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1 Introduction

The relation between the theory of unitary representations of topological groups and C∗-
algebras is a classical topic (see [5]) that has been developed over the years. An example
of particular relevance here is the work of Rieffel who gave in [16] a description of induced
representations in terms of Hilbert modules.

In an effort to obtain elements of a C∗-algebraic formulation of the representation theory of
semisimple Lie groups, Rieffel’s construction was adapted in [3] to describe parabolic induction,
which resulted in the construction of Hilbert modules related to the principal series induced
from a given association class of parabolic subgroups. After the results of generic irreducibility
obtained in [3] in the spirit of F. Bruhat’s theory, the next step in the direction of an accurate
description of the C∗-algebras related to a Lie group consists in developping the theory of
intertwining operators. These objects were originally introduced by Knapp and Stein in [10–11]
(see also [19] and recently [4]) and play a central role in the theory, as they not only allow to
decide when principal series representations are reducible but also relate to the densities in the
Plancherel formula and the construction of complementary series among other things.

The central piece in the classical study of intertwining operators is the normalization process,
allowing to go from integral transformations analogous to Radon transforms and called standard
intertwining integrals to unitary intertwiners that can often be expressed in terms of classical
geometric transforms (see for instance [2, 13, 15] for recent examples).

Standard intertwining integrals were studied in the context of Hilbert modules in [3] and a
result of normalization was obtained in this framework for SL(2) in [1], using Fourier transforms
twisted by the non-trivial Weyl element. The point of the present paper is to extend this result
to the case of maximally degenerate principal series of special linear groups: We will show how

Manuscript received February 26, 2013.
1Department of Mathematics, Pennsylvania State University, McAllister Building, University Park, PA-
16802, USA. E-mail: clare@math.psu.edu



692 P. Clare

a Fourier transform defined on an appropriate space extends to a unitary intertwining operator
between Hilbert modules and normalizes the standard intertwining integral in a sense that will
be made precise.

The paper is organised as follows: Section 2 is devoted to the description of degenerate
principal series of SL(n+1) in terms of Hilbert modules. More precisely, universal C∗-algebraic
principal series are introduced in the discussion concluded by Definition 2.1 and Proposition
2.2 characterises a useful submodule of functions. Section 3 starts with the study of the Radon
transform defining the standard intertwining integral. Then we introduce a Fourier transform
adapted to the situation and prove in Theorem 3.1 that it extends to a unitary operator between
Hilbert modules that normalizes the standard integral at the level of C∗-algebraic principal
series. Finally, we explain in Section 4 how the results extend to the case of non-archimedean
local fields.

The results presented here are part of an ongoing joint research project with members of the
MAPMO (University of Orléans): A. Alvarez, P. Julg and V. Lafforgue. This article greatly
benefited from their help and comments.

2 C∗-Algebraic Universal Principal Series

2.1 Structure and notations

Let F be the field R or C of real or complex numbers. If x is a matrix with coefficients in F ,
the matrix obtained by conjugating all the entries of x will be denoted by x. The real matrix
x = 1

2 (x + x) will be called the real part of x and denoted by Re(x).
Troughout the article, GF will denote the group SL(n + 1, F ) of matrices of size n + 1 with

determinant 1, for n ≥ 1. Let θ be the Cartan involution of GF defined by θ(g) = tg−1. The
subgroup PF of upper block-triangular matrices of type (n, 1) is a maximal parabolic subgroup
of GF . It admits a Langlands decomposition PF = LF NF with θ-stable Levi component

LF =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

0

a
...
0

0 · · · 0 det(a)−1

⎤
⎥⎥⎥⎦ , a ∈ GL(n, F )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

and unipotent radical

NF =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣ In X

0 · · · 0 1

⎤
⎥⎥⎦ , X ∈ Fn

⎫⎪⎪⎬
⎪⎪⎭ ,

where In denotes the identity matrix of size n, so that PF identifies with the semi-direct product
GL(n, F )�Fn. The opposite parabolic subgroup PF is the image of PF under θ. It decomposes
as PF = LF NF , with NF = tNF .

The group LF � GL(n, F ) is endowed with the Haar measure d×a defined by

d×a = | det(a)|−nda,

where da denotes the restiction of the Lebesgue measure of Fn2
, and | · | is the usual absolute

value in the real case and is defined by |z| = zz in the complex case.



C∗-Algebraic Intertwiners for Degenerate Principal Series of Special Linear Groups 693

2.2 The homogeneous spaces G/N and G/N

The central result of this paper will rely on some analysis on the quotient space G/N

described in this section. To avoid confusion, group actions will be denoted using dots (e.g.
a.b), whereas matrix multiplications will be written without any symbol (e.g. ab).

Notation 2.1 The vector space of matrices with p lines, q columns and coefficients in F is
denoted by Mp,q(F ) (simply Mp(F ) if p = q) and we let XF = Mn+1,n(F ).

The groups GF and LF act on XF from the left and the right respectively by g.x = gx and
x.a = xa for g in GF , a in GL(n, F ) and x in XF .

Notation 2.2 The set of elements of rank n in XF is denoted by M×
n+1,n(F ).

This space is dense in XF and inherits the actions of GF and GL(n, F ). We denote by dx the
GF -invariant measure obtained by restricting the Lebesgue measure of Mn+1,n(F ) � Fn(n+1).
The right action of GL(n, F ) on XF transforms the measure according to∫

XF

f(x.a)dx = |detF (a)|−(n+1)
∫

XF

f(x)dx. (2.1)

Proposition 2.1 The homogeneous space GF /NF identifies with M×
n+1,n(F ) as a topological

and measured space. The identification is (GF , LF )-equivariant.

Proof The stabiliser subgroup in GF of x0 =

⎡
⎢⎢⎣ In

0 · · · 0

⎤
⎥⎥⎦ is NF , so the map b :

GF → XF , g �→ g.x0 identifies GF /NF with b(G) = G.x0 in a GF -equivariant way. Since LF

normalizes NF and ⎡
⎢⎢⎢⎣

0

a
...
0

0 . . . 0 det(a)−1

⎤
⎥⎥⎥⎦ x0 =

⎡
⎢⎢⎣ a

0 · · · 0

⎤
⎥⎥⎦ = x0.a

for any a, it is also L-equivariant.
To identify the image of b, we observe that it is the map that extracts the left block of size

(n + 1, n) of a matrix in SL(n + 1, F ), that is,

b :

⎡
⎢⎣

∗
u ...

∗

⎤
⎥⎦ �→ u

for u ∈ XF , so b(g) has the maximal rank for all g. Surjectivity follows from the fact that
any linearly independant family may be completed into a basis with determinant 1. Finally,
b is compatible with the topologies induced on GF and M×

n+1,n(F ) by the standard ones on
Mn+1(F ) and XF , and GF /NF admits essentially one GF -invariant measure, which corresponds
via b to the restriction of the Lebesgue measure to XF .

From now on, we will use freely the identification established in the above result and identify
any element of LF with the corresponding element of GL(n, F ).
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An analogous description can be obtained for the “opposite” quotient GF /NF identified

with XF = Mn,n+1(F ) through the map b : g �→ y0g
−1, where the matrix y0 =

⎡
⎢⎣

0

In

...
0

⎤
⎥⎦

has stabiliser NF and XF carries actions of GF and LF respectively given by g.y = yg−1 and
y.a = a−1y for g in GF and a in LF .

2.3 The modules and E(G/N) and E(G/N)

From now on, we will systematically omit the subscript F . The set of smooth functions with
compact support on a space T will be denoted by C∞

c (T ), and the Schwartz space of functions
on T , all of whose derivatives are rapidly decreasing, by S(T ).

In order to study intertwining operators in a C∗-algebraic context, we will work in the
framework of universal principal series, introduced in [3]. The basic objects will be Hilbert
modules defined as completions of C∞

c (G/N) and C∞
c (G/N) respectively.

Notation 2.3 If f is a function of the variable x and m is a group element such that
mx makes sense, the right translation of f by m is denoted by fm : x �→ f(xm). Similarly,
mf(x) = f(mx).

The actions of G and L can be defined for functions on the larger space X . Namely, for a
function f defined on X , and elements g of G and a of L, we let

g.f(x) = f(g−1x), (2.2)

f.a(x) = | det(a)|−n+1
2 f(xa−1) = | det(a)|− n+1

2 fa−1
(x), (2.3)

which integrates to

f.ϕ(x) =
∫

GL(n,F )

f(xa−1)ϕ(a)| det(a)|− n+1
2 d×a (2.3′)

for any ϕ integrable over GL(n, F ).
Finally we consider the pairing

〈f, h〉X(a) = | det(a)|n+1
2

∫
X

f(x)h(xa)dx = | det(a)|n+1
2 〈f, ha〉L2 (2.4)

for suitable functions f and h defined on X , where 〈·, ·〉L2 denotes the usual inner product for
square-integrable functions. If f and h are smooth and compactly supported on G/N ⊂ X , then
〈f, h〉X is smooth and compactly supported on L and the above formulas define on C∞

c (G/N)
a structure of the pre-Hilbert module over C∞

c (L). The scalar factor involved in (2.3) shows
that f is actually considered as a half-density over G/N , and (2.4) then appears as a natural
pairing.

The above formulas are special cases of the ones involved in the general construction of
parabolic induction modules described in [3]. Therefore, they can be used to define a Hilbert
module structure as follows.

Definition 2.1 The Hilbert module obtained from C∞
c (G/N) by extending the action (2.3′)

to the reduced C∗-algebra of GL(n, F ), and then completing with respect to the norm induced by
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(2.4) is called the reduced C∗-algebraic universal principal series associated to the pair (G, P )
and is denoted by E(G/N).

As explained in [3], this construction generalizes Rieffel’s construction of induction modules
[16]. It provides a global picture of principal series induced from P in the sense that there
exists a G-equivariant unitary specialisation map between the tensor product of E(G/N) with
the carrying space of any appropriate element of L̂r and the corresponding principal series
representation (see [3, Corollary 3.5]).

The next result allows us to consider Schwartz functions on X as a subspace of E(G/N). It
was suggested to me by Vincent Lafforgue.

Proposition 2.2 The inclusion map ι : C∞
c (M×

n+1,n(F )) → E(G/N) extends continuously
to S(X).

Proof According to [9, Chap.VII §3], we can use the KAK decomposition to write any
element of GL(n, F ) as a product k1ak2, where k1 and k2 are elements in a maximal compact
subgroup of GL(n, F ) and a is a diagonal matrix with positive entries a1, · · · , an. Then for f

and h in S(X), we prove that there exists a constant C such that:

|〈f, h〉X (k1ak2)| ≤ C

n∏
i=1

∣∣min(ai, a
−1
i )

∣∣ n+1
2 . (2.5)

By polarization, we may assume that f = h. Moreover, since K is compact, it is enough to
treat the case k1 = k2 = 1. Identifying X to (Fn+1)n via x = (x1, · · · , xn), the assumption
that f is rapidly decreasing implies the existence of positive bounded integrable functions fi

on Fn+1 such that |f(x)| ≤ f1(x1) · · · fn(xn). Observe that a acts on x by multiplying each xi

by ai, so that it is enough to consider the case of one fi. One has, for f positive bounded and
integrable on Fn+1 and a > 0,

|a|n+1
2

∫
F n+1

f(x)f(ax)dx ≤ |a|n+1
2 ‖f‖∞

∫
F n+1

f(ax)dx

≤ ‖f‖∞‖f‖1|a|−n+1
2 .

Since
|a|n+1

2

∫
F n+1

f(x)f(ax)dx = |a|−n+1
2

∫
F n+1

f(a−1x)f(x)dx,

the same computation yields

|a|n+1
2

∫
F n+1

f(x)f(ax)dx ≤ ‖f‖∞‖f‖1|a|n+1
2 ,

so that
|a|n+1

2

∫
F n+1

f(x)f(ax)dx ≤ ‖f‖∞‖f‖1

∣∣min
(
a, a−1

)∣∣ n+1
2 ,

which implies (2.5). As a consequence, we will prove that 〈f, h〉X belongs to the reduced
C∗-algebra of GL(n, F ).

Following [14, §4.4], we consider the generalized Harish-Chandra Schwartz space associated
to a real reductive group L consisting of functions F on L such that for any p, there exists a
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constant Cp such that the inequality

|F (k1ak2)| ≤ Cp
e−ρ log a

(1 + ‖log a‖)p (2.6)

is satisfied for all k1ak2 in the KAK decomposition of L, where ρ denotes the half sum of
positive roots for (l : a). We will use the fact, whose proof is recalled in [14], that for p large
enough, there exists Cp such that (2.6) defines a norm that yields a Banach algebra which is a
subalgebra of C∗

r(G). In the case at hand, denoting dF = dimR(F ), one has

2ρ log a =
n∑

i=1

(n + 1 − 2i)dF log ai

= (n − 1)dF log a1 + (n − 3)dF log a2 + · · · − (n − 1)dF log an,

so that

e−ρ log a =
n∏

i=1

|ai|i−
n+1

2 = (|a1|−1)
n−1

2 (|a2|−1)
n−3

2 · · · |an−1|
n−3

2 |an|
n−1

2

≥
n∏

i=1

|min(ai, a
−1
i )|n−1

2 ≥
n∏

i=1

|min(ai, a
−1
i )|n+1

2 , (2.7)

since n+1
2 > n−1

2 and min(ai, a
−1
i ) ≤ 1 for all i. Therefore, (2.5) implies that 〈f, h〉X satisfies

(2.6) for any p, and hence defines an element of C∗
r (GL(n, F )).

Next we prove that functions in S(X) can be approximated by elements of C∞
c (G/N) for

the C∗
r (GL(n, F ))-valued norm used to build the Hilbert module E(G/N). Let μ denote the

Lebesgue measure of X . Since μ(X \M×
n+1,n(F )) = 0, there exists a sequence {Tm}m≥1 of open

subsets of X containing X \M×
n+1,n(F ), satisfying Tm+1 ⊂ Tm and such that lim

m→∞ μ(Tm) = 0.
Let {Bm}m≥1 be the family of closed balls centered at the origin in X with radius m for the
usual norm and consider a sequence {χm}m≥1 of compactly supported non-negative smooth
functions on X such that

χm ≡ 1 on Bm ∩ (X \ Tm)

≡ 0 on Tm+1.

Let f be in S(X). For all m, the pointwise product fm = f.χm is compactly supported away
from singular matrices, and hence defines a function in C∞

c (G/N). We will prove that the
C∗

r (GL(n, F ))-valued norm of f − fm converges to 0, so that f can be viewed as the limit in
E(G/N) of the sequence {fm}m≥1. To do so, we denote ϕm = 〈f − fm, f − fm〉X . By the
same argument used above, (2.5) implies that ϕm belongs to the generalized Harish-Chandra
Schwartz space of GL(n, F ). Furthermore, (2.5) and (2.7) imply that

∣∣∣ϕm (k1ak2)
(1 + ‖log a‖)p

e−ρ log a

∣∣∣ ≤ C (1 + ‖log a‖)p
n∏

i=1

|min(ai, a
−1
i )|

for some constant C that can be chosen independently of m by the construction of fm. It
follows that for any ε > 0, there exists a compact Z in GL(n, F ) such that

sup
k1ak2 /∈Z

∣∣∣ϕm (k1ak2)
(1 + ‖log a‖)p

e−ρ log a

∣∣∣ ≤ ε.
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By the definition of fm, the sequence {ϕm}m≥1 converges to 0 uniformly on any compact subset
of GL(n, F ), such as Z. Therefore,

sup
k1ak2∈GL(n,F )

∣∣∣ϕm (k1ak2)
(1 + ‖log a‖)p

e−ρ log a

∣∣∣ ≤ ε

for m large enough, so that ϕm converges to 0 in the generalized Harish-Chandra Schwartz
space of GL(n, F ), and hence in C∗

r (GL(n, F )), which concludes the proof.

Remark 2.1 The advantage of S(X) compared with C∞
c (G/N) as a submodule of E(G/N)

is the fact that, unlike compactness of the support, the properties of asymptotic decay of
elements in S(X) will be preserved by the Fourier transform used in the normalization process
of Section 3.3, thus allowing to properly define an operator between Hilbert modules.

Remark 2.2 Starting from the pre-Hilbert module structure on C∞
c (G/N), it is possible to

consider various completions, for instance, with respect to L1(L) or the full C∗-algebra C∗(L).
However, the estimate (2.5) on which the proof of Proposition 2.2 relies does not allow to exhibit
S(X) as a submodule for these norms.

The universal principal series E(G/N) associated to the pair (G, P ) can be described in the
same way. More precisely, all the arguments of the above discussion hold, working on X and
using the following formulas for the actions and the inner product:

g.f(y) = f(yg), (2.2)

f.a(y) = | det(a)|n+1
2 f(ay) = | det(a)|n+1

2 af(y), (2.3)

f.ϕ(y) =
∫

GL(n,F )

f(ay)| det(a)|n+1
2 d×a, (2.3′)

〈f, h〉X(a) = | det(a)|−n+1
2

∫
X

f(y)h(a−1y)dy = | det(a)|−n+1
2 〈f, a−1

h〉L2 , (2.4)

for f and h functions on X, g in G, a in L and ϕ in Cc(L). As in Proposition 2.2, the inclusion
map ι : C∞

c (M×
n,n+1(F )) → E(G/N) extends to S (

X
)
.

3 Intertwining Operators

The purpose of this section is to study and normalize standard intertwining integrals at the
level of the Hilbert modules introduced above.

3.1 Standard intertwining integrals

The study of intertwiners between principal series induced from P and P respectively relies
on the construction of operators transforming N -invariant functions into N -invariant ones (see
[8, 10–11]). Working formally, that is outside of convergence considerations, one is naturally
led to consider integrals of the form

I(f)
(
gN

)
=

∫
N

f(gn)dn. (3.1)

It was observed (see [12]) that such operators can be interpreted as Radon transforms and
understood in the context of double fibrations as in [7]. The present situation is described by
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the diagram

G
pN

���
��

��
��

�
pN

����
��

��
��

G/N G/N,

Figure 1

where pN and pN denote the natural projections. Lemma 6.2 in [3] implies that (3.1) defines a
map I : Cc(G/N) → C(G/N) which does not extend to an operator between Hilbert modules,
the latter fact being directly related to reducibility phenomena occurring in the principal series
(see [1, Appendix]).

In the notations of Figure 1, the standard intertwining integral can be written as

I(f)(y) =
∫

pN(p−1
N

(y))
f(x)dx.

In order to study this integral at the level of Hilbert modules, it will be convenient to work in
X and X rather than G/N and G/N , so Figure 1 will be replaced by

G

���
��

��
��

�

����
��

��
��

X X .

Figure 2

First, we observe that two elements x and y in X and X come from the same g in G, if and only
if x = gx0 and y = y0g

−1, with the notations used in the proof of Proposition 2.1. Denoting
by δ the Dirac distribution on Mn(F ), it follows that the integral operator I is given by the
distributional kernel kI defined on X × X by

kI(x, y) = δ(yx − In),

in the sense that
I(f)(y) =

∫
X

kI(x, y)f(x)dx

for any suitable function f , that is

I(f)(y) =
∫

X

δ(yx − In)f(x)dx. (3.2)

The following properties of kI will be useful in the normalization process studied in the next
section. Formulas (2.3) and (2.3) imply that kI is invariant under the diagonal L-action:

kI(x.a, y.a) = kI(x, y) (3.3)

for a in GLn(F ). Moreover, the homogeneity property of the Dirac distribution implies that

kI(x.a, y) = | det(a)|−(n+1)δ(yx − a). (3.4)
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Our main purpose will be to construct a G-equivariant unitary operator between Hilbert
modules that differs from I only by a convolution over L. In order to state a more precise
definition, let us introduce one more notation.

Definition 3.1 If T is a function on L, the operator CT of convolution by T acts on a
function f on G/N by

CT (f)(x) = f ∗L T (x) =
∫

L

f.a(x)T (a)da.

In the present situation, (2.3′) implies that

CT (f)(x) =
∫

GL(n,F )

f
(
xa−1

) | det(a)|−n+1
2 T (a)d×a. (3.5)

Definition 3.2 A bounded operator U: E(G/N) → E(G/N) is said to normalize the standard
intertwining integral I defined by (3.2) if

(i) it is unitary and G-equivariant;
(ii) there exists a function γ on L such that (I ◦Cγ) (f) = U(f) for f in a dense subspace

of E(G/N).

Remark 3.1 Definition 3.2 above should be compared with Definition 3.1 in [1], where
normalization is defined for standard intertwining integrals associated to Weyl elements.

3.2 Fourier transform on X

The use of the Fourier transform on matrix spaces to study principal series representations
goes back to the work of Stein [18]. Let us briefly collect here the main properties of the integral
operator that will give rise to the C∗-algebraic intertwiner studied in the next section.

The transform defined by

F f(y) =
∫

X

f(x)e−2iπ Re(Tr(yx))dx (3.6)

maps S(X) to S(X). It satisfies the relation

F
(
fa−1

)
= | det(a)|−(n+1) a (F(f)) . (3.7)

3.3 Normalization

We can now establish the main result of the article, relating the Fourier transform of the pre-
vious paragraph to the standard intertwining operator at the level of the C∗-algebraic universal
principal series.

Theorem 3.1 The transform F between S(X) and S (
X

)
extends to a unitary operator of

Hilbert modules
U : E(G/N) → E(G/N)

that normalizes I in the sense of Definition 3.2. The corresponding normalizing distribution is
defined by

γn(a) = | det(a)| 1−n
2 e−2iπ Re(Tr(a−1))
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for a in L.

Proof The G-equivariance is a direct consequence of the G-invariance of the measure. To
establish that F is Cc(L)-linear, it is enough to show that it is L-equivariant.

In view of Proposition 2.2 and Remark 2.1, we work at the level of Schwartz functions on
X . For f in S(X), one has, according to (2.3),

F(f.a) = F(| det(a)|− n+1
2 fa−1

)

= | det(a)|n+1
2 . a F(f) (by (3.7))

= F(f).a (by (2.3)).

The fact that F preserves the C∗
r(L)-valued inner products also follows from a straightforward

computation relying on its equivariance properties, namely

〈F(f),F(f)〉X(a) = | det(a)|−n+1
2 〈F(f), a−1 F(f)〉L2

= | det(a)|−n+1
2 〈F(f), | det(a)|(n+1) F (fa)〉L2

= | det(a)|n+1
2 〈F(f),F (fa)〉L2

= | det(a)|n+1
2 〈f, fa〉L2 = 〈f, f〉X(a),

the last line relying on the Plancherel equality for square integrable functions.
Let now γ be a function on L. According to (3.5), the composition I ◦Cγ acts on a function

f by

(I ◦Cγ) (f)(y) =
∫

X

∫
GL(n,F )

kI(x, y)f
(
xa−1

) | det(a)|−n+1
2 γ(a)d×adx

x↔xa=
∫

X

∫
GL(n,F )

kI(xa, y)f(x)| det(a)|n+1
2 γ(a)d×adx.

Therefore, the kernel k◦ defining the composition can be written as

k◦(x, y) =
∫

GL(n,F )

kI(xa, y)| det(a)|n+1
2 γ(a)d×a

a↔a−1

=
∫

GL(n,F )

kI(xa−1, y)| det(a)|−n+1
2 γ(a−1)d×a

=
∫

GL(n,F )

δ(yx − a)| det(a)|n+1
2 γ(a−1)d×a (by (3.4))

=
∫

GL(n,F )

δ(yx − a)| det(a)| 1−n
2 γ(a−1)da.

Comparing this last expression with the kernel of the Fourier transform of the previous
paragraph

kF (x, y) =
∫

Mn(F )

δ(yx − a)e−2iπ Re(Tr(a))da,

it is easily seen that the result follows from choosing

γn(a) = | det(a)| 1−n
2 e−2iπ Re(Tr(a−1)).
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Pursuing the comparison with the case of SL(2) suggested in Remark 3.1, we observe that
this result is consistent with the one obtained in the case n = 1 in [1, Theorem 3.2], where
the composition Iw ◦Fw was proved to be equal to a convolution operator by a distribution
analogous to γ1.

4 The Non-archimedean Case

The purpose of this last paragraph is to describe how the construction and the main result
presented above extend to the non-archimedean case.

Let F be a non-archimedean local field, that is, a finite extension of Qp or Fp((t)). We fix a
non-trivial continuous character χ : F → U(1) and a Haar measure dx on F so that the Fourier
transform Fχ defined by

Fχ(f)(y) =
∫

F

f(x)χ(xy)dx

is an isometry of L2(F ).
A norm |·|F is fixed on F that coincides with the modular function related to the Haar

measure (see [20]). It is specified by the relation |π|F = q−1, where π is a uniformizer and q is
the cardinality of the residual field.

The structure theory of the group GF remains the same in this context. The definitions of
functional spaces in the case of a totally discontinuous space T need to be adapted as follows:
Cc(T ) still denotes a continuous function with compact support on T , while C∞

c (T ) (and S(T ))
denotes a locally constant compactly supported function on T . Up to these modifications and
replacing absolute values by |·|F everywhere, the Hilbert module construction of Section 2.3
providing the reduced C∗-algebraic universal principal series can be carried out in the same
way.

Finally, the proof of the analogue of Proposition 2.2 is straightforward and the normalization
process can be achieved by defining the Fourier transform F between S(X) and S(X) by

F f(y) =
∫

X

f(x)χ (Tr(yx)) dx, (4.1)

then extending it as an operator of Hilbert modules E(G/N) → E(G/N) as in Theorem 3.1.
The normalising function γn is then given by

γn(a) = | det(a)|
1−n

2
F χ(Tr(a−1)) (4.2)

for any a in L.

Concluding remark The point of view on principal series and intertwining operators
presented here relates to other works on the subject. More precisely, the distribution γn in (4.2)
allows to recover local γ factors introduced by Godement and Jacquet in [6] and the Hilbert
module operator obtained from (4.1) by Theorem 3.1 is a way of considering simultaneously a
whole family of the normalized intertwiners studied by Shahidi in [17]. The connection with
these results will be studied in detail in future works.
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