A%)X,, B'BX, =\ (A%)X,

Noting that BBT and BT B have the same nonzero eigenvalues, \1(A?) is the spectral radius of
BBT and its multiplicity is one. So X; = p;C; (p; is a constant), which implies o= Zj—i (1<
i < j <mny). Similarly, X2 = p2Cy (p2 is a constant), which implies J)— = 1}—’1 (n1+1< i‘<j <
n). Hence G is a pseudo-semiregular weighted graph.

Conversely, if G is a pseudo-regular weighted graph, then 7’ =p (1 <i<n)is a constant,
which implies AC' = pC. By Perron-Frobenius Theorem (see [ ]) for any positive eigenvector

of a nonnegative matrix, the corresponding eigenvalue is the spectral radius of that matrix.

Hence \(G) =p =

If G is a pseudo-semiregular weighted bipartite graph, we assume

a=(5 0

It =p; (1 <i<ng)and 2= =py (n1 +1 <i<n), where B = (b; ;) is an ny x np matrix with
n1+ng =n. Let Op = (w1, wa, -+ ,wy,)T and Oy = (wp, 11, Wn, 12, -+ ,w,)T. So for each i
(1 <i < ny), the i-th element of BBT(Cy is
niy no ng ni n2
ri(BBTCy) = Z Z birbjrw; = Z bir Z bjrw; = Z bikpoWn, 1k = P1P2W;.
j=1k=1 k=1  j=1 k=1

Similarly, r;(BTBCs) = pipawy, +; for each j (1 < j < ny). Hence A?C' = p1p2C, where

C= |-t— (wi,ws, - ,wy)T. Tt is known that for any positive eigenvector of a nonnegative
> wi?
=1

matrix, the corresponding eigenvalue is the spectral radius of that matrix. So

)\1(14 ) pP1p2 = C AQC
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From the equality (x), we have

It follows that

This completes the proof of Theorem 3.1.

Corollary 3.1 (1) Let G be a pseudo-reqular weighted graph with v(v) = pw(v) for each
v e V(G). Then \(G) = p.

(2) Let G be a pseudo-semiregular weighted bipartite graph with the bipartition (X,Y). If
v(v) = pzw(v) for each v € X and y(v) = pyw(v) for each v €Y, then \(G) = |/pzpy-

Since a regular weighted graph must be a pseudo-regular weighted graph and a semiregular
weighted bipartite graph must be a pseudo-semiregular weighted bipartite graph, we have the
following results immediately from Corollary 3.1.

Corollary 3.2 (1) Let G be a regular weighted graph with w(v) = a for each v € V(G).
Then A\ (G) = a.

(2) Let G be a semiregular weighted bipartite graph with the bipartition (X,Y). If w(v) =a
for each v € X and w(v) = b for each v € Y, then A (G) = Vab.

Corollary 3.3 Let G be a simple connected weighted graph of order n. Then

where the equality holds if and only if G is a regular weighted graph or a semireqular weighted
bipartite graph.

Proof By Theorem 3.1 and the Cauchy-Schwarz inequality,

2 24 ... 2 2
MG) > |l et ] ntet b ga)?
w2 + we? + - 4 wy? n(wi? + we? + -+ - 4+ wp?)

Since

N+ 4 = wi w4+ w?,

we have

If the equality holds, G is a pseudo-regular weighted graph or a pseudo-semiregular weighted
bipartite graph (by Theorem 3.1) with v; = ~; for all 1 < ¢ < j < n. Thus G is a regular
weighted graph or a semiregular weighted bipartite graph. Conversely, if G is a regular weighted
graph, the equality holds immediately. If G is a semiregular weighted bipartite graph, we



674 A. M. Yu and M. Lu
assume that w(vy) = -+ = w(vy, ) = a and wW(vp,+1) = - = w(v,) = b. Since nja = (n —nq)b,
n
% S w2 = Vab. By Corollary 3.2, we have \;(G) = vab. Thus the equality holds.
i=1
Corollary 3.4 Let G be a simple connected weighted graph of order n. Then
A1 (G) > min{w; : 1 <i <n}. (3.3)

Proof By Corollary 3.3 and the Cauchy-Schwarz inequality,

Remark 3.1 If G is a simple connected unweighted graph of order n with the degree
sequence dy,da, - ,dp, the minimum degree §, and ¢; = ) d;, then the inequalities (3.1), (3.2)
jri

and (3.3) become

itﬂ
M(G) > Zl : (34)
d;>
Zn:diQ
A(G) > izln , (3.5)
M(G) >0, (3.6)

respectively. The inequality (3.4) is one of the main results in [20], and the inequality (3.5) is
one of the main results in [9].

4 Lower Bounds of the (Signless) Laplacian Spectral Radius

Theorem 4.1 Let G be a simple connected weighted graph of order n. Then

(4.1)

where the equality holds if and only if G is a reqular weighted graph or a semireqular weighted
bipartite graph.
Proof Let W(G) + A(G) be the signless Laplacian matrix of G and X = (x1, 22, ,2,)"

be the unit positive eigenvector of W(G) + A(G) corresponding to ¢1(G). For short, we write
W(G) + A(G) as W + A in the following proof. Take
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Then
01(G) = VAW + AP) = \/XT(W + 42X > \JCT(W + A)2C.
Since
1 g R T
W+ AC = - (w1 +Zw1jwj;"' , Wn +anjwj)
> w;? j=1 j=1
i=1
1 2 T
= n (wl + 71, , Wn, +'Yn) y
> wi?
i=1
we have

If the equality holds, then
M (W + A)?) = CY(W + A)?C,

which implies that (W + A)2C = A\ (W + A)?)C (by Lemma 2.1). Since W + A is a nonnegative
irreducible positive semidefinite matrix, all eigenvalues of W + A are nonnegative. By Perron-
Frobenius Theorem, the multiplicity of A; (W + A) is one. Since A1 (W + A4)?) = (A (W + A))?,
we have the multiplicity of A;((W + A)?) is one. Hence, if the equality holds, then X = C. By
M (W +A)C = (W + A)C, we have \; (W + A)w; = w2 +; fori =1,2,--- ,n. Thus w; + o=
w; + Z)—’J for all ¢ # j. Assume, without loss of generality, that w1 = a = max{w; : 1 <i < n},
we =b=min{w; : 1 <i<n}and a #b. Then we have

a—i—ﬁzb—i—ﬂ.
a b

Since 1 > ab and 2 < ab,
Doty B <t
a b
Thus we must have 3 = ab = 2. This implies w(v) = a or w(v) = b for all v € V(G), since G
is a connected weighted graph. Hence G is a regular weighted graph or a semiregular weighted
bipartite graph.

Conversely, if G is a regular weighted graph with w(v) = a for each v € V| then

a+b<a-+

By Lemma 2.4, ¢1 (G)) = 2a and so the equality holds.
If G is a semiregular connected bipartite graph with w(vy) = -+ = w(vp,) = a and
w(vp,4+1) = -+ = w(v,) = b, noting that n1a = (n — n1)b, we have

ni(a? + ab)? + (n — ny) (b + ab)?
=a+b.
nia? + (n — nq)b?
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By Lemmas 2.2 and 2.5, ¢1 (G) = u1(G) = a + b and so the equality holds.

Corollary 4.1 Let G be a simple connected weighted graph of order n. Then

(4.2)

where the equality holds if and only if G is a reqular weighted graph.

Proof By Theorem 4.1 and the Cauchy-Schwarz inequality, we have

(w12 + 71 +we + 2+ -+ wn? + 9)?
= n(’l,U12+w22+"'+wn2)

[ Qwi? + 2w 4 - - - 4 2wy, 2)?
= n(w12+w22+~-+wn2)

If the equality holds, G is a regular weighted graph or a semiregular bipartite weighted graph
(by Theorem 4.1) with w;®> +~; = w;? +~; for 1 <i < j < n. If G is a semiregular bipartite
weighted graph, without loss of generality, we assume that wq = a = max{w; : 1 <i < n} and
wy = b=min{w; : 1 <i <n}. Then we have a® + ab = b? + ab, which implies a = b. Hence G
is a regular bipartite weighted graph. Conversely, if G is a regular weighted graph, by Lemma
2.4, the equality holds immediately.

Corollary 4.2 Let G be a simple connected weighted graph. Then

¢1(G) > min{2w; : 1 <i < n}. (4.3)

Proof By Corollary 4.1 and the Cauchy-Schwarz inequality,

1 (G)>2

Remark 4.1 Let G be a simple connected unweighted graph with the degree sequence
dy,da,- - ,dy, the minimum degree ¢, and t; = > d;. Then the inequalities (4.1), (4.2) and

g
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(4.3) become

respectively.

By Lemma 2.2, for a simple connected weighted bipartite graph G, its Laplacian spectral
radius u1(G) is equal to its signless Laplacian spectral radius ¢1(G). So by Theorem 4.1 and
Corollaries 4.1-4.2, the following results hold immediately.

Theorem 4.2 Let G be a simple connected bipartite weighted graph of order n. Then

where the equality holds if and only if G is a regular weighted bipartite graph or a semireqular
weighted bipartite graph.

Corollary 4.3 Let G be a simple connected bipartite weighted graph of order n. Then

(4.5)
where the equality holds if and only if G is a regular weighted bipartite graph.
Corollary 4.4 Let G be a simple connected bipartite weighted graph. Then
p1(G) > min{2w; : 1 <i < n}. (4.6)

Remark 4.2 Let G be a simple connected unweighted graph with the degree sequence
dy,da,- - ,dy, the minimum degree ¢, and t; = > d;. Then the inequalities (4.4), (4.5) and

grvi

(4.6) become

(4.7)

(4.8)
11(G) = 26, (4.9)

respectively. The inequality (4.7) is one of the main results in [20], and the inequality (4.8) is
one of the main results in [10].



678 A. M. Yu and M. Lu
References
[1] Anderson, W. N. and Morley, T. D., Eigenvalues of the Laplacian of a graph, Linear and Multilinear
Algebra, 18, 1985, 141-145.
[2] Bapat, R. B. and Raghavan, T. E. S., Nonnegative Matrix and Applications, Cambridge University Press,
Cambridge, 1997.
[3] Cvetkovi¢, D., Doob, M. and Sachs, H., Spectra of Graphs—Theory and Application, Academic Press, New
York, 1980.
[4] Das, K. C., Extremal graph characterization from the upper bound of the Laplacian spectral radius of
weighted graphs, Linear Algebra and Its Applications, 427, 2007, 55-69.
[5] Das, K. C. and Bapat, R. B., A sharp upper bound on the largest Laplacian eigenvalue of weighted graphs,
Linear Algebra and Its Applications, 409, 2005, 153-165.
[6] Das, K. C. and Bapat, R. B., A sharp upper bound on the spectral radius of weighted graphs, Discrete
Mathematics, 308, 2008, 3180-3186.
[7] Das, K. C. and Kumar, P., Some new bounds on the spectral radius of graphs, Discrete Mathematics, 281,
2004, 149-161.
[8] Guo, J. M., A new upper bounds for the Laplacian spectral radius of graphs, Linear Algebra and Its
Applications, 400, 2005, 61-66.
[9] Hofmeister, M., Spectral radius and degree sequence, Math. Nachr., 139, 1988, 37—44.
[10] Hong, Y. and Zhang, X. D., Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices
of trees, Discrete Mathematics, 296, 2005, 187-197.
[11] Li, J. S. and Zhang, X. D., On the Laplacian eigenvalues of a graph, Linear Algebra and Its Applications,
285, 1998, 305-307.
[12] Liu, H. Q., Lu, M. and Tian, F., On the Laplacian spectral radius of a graph, Linear Algebra and Its
Applications, 376, 2004, 135-141.
erris, R., Laplacian matrices of graphs: A survey, Linear Algebra and Its Applications, - , ,
13] Merris, R., Laplaci i f hs: A Li Algeb d Its Applicati 197-198, 1994
143-176.
[14] Rojo, O., A nontrivial upper bound on the largest Laplacian eigenvalue of weighted graphs, Linear Algebra
and Its Applications, 420, 2007, 625—633.
[15] Rojo, O., Soto, R. and Rojo, H., An always nontrivial upper bound for Laplacian graph eigenvalues, Linear
Algebra and Its Applications, 312, 2000, 155-159.
u, J. L., Hong, Y. and Kai, W. R.; A sharp bound on the largest eigenvalue of the Laplacian matrix o
16] Shu, J. L., H Y. and Kai, W. R., A sharp bound he 1 i lue of the Laplaci ix of
a graph, Linear Algebra and Its Applications, 347, 2002, 123—129.
[17] Sorgun, S. and Biiytikkose, S., The new upper bounds on the spectral radius of weighted graphs, Applied
Mathematics and Computation, 218, 2012, 5231-5238.
an, S. W., On the Laplacian spectral radius of weighted trees with a positive weight set, Discrete Math-
18] Tan, S. W., On the Laplaci 1 radius of weighted ith iti igh Di Math
ematics, 310, 2010, 1026-1036.
[19] Yang, H. Z., Hu, G. Z. and Hong, Y., Bounds of spectral radii of weighted trees, Tsinghua Science and
Technology, 8, 2003, 517-520.
u, A. M., Lu, M. and Tian, F., On the spectral radius of graphs, Linear Algebra and Its Applications,
20] Yu, A. M., Lu, M d Tian, F., On th | radius of graphs, L Algeb d Its Applicati
387, 2004, 41-49.
[21] Zhang, X. D., Two sharp upper bound for the Laplacian eigenvalues, Linear Algebra and Its Applications,

376, 2004, 207-213.



