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Abstract The weighted graphs, where the edge weights are positive numbers, are con-
sidered. The authors obtain some lower bounds on the spectral radius and the Laplacian
spectral radius of weighted graphs, and characterize the graphs for which the bounds are
attained. Moreover, some known lower bounds on the spectral radius and the Laplacian
spectral radius of unweighted graphs can be deduced from the bounds.
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1 Introduction

In this paper, we consider a simple connected weighted graph in which the edge weights
are positive numbers. Let G = (V, E) be a simple connected weighted graph with a vertex set
V = {v1, v2, · · · , vn}. We denote by wij the weight of the edge vivj and assume wij = wji. For
short, we write i ∼ j if the vertices vi and vj are adjacent. For vi ∈ V , let wi = w(vi) =

∑
j∼i

wij .

If G is a weighted graph with wi = wj for any vi, vj ∈ V , then G is called a regular weighted
graph. If G = (X ∪ Y, E) is a weighted bipartite graph with wi = wj for any vi, vj ∈ X and
wk = wl for any vk, vl ∈ Y , then G is called a semiregular weighted bipartite graph.

For vi ∈ V , let γi = γ(vi) =
∑
j∼i

wijwj . If G is a weighted graph with γi

wi
= γj

wj
for any

vi, vj ∈ V , then G is called a pseudo-regular weighted graph. If G = (X ∪ Y, E) is a weighted
bipartite graph with γi

wi
= γj

wj
for any vi, vj ∈ X and γk

wk
= γl

wl
for any vk, vl ∈ Y , then

G is called a pseudo-semiregular weighted bipartite graph. Obviously, any regular weighted
graph is a pseudo-regular weighted graph and any semiregular weighted bipartite graph is a
pseudo-semiregular weighted bipartite graph.

The adjacency matrix A(G) of a weighted graph G is defined as A(G) = (aij)n×n, where

aij =
{

wij , if i ∼ j,
0, otherwise.

Let W (G) = diag(w1, w2, · · · , wn). Then the Laplacian matrix L(G) of a weighted graph G

is L(G) = W (G) − A(G). The signless Laplacian matrix Q(G) of a weighted graph G is
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Q(G) = W (G)+A(G). Clearly, A(G), L(G) and Q(G) are real symmetric matrices. Hence their
eigenvalues are real numbers. We denote by λ1(M) the largest eigenvalue of a real symmetric
matrix M . For a weighted graph G, we denote by λ1(G), μ1(G) and q1(G) the largest eigenvalues
of A(G), L(G) and Q(G), respectively, and call them the spectral radius, the Laplacian spectral
radius and the signless Laplacian spectral radius of G, respectively. When G is connected, A(G)
and Q(G) are irreducible matices and so by Perron-Frobenius Theorem, λ1(G) and q1(G) are
simple with the positive eigenvectors.

If wij = 1 for all edges vivj , then G is an unweighted graph. For an unweighted graph,
wi = w(vi) = di is the degree of vi ∈ V (G), and γi is the 2-degree of vi. There exists a vast
literature that studies the bounds of the spectral radius, the Laplacian spectral radius and the
signless spectral radius. We refer the reader to [1, 7–8, 10–13, 15–16, 21] for more information.

For weighted graphs, Yang, Hu and Hong [19] gave the upper and lower bounds of the
spectral radius of the weighted trees; Das and Bapat [6] and Sorgun and Büyükköse [17] gave
some upper bounds of the spectral radius; Rojo [14] and Das [4–5] gave some upper bounds of
the Laplacian spectral radius.

The remainder of this paper is organized as follows. In Section 2, we give some useful
lemmas. In Section 3, we present some lower bounds of the spectral radius of weighted graphs.
In Section 4, we give some lower bounds of the signless Laplacian spectral radius of weighted
graphs, from which we can get some lower bounds of the Laplacian spectral radius of weighted
graphs. From these bounds, we can deduce some known lower bounds on the spectral radius
and the Laplacian spectral radius of unweighted graphs.

2 Some Lemmas

The following are some useful lemmas.

Lemma 2.1 (see [10]) Let A be a nonnegative symmetric matrix and x be a unit vector of
Rn. If λ1(A) = xTAx, then Ax = λ1(A)x.

Lemma 2.2 (see [18]) Let G be a simple connected weighted bipartite graph. Then μ1(G) =
q1(G).

Proof Let G = (X ∪ Y, E) be a connected weighted bipartite graph with n vertices and
suppose that X = {v1, v2, · · · , vk}, Y = {vk+1, vk+2, · · · , vn}. Let U = (uij) be the n × n

diagonal matrix with uii = 1 if 1 ≤ i ≤ k and uii = −1 if k + 1 ≤ i ≤ n. It is easy to see
that U−1L(G)U = Q(G), which implies that L(G) and Q(G) have the same spectrum. Hence
μ1(G) = q1(G).

Lemma 2.3 (see [2]) Let M = (mij) be an n × n irreducible nonnegative matrix with the
spectral radius ρ(M), and Ri(M) be the i-th row sum of M for 1 ≤ i ≤ n. Then

min{Ri(M) : 1 ≤ i ≤ n} ≤ ρ(M) ≤ max{Ri(M) : 1 ≤ i ≤ n}.

Moreover, either equality holds if and only if the row sums of M are all equal.

By Lemma 2.3, the following result holds immediately.

Lemma 2.4 Let G be a simple connected weighted graph. Then

min{2wi : 1 ≤ i ≤ n} ≤ q1(G) ≤ max{2wi : 1 ≤ i ≤ n}.

Moreover, either equality holds if and only if G is a regular weighted graph.
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Lemma 2.5 (see [5]) Let G be a simple connected weighted graph. Then

μ1(G) ≤ max{wi + wj : i ∼ j, 1 ≤ i, j ≤ n},

where the equality holds if and only if G is a regular weighted bipartite graph or a semiregular
weighted bipartite graph.

3 Lower Bounds of the Spectral Radius

The following theorem is one of our main results.

Theorem 3.1 Let G be a simple connected weighted graph of order n. Then

λ1(G) ≥

√√√√√√√
n∑

i=1

γi
2

n∑
i=1

wi
2

, (3.1)

where the equality holds if and only if G is a pseudo-regular weighted graph or a pseudo-
semiregular weighted bipartite graph.

Proof Let A(G) be the adjacency matrix of G and X = (x1, x2, · · · , xn)T be the unit
positive eigenvector of A(G) corresponding to λ1(A(G)). For short, we write A(G) as A in the
following proof. Take

C =

√√√√√ 1
n∑

i=1

wi
2

(w1, w2, · · · , wn)T.

Noting that C is a unit positive vector, we have

λ1(G) = λ1(A) =
√

λ1(A2) =
√

XTA2X ≥
√

CTA2C.

Since

AC =

√√√√√ 1
n∑

i=1

wi
2

( n∑
j=1

w1jwj , · · · ,

n∑
j=1

wnjwj

)T

=

√√√√√ 1
n∑

i=1

wi
2

(γ1, · · · , γn)T, (∗)

we have

λ1(G) = λ1(A) =
√

λ1(A2) ≥
√

CTA2C =

√√√√√√√
n∑

i=1

γi
2

n∑
i=1

wi
2

.

If the equality holds, then
λ1(A2) = CTA2C.

By Lemma 2.1, A2C = λ1(A2)C. If the multiplicity of λ1(A2) is one, then X = C, which
implies γi = λ1(G)wi (1 ≤ i ≤ n). Hence G is a pseudo-regular weighted graph. Otherwise,
the multiplicity of λ1(A2) = (λ1(A))2 is two, which implies that −λ1(A) is also an eigenvalue
of G. Then G is a connected bipartite graph by a theorem of Frobenius (see, for example, [3,
Theorem 0.3]). Without loss of generality, we assume

A =
( 0 B

BT 0

)
,
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where B = (bi,j) is an n1 × n2 matrix with n1 + n2 = n. Let

X =
( X1

X2

)

and

C =

√√√√√ 1
n∑

i=1

wi
2

( C1

C2

)
,

where X1 = (x1, x2, · · · , xn1)T, X2 = (xn1+1, xn1+2, · · · , xn)T, C1 = (w1, w2, · · · , wn1)T and
C2 = (wn1+1, wn1+2, · · · , wn)T. Since

A2 =
( BBT 0

0 BTB

)
,

we have
BBTC1 = λ1(A2)C1, BTBC2 = λ1(A2)C2

and
BBTX1 = λ1(A2)X1, BTBX2 = λ1(A2)X2.

Noting that BBT and BTB have the same nonzero eigenvalues, λ1(A2) is the spectral radius of
BBT and its multiplicity is one. So X1 = p1C1 (p1 is a constant), which implies γi

wi
= γj

wj
(1 ≤

i < j ≤ n1). Similarly, X2 = p2C2 (p2 is a constant), which implies γi

wi
= γj

wj
(n1 + 1 ≤ i < j ≤

n). Hence G is a pseudo-semiregular weighted graph.
Conversely, if G is a pseudo-regular weighted graph, then γi

wi
= p (1 ≤ i ≤ n) is a constant,

which implies AC = pC. By Perron-Frobenius Theorem (see [2]), for any positive eigenvector
of a nonnegative matrix, the corresponding eigenvalue is the spectral radius of that matrix.

Hence λ1(G) = p =

√√√√√
n∑

i=1
γi

2

n∑
i=1

wi
2
.

If G is a pseudo-semiregular weighted bipartite graph, we assume

A =
( 0 B

BT 0

)
,

γi

wi
= p1 (1 ≤ i ≤ n1) and γi

wi
= p2 (n1 + 1 ≤ i ≤ n), where B = (bi,j) is an n1 ×n2 matrix with

n1 + n2 = n. Let C1 = (w1, w2, · · · , wn1)T and C2 = (wn1+1, wn1+2, · · · , wn)T. So for each i

(1 ≤ i ≤ n1), the i-th element of BBTC1 is

ri(BBTC1) =
n1∑

j=1

n2∑
k=1

bikbjkwj =
n2∑

k=1

bik

n1∑
j=1

bjkwj =
n2∑

k=1

bikp2wn1+k = p1p2wi.

Similarly, rj(BTBC2) = p1p2wn1+j for each j (1 ≤ j ≤ n2). Hence A2C = p1p2C, where

C =
√

1
n∑

i=1
wi

2
(w1, w2, · · · , wn)T. It is known that for any positive eigenvector of a nonnegative

matrix, the corresponding eigenvalue is the spectral radius of that matrix. So

λ1(A2) = p1p2 = CTA2C.
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From the equality (∗), we have

λ1(A2) = p1p2 =

n∑
i=1

γi
2

n∑
i=1

wi
2

.

It follows that

λ1(G) =

√√√√√√√
n∑

i=1

γi
2

n∑
i=1

wi
2

.

This completes the proof of Theorem 3.1.

Corollary 3.1 (1) Let G be a pseudo-regular weighted graph with γ(v) = p w(v) for each
v ∈ V (G). Then λ1(G) = p.

(2) Let G be a pseudo-semiregular weighted bipartite graph with the bipartition (X, Y ). If
γ(v) = pxw(v) for each v ∈ X and γ(v) = pyw(v) for each v ∈ Y , then λ1(G) = √

pxpy.

Since a regular weighted graph must be a pseudo-regular weighted graph and a semiregular
weighted bipartite graph must be a pseudo-semiregular weighted bipartite graph, we have the
following results immediately from Corollary 3.1.

Corollary 3.2 (1) Let G be a regular weighted graph with w(v) = a for each v ∈ V (G).
Then λ1(G) = a.

(2) Let G be a semiregular weighted bipartite graph with the bipartition (X, Y ). If w(v) = a

for each v ∈ X and w(v) = b for each v ∈ Y , then λ1(G) =
√

ab.

Corollary 3.3 Let G be a simple connected weighted graph of order n. Then

λ1(G) ≥
√√√√ 1

n

n∑
i=1

wi
2, (3.2)

where the equality holds if and only if G is a regular weighted graph or a semiregular weighted
bipartite graph.

Proof By Theorem 3.1 and the Cauchy-Schwarz inequality,

λ1(G) ≥
√

γ1
2 + γ2

2 + · · · + γn
2

w1
2 + w2

2 + · · · + wn
2
≥

√
(γ1 + γ2 + · · · + γn)2

n(w1
2 + w2

2 + · · · + wn
2)

.

Since
γ1 + γ2 + · · · + γn = w1

2 + w2
2 + · · · + wn

2,

we have

λ1(G) ≥
√√√√ 1

n

n∑
i=1

wi
2 .

If the equality holds, G is a pseudo-regular weighted graph or a pseudo-semiregular weighted
bipartite graph (by Theorem 3.1) with γi = γj for all 1 ≤ i < j ≤ n. Thus G is a regular
weighted graph or a semiregular weighted bipartite graph. Conversely, if G is a regular weighted
graph, the equality holds immediately. If G is a semiregular weighted bipartite graph, we
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assume that w(v1) = · · · = w(vn1 ) = a and w(vn1+1) = · · · = w(vn) = b. Since n1a = (n−n1)b,√
1
n

n∑
i=1

wi
2 =

√
ab. By Corollary 3.2, we have λ1(G) =

√
ab. Thus the equality holds.

Corollary 3.4 Let G be a simple connected weighted graph of order n. Then

λ1(G) ≥ min{wi : 1 ≤ i ≤ n}. (3.3)

Proof By Corollary 3.3 and the Cauchy-Schwarz inequality,

λ1(G) ≥
√√√√ 1

n

n∑
i=1

wi
2 ≥

√√√√( n∑
i=1

wi

)2

n2
≥ min{wi : 1 ≤ i ≤ n}.

Remark 3.1 If G is a simple connected unweighted graph of order n with the degree
sequence d1, d2, · · · , dn, the minimum degree δ, and ti =

∑
j∼i

di, then the inequalities (3.1), (3.2)

and (3.3) become

λ1(G) ≥

√√√√√√√
n∑

i=1

ti
2

n∑
i=1

di
2
, (3.4)

λ1(G) ≥

√√√√ n∑
i=1

di
2

n
, (3.5)

λ1(G) ≥ δ, (3.6)

respectively. The inequality (3.4) is one of the main results in [20], and the inequality (3.5) is
one of the main results in [9].

4 Lower Bounds of the (Signless) Laplacian Spectral Radius

Theorem 4.1 Let G be a simple connected weighted graph of order n. Then

q1(G) ≥

√√√√√√√
n∑

i=1

(wi
2 + γi)2

n∑
i=1

wi
2

, (4.1)

where the equality holds if and only if G is a regular weighted graph or a semiregular weighted
bipartite graph.

Proof Let W (G) + A(G) be the signless Laplacian matrix of G and X = (x1, x2, · · · , xn)T

be the unit positive eigenvector of W (G) + A(G) corresponding to q1(G). For short, we write
W (G) + A(G) as W + A in the following proof. Take

C =

√√√√√ 1
n∑

i=1

wi
2

(w1, w2, · · · , wn)T.
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Then
q1(G) =

√
λ1((W + A)2) =

√
XT(W + A)2X ≥

√
CT(W + A)2C.

Since

(W + A)C =

√√√√√ 1
n∑

i=1

wi
2

(
w1

2 +
n∑

j=1

w1jwj , · · · , wn
2 +

n∑
j=1

wnjwj

)T

=

√√√√√ 1
n∑

i=1

wi
2

(w1
2 + γ1, · · · , wn

2 + γn)T,

we have

q1(G) ≥
√

CT(W + A)2C =

√√√√√√√
n∑

i=1

(wi
2 + γi)2

n∑
i=1

wi
2

.

If the equality holds, then

λ1((W + A)2) = CT(W + A)2C,

which implies that (W +A)2C = λ1((W +A)2)C (by Lemma 2.1). Since W +A is a nonnegative
irreducible positive semidefinite matrix, all eigenvalues of W + A are nonnegative. By Perron-
Frobenius Theorem, the multiplicity of λ1(W +A) is one. Since λ1((W +A)2) = (λ1(W +A))2,
we have the multiplicity of λ1((W + A)2) is one. Hence, if the equality holds, then X = C. By
λ1(W +A)C = (W +A)C, we have λ1(W +A)wi = wi

2 +γi for i = 1, 2, · · · , n. Thus wi + γi

wi
=

wj + γj

wj
for all i 	= j. Assume, without loss of generality, that w1 = a = max{wi : 1 ≤ i ≤ n},

w2 = b = min{wi : 1 ≤ i ≤ n} and a 	= b. Then we have

a +
γ1

a
= b +

γ2

b
.

Since γ1 ≥ ab and γ2 ≤ ab,

a + b ≤ a +
γ1

a
= b +

γ2

b
≤ a + b.

Thus we must have γ1 = ab = γ2. This implies w(v) = a or w(v) = b for all v ∈ V (G), since G
is a connected weighted graph. Hence G is a regular weighted graph or a semiregular weighted
bipartite graph.

Conversely, if G is a regular weighted graph with w(v) = a for each v ∈ V , then√√√√√√√
n∑

i=1

(wi
2 + γi)2

n∑
i=1

wi
2

= 2a.

By Lemma 2.4, q1(G) = 2a and so the equality holds.
If G is a semiregular connected bipartite graph with w(v1) = · · · = w(vn1) = a and

w(vn1+1) = · · · = w(vn) = b, noting that n1a = (n − n1)b, we have√√√√√√√
n∑

i=1

(wi
2 + γi)2

n∑
i=1

wi
2

=

√
n1(a2 + ab)2 + (n − n1)(b2 + ab)2

n1a2 + (n − n1)b2
= a + b.
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By Lemmas 2.2 and 2.5, q1(G) = μ1(G) = a + b and so the equality holds.

Corollary 4.1 Let G be a simple connected weighted graph of order n. Then

q1(G) ≥ 2

√√√√ 1
n

n∑
i=1

wi
2, (4.2)

where the equality holds if and only if G is a regular weighted graph.

Proof By Theorem 4.1 and the Cauchy-Schwarz inequality, we have

q1(G) ≥

√√√√√√√
n∑

i=1

(wi
2 + γi)2

n∑
i=1

wi
2

≥
√

(w1
2 + γ1 + w2

2 + γ2 + · · · + wn
2 + γn)2

n(w1
2 + w2

2 + · · · + wn
2)

=

√
(2w1

2 + 2w2
2 + · · · + 2wn

2)2

n(w1
2 + w2

2 + · · · + wn
2)

= 2

√√√√ 1
n

n∑
i=1

wi
2 .

If the equality holds, G is a regular weighted graph or a semiregular bipartite weighted graph
(by Theorem 4.1) with wi

2 + γi = wj
2 + γj for 1 ≤ i < j ≤ n. If G is a semiregular bipartite

weighted graph, without loss of generality, we assume that w1 = a = max{wi : 1 ≤ i ≤ n} and
w2 = b = min{wi : 1 ≤ i ≤ n}. Then we have a2 + ab = b2 + ab, which implies a = b. Hence G

is a regular bipartite weighted graph. Conversely, if G is a regular weighted graph, by Lemma
2.4, the equality holds immediately.

Corollary 4.2 Let G be a simple connected weighted graph. Then

q1(G) ≥ min{2wi : 1 ≤ i ≤ n}. (4.3)

Proof By Corollary 4.1 and the Cauchy-Schwarz inequality,

q1(G) ≥ 2

√√√√ 1
n

n∑
i=1

wi
2 ≥ 2

√√√√( n∑
i=1

wi

)2

n2
≥ min{2wi : 1 ≤ i ≤ n}.

Remark 4.1 Let G be a simple connected unweighted graph with the degree sequence
d1, d2, · · · , dn, the minimum degree δ, and ti =

∑
j∼i

dj . Then the inequalities (4.1), (4.2) and
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(4.3) become

q1(G) ≥

√√√√√√√
n∑

i=1

(di
2 + ti)2

n∑
i=1

di
2

,

q1(G) ≥ 2

√√√√ n∑
i=1

di
2

n
,

q1(G) ≥ 2δ,

respectively.

By Lemma 2.2, for a simple connected weighted bipartite graph G, its Laplacian spectral
radius μ1(G) is equal to its signless Laplacian spectral radius q1(G). So by Theorem 4.1 and
Corollaries 4.1–4.2, the following results hold immediately.

Theorem 4.2 Let G be a simple connected bipartite weighted graph of order n. Then

μ1(G) ≥

√√√√√√√
n∑

i=1

(wi
2 + γi)2

n∑
i=1

wi
2

, (4.4)

where the equality holds if and only if G is a regular weighted bipartite graph or a semiregular
weighted bipartite graph.

Corollary 4.3 Let G be a simple connected bipartite weighted graph of order n. Then

μ1(G) ≥ 2

√√√√ 1
n

n∑
i=1

wi
2 , (4.5)

where the equality holds if and only if G is a regular weighted bipartite graph.

Corollary 4.4 Let G be a simple connected bipartite weighted graph. Then

μ1(G) ≥ min{2wi : 1 ≤ i ≤ n}. (4.6)

Remark 4.2 Let G be a simple connected unweighted graph with the degree sequence
d1, d2, · · · , dn, the minimum degree δ, and ti =

∑
j∼i

dj . Then the inequalities (4.4), (4.5) and

(4.6) become

μ1(G) ≥

√√√√√√√
n∑

i=1

(di
2 + ti)2

n∑
i=1

di
2

, (4.7)

μ1(G) ≥ 2

√√√√ n∑
i=1

di
2

n
, (4.8)

μ1(G) ≥ 2δ, (4.9)

respectively. The inequality (4.7) is one of the main results in [20], and the inequality (4.8) is
one of the main results in [10].
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