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Abstract In this paper, the author studies the coarse embedding into uniformly convex
Banach spaces. The author proves that the property of coarse embedding into Banach
spaces can be preserved under taking the union of the metric spaces under certain condi-
tions. As an application, for a group G strongly relatively hyperbolic to a subgroup H ,
the author proves that B(n) = {g ∈ G | |g|S∪H ≤ n} admits a coarse embedding into a
uniformly convex Banach space if H does.
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1 Introduction

After Gromov pointed out that the coarse embedding (also referred to as the uniform em-
bedding) should be relevant to Novikov conjecture (see [7, 9]), Yu introduced the concept of
property A for discrete metric spaces (see [16]). A metric space with property A admits a coarse
embedding into a Hilbert space. And Yu proved that the coarse Baum-Connes conjecture holds
for the metric spaces with bounded geometry, which admits a coarse embedding into a Hilbert
space (see [16]). Subsequently, Kasparov and Yu proved that the coarse geometric Novikov
conjecture holds for discrete metric spaces with bounded geometry, which admits a coarse em-
bedding into a uniformly convex Banach space (see [12]). Recently, Chen, Wang and Yu showed
that the maximal coarse Baum-Connes conjecture holds for metric spaces with bounded geom-
etry, which admits a fibred coarse embedding into Hilbert space (see [3]). Coarse embedding
into a Hilbert space has been studied deeply these years (see [4]). But there are less results on
the coarse embedding into a uniformly convex Banach space. Also, Lafforgue constructed an
example which can not be coarsely embedded into uniformly convex Banach spaces (see [13]).
We should mention that Brown and Guentner proved that every metric space with bounded
geometry admits a coarse embedding into a strictly convex and reflexive Banach space (see [2]).

In this paper, we study the coarse embedding into a uniformly convex Banach space. Our
first theorem is as follows.
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Theorem 1.1 Let X be a metric space and E be a Banach space, and 1 ≤ p < +∞. If there
exists some δ > 0, such that for every R > 0, ε > 0, there exists a map ϕ : X → E satisfying:

(1) sup{‖ϕ(x) − ϕ(y)‖ : x, y ∈ X, d(x, y) ≤ R} ≤ ε;
(2) for every m ∈ N, sup{‖ϕ(x) − ϕ(y)‖ : x, y ∈ X, d(x, y) ≤ m} < +∞;
(3) lim

s→+∞ inf{‖ϕ(x) − ϕ(y)‖ : x, y ∈ X, d(x, y) ≥ s} ≥ δ,

then X admits a coarse embedding into Ep.

The conditions above are generalized from the conditions for coarse embedding into a Hilbert
space (see [4]). We then study the coarse embedding under the gluing property. It is easy to
prove in the case of Hilbert space, but more complicated in the case of Banach space. We only
obtained some partial results.

Proposition 1.1 Let X be a metric space, and X = X1 ∪ X2, such that X1, X2 admit a
coarse embedding into a Banach space E and 1 ≤ p < +∞. If for any s > 0, there exists a
bounded set Cs such that the sets X1\Cs and X2\Cs are s-separated, then X admits a coarse
embedding into Ep.

Recall that two subsets X1, X2 of a metric space X are s-separated if

d(X1, X2) = inf{d(x, y), x ∈ X1, y ∈ X2} ≥ s.

Gromov introduces the following property for metric space (see [9]).

Definition 1.1 A metric space X is called long-range disconnected at infinity if for every
n ∈ N, there exist two subsets Xn

1 and Xn
2 in X such that:

(1) d(Xn
1 , X

n
2 ) = inf{d(x1, x2) | x1 ∈ Xn

1 , x2 ∈ Xn
2 } ≥ d;

(2) Xn
1 and Xn

2 cover almost all X, i.e., X\(Xn
1 ∪Xn

2 ) is bounded.

Proposition 1.2 If X is long-range disconnected at infinity and all {Xn
i } are equivalently

coarsely embedded into a Banach space E by coarse maps {ϕni }, then X admits a coarse em-
bedding into Ep.

In the case of infinite union, we have the following result.

Proposition 1.3 Let X be a metric space with X =
⋃
i∈I

Xi, and for any s > 0, there exists

a bounded set Cs such that Xi∩Cs 
= ∅ for every i ∈ I and {Xi\Cs}i∈I are pairwise s-separated.
If {Xi} can be equivalently coarsely embedded into E, then X can be coarsely embedded into
Ep.

As an application, we study the coarse embeddability of the relative hyperbolic group and
prove the following theorem.

Theorem 1.2 If a group G is strongly relatively hyperbolic to a subgroup H and H admits
a coarse embedding into a uniformly convex Banach space E, let B(n) = {g ∈ G | |g|S∪H ≤ n},
and then B(n) admits a coarse embedding into Ep.

2 Coarse Geometry and Convex Banach Space

We first recall some definitions in coarse geometry (see [15]).
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Definition 2.1 Let X,Y be metric spaces, and f be a map from X to Y :

(1) The map f is proper, if the inverse image, under f , of any bounded subset of Y , is a
bounded subset of X.

(2) The map is bornologous, if for every R > 0, there exists an S > 0, such that d(x, y) ≤ R

implies d(f(x), f(y)) ≤ S.

(3) f is coarse if it is proper and bornologous.

We say that X admits a coarse embedding into Y if there exists a coarse map f : X → Y .
We usually consider the case where Y is a Banach space.

Definition 2.2 A family of metric spaces {Xi}i∈I is called equivalently coarsely embedded
into a metric space Y if there exists a family of maps {fi : Xi → Y }i∈I satisfying:

(1) For each s ≥ 0, there exists some S ≥ 0, such that d(xi, x′i) ≤ s implies d(fi(xi), fi(x′i)) ≤
S for all i ∈ I.

(2) For each r ≥ 0, there exists some R ≥ 0, such that d(fi(xi), fi(x′i)) ≤ r implies
d(xi, x′i) ≤ R for all i ∈ I.

Uniformly the convex Banach space is an important object to study in classical Banach
space theory (see [10]).

Definition 2.3 A Banach space E is called uniformly convex if for any ε > 0, there exists
a δ > 0, for any x, y ∈ E with ‖x‖ = ‖y‖ = 1 and ‖x− y‖ ≥ ε, then

∥∥x+y
2

∥∥ ≤ 1 − δ.

We know that �p (1 < p < +∞) is a uniformly convex Banach space. If E is a uniformly
convex Banach space, let

Ep =
{
x = (xi)i∈N | xi ∈ E,

∑
n∈N

‖xi‖p < +∞
}

with the norm ‖x‖ =
( ∑
n∈N

‖xi‖p
) 1

p . If 1 < p < +∞, then Ep is also a uniformly convex Banach

space.

3 Coarse Embedding into Uniformly Convex Banach Space

We first rewrite the condition for coarse embedding into a uniformly convex Banach space.

Theorem 3.1 Let X be a metric space and E be a Banach space, and 1 ≤ p < +∞. If there
exists some δ > 0 such that for every R > 0, ε > 0, there exists a map ϕ : X → E satisfying:

(1) sup{‖ϕ(x) − ϕ(y)‖ : x, y ∈ X, d(x, y) ≤ R} ≤ ε;

(2) for each m ∈ N, sup{‖ϕ(x) − ϕ(y)‖ : x, y ∈ X, d(x, y) ≤ m} < +∞;

(3) lim
s→+∞ inf{‖ϕ(x) − ϕ(y)‖ : x, y ∈ X, d(x, y) ≥ s} ≥ δ,

then X admits a coarse embedding into Ep.

Proof For n ∈ N, let Rn = n, εn = 1
2n , and there exists a ϕn : X → E satisfying the

above conditions. And we can find an sn such that ‖ϕn(x) − ϕn(y)‖ > δ
2 if d(x, y) ≥ sn, and
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we can choose {sn} to be an increasing sequence. Fix a point x0 ∈ X , define

ϕ : X → Ep,

x �→
∞⊕
n=1

(ϕn(x) − ϕn(x0)).

It is easy to see that ‖ϕ(x)‖ < +∞ for each x ∈ X . We claim that ϕ is coarse.
(1) For any x, y ∈ X , assume k − 1 < d(x, y) ≤ k, then

‖ϕ(x) − ϕ(y)‖p =
+∞∑
n=1

‖ϕn(x) − ϕn(y)‖p

=
k−1∑
n=1

‖ϕn(x) − ϕn(y)‖p +
+∞∑
n=k

‖ϕn(x) − ϕn(y)‖p

≤
k−1∑
n=1

‖ϕn(x) − ϕn(y)‖p +
+∞∑
n=k

1
2np

.

Let Ckn = sup{‖ϕn(x) − ϕn(y)‖ , d(x, y) ≤ k}, then

‖ϕ(x) − ϕ(y)‖p ≤
k−1∑
n=1

(Ckn)p + 1.

(2) For any x, y ∈ X , assume sk−1 ≤ d(x, y) ≤ sk, then

‖ϕ(x) − ϕ(y)‖p =
∞∑
n=1

‖ϕn(x) − ϕn(y)‖p ≥
k−1∑
n=1

‖ϕn(x) − ϕn(y)‖p > (k − 1)
(δ

2

)p
.

d(x, y) → +∞ implies k → +∞, so (k − 1)
(
δ
2

)p → +∞.

Example 3.1 �p (1 ≤ p < +∞) satisfies the above conditions for E = �p.

Proof Let δ = 1, ∀R > 0 and ε > 0, choose a natural number h such that R
h < ε and

define ϕ : �p → �p by ϕ(x) = x
h . Then

(1) sup{‖ϕ(x) − ϕ(y)‖ , d(x, y) ≤ R} = sup{ 1
h‖x− y‖, d(x, y) ≤ R} < ε.

(2) For every m ∈ N, sup{‖ϕ(x) − ϕ(y)‖, d(x, y) ≤ m} = m
h < +∞.

(3) inf{‖ϕ(x) − ϕ(y)‖, d(x, y) ≥ s} = s
h , lim

s→+∞
s
h = +∞.

Johnson and Randrianarivony proved that �p (p > 2) does not admit a coarse embedding
into a Hilbert space (see [11]). So the conditions for a coarse embedding into a uniformly convex
Banach space E in the above theorem is very different from the coarse embedding into a Hilbert
space (see [4]).

Example 3.2 IfX admits a coarse embedding into �p, thenX satisfies the above conditions.

Proof In fact, X admits a coarse embedding into Y is equivalent to that there exists
a ψ : X → Y and nondecreasing functions ρ± : [0,∞) → [0,∞), satisfying ρ−(d(x, y)) ≤
d(ψ(x) − ψ(y)) ≤ ρ+(d(x, y)) and lim

r→+∞ ρ−(r) = +∞.
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Fix such a map ψ and for every R > 0, ε > 0, choose a nature number h such that ρ+(R)
h < ε,

and define ϕ : X → �p by ϕ(x) = ψ(x)
h . Then it is easy to verify the conditions in Theorem 3.1

for ϕ.

Remark 3.1 (a) We can see from the proof that this δ is not important. We can take it
to be infinity in general, i.e., to replace the third condition with

lim
s→+∞ inf{‖ϕ(x) − ϕ(y)‖p : x, y ∈ X, d(x, y) ≥ s} = +∞.

(b) If we take E = �p (1 < p < +∞) and change the condition (2) of Theorem 3.1 with

sup{‖ϕ(x) − ϕ(y)‖ : x, y ∈ X, d(x, y) ≤ m} < L0, ∀m ∈ N

for some fixed L0, by the Mazur map mentioned in [1], then it can be embedded into �2, a
Hilbert space.

4 On the Union of Metric Spaces

In this section, we study the coarse embeddability under taking the union of metric spaces.

Proposition 4.1 Let X be a metric space, and X = X1 ∪ X2, such that X1, X2 admit a
coarse embedding into a Banach space E and 1 ≤ p < +∞. If for any s > 0, there exists a
bounded set Cs such that X1\Cs and X2\Cs are s-separated, then X admits a coarse embedding
into Ep.

Proof We first assume that X1 ∩ X2 
= ∅. Take an x0 ∈ X1 ∩X2, and replace Cs with
Cs ∪ {x0} if necessary, so then we can assume that x0 ∈ Cs for any s.

For any R ≥ 0, ε ≥ 0, there exists a bounded set C2R such that Xi\C2R is 2R-separated.
Suppose C2R ⊂ B(x0, k) for some k. As Xi admits a coarse embedding into E, we can find a
number r > 2R+ k and a map ϕir, such that

(1) sup{‖ϕir(x) − ϕir(y)‖ : x, y ∈Mi, d(x, y) ≤ r} ≤ ε,

(2) ∀m ∈ N, sup{‖ϕir(x) − ϕir(y)‖ : x, y ∈Mi, d(x, y) ≤ m} < +∞,

(3) lim
s→+∞ inf{‖ϕir(x) − ϕir(y)‖ : x, y ∈Mi, d(x, y) ≥ S} = +∞.

We define

ϕ : X → (E ⊕ E)p,

x �→ (ϕ1
r(a) − ϕ1

r(x0), 0), if x ∈M1\C2R,

y �→ (0, ϕ2
r(b) − ϕ2

r(x0)), if y ∈M2\C2R,

z �→ (0, 0), if z ∈ C2R.

We need to verify the conditions in Theorem 3.1.
(i) For d(x, y) ≤ R, if x ∈ M1\C2R, y ∈ C2R, then d(x0, y) ≤ k, and we have d(x, x0) ≤

d(x, y) + d(y, x0) ≤ k +R, so

‖ϕ(x) − ϕ(y)‖ = ‖ϕ1
r(x) − ϕ1

r(x0)‖ < ε.

If x ∈M2\C2R, y ∈ C2R or x, y ∈ C2R or x, y ∈Mi\C2R, it is similar to prove ‖ϕ(x) − ϕ(y)‖ <
ε.
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(ii) For ∀m > 0, there exists a bounded set Cm, such that Xi\Cm is m-separated, and we
can find a number h such that Cm ⊂ B(C2R, h). For d(x, y) < m, if there exists i, such that
x ∈ Xi\C2R, y ∈ Xi\C2R, then

‖ϕ(x) − ϕ(y)‖ = ‖ϕir(x) − ϕir(y)‖.

If x ∈ Xi\C2R, y ∈ C2R, then d(x, x0) ≤ d(x, y) + d(y, x0) ≤ m+ k. Then

‖ϕ(x) − ϕ(y)‖ = ‖ϕir(x) − ϕir(x0)‖.

If x ∈ X1\C2R, y ∈ X2\C2R for d(x, y) ≤ m, then either x ∈ Cm or y ∈ Cm. Suppose x ∈ Cm,
so d(x, x0) ≤ h+ k; d(y, x0) ≤ h+ k +m. Then

‖ϕ(x) − ϕ(y)‖ = (‖ϕ1
r(x) − ϕ1

r(x0)‖p + ‖ϕ2
r(y) − ϕ2

r(x0)‖p) 1
p .

Let t = h+m+ k. We get

sup{‖ϕ(x) − ϕ(y)‖ , d(x, y) ≤ m}
≤ max

{
sup

d(x,y)≤t
‖ϕir(x) − ϕir(y)‖,

sup
d(x,x0)≤t

d(y,x0)≤t

{(‖ϕ1
r(x) − ϕ1

r(x0)‖p + ‖ϕ2
r(y) − ϕ2

r(x0)‖p) 1
p }

}

< +∞.

(iii) Let s = d(x, y), and when s tends to infinity, if x, y ∈ Xi\C2R, then‖ϕir(x) − ϕir(y)‖ →
+∞ by the property of ϕir. If x ∈ Xi\C2R, y ∈ C2R, then for d(y, x0) < k, d(x, y) → +∞
implies d(x, x0) → +∞, so ‖ϕ(x) − ϕ(y)‖ = ‖ϕir(x) − ϕir(x0)‖ → +∞. If x ∈ X1\C2R, y ∈
X2\C2R, d(x, y) → +∞ implies either d(x, x0) → +∞ or d(y, x0) → +∞, thus

‖ϕ(x) − ϕ(y)‖p = (‖ϕ1
r(x) − ϕ1

r(x0)‖p + ‖ϕ2
r(y) − ϕ2

r(x0)‖p) 1
p → +∞.

Applying Theorem 3.1, we get the desired result.
In the case of X1 ∩X2 = ∅, we can assume that Xi ∩Cs 
= ∅ (∀s > 0). Take x0 ∈ X1 ∩C2R,

y0 ∈ X2 ∩ C2R, and define

ϕ : X → E ⊕ E,

x �→ (ϕ1
r(a) − ϕ1

r(x0), 0), if x ∈ X1\C2R,

y �→ (0, ϕ2
r(b) − ϕ2

r(y0)), if y ∈ X2\C2R,

z �→ (0, 0), if z ∈ C2R.

The proof follows.

Proposition 4.2 If X is long-range disconnected at infinity and all {Xn
i } are equivalently

coarse embedded into a Banach space E by coarse maps {ϕni }, then X admits a coarse embedding
into Ep.
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Proof For any R ≥ 0, ε ≥ 0, choose a number n ∈ N such that n > R. Choose a point
xn ∈ X\(Xn

1 ∪Xn
2 ), and define

ϕ : X → (E ⊕ E)p,

x �→ (ϕn1 (a) − ϕn1 (xn), 0), if x ∈ Xn
1 ,

y �→ (0, ϕn2 (b) − ϕn2 (xn)), if y ∈ Xn
2 ,

z �→ (0, 0), otherwise.

Using the similar argument as in Proposition 4.1, it can be shown that ϕ satisfies the condition
of Theorem 3.1.

Proposition 4.3 Let X =
⋃
i∈I

Xi be a metric space. If for any s > 0, there exists a bounded

set Cs with Xi ∩ Cs 
= ∅ for every i ∈ I and {Xi\Cs} are pairwise s-separated. If Xi can be
equivalently coarsely embedded into a Banach space E, then X can be coarsely embedded into
Ep.

Proof ∀R > 0, ε > 0, there exists a bounded set CR such that Xi\CR is R-separated.
Suppose that CR ⊂ B(x0, k) for some k, and take an r > k + 2R. Since {Xi} are equivalently
coarsely embedded into E, we can find ϕir : Xi → E, such that

(1) sup
i

sup{‖ ϕir(x) − ϕir(y) ‖< ε, x, y ∈ Xi, d(x, y) < r} < ε,

(2) sup
i

sup{‖ ϕir(x) − ϕir(y) ‖, x, y ∈ Xi, d(x, y) < m} <∞, ∀m ∈ N,

(3) lim
s→∞ inf

i
inf{‖ ϕir(x) − ϕir(y) ‖, x, y ∈ Xi, d(x, y) > s} = ∞.

For each i, fix an xi ∈ Xi ∩ CR. Define

ϕ : X → Ep,

a �→ (0, · · · , ϕir(x) − ϕir(xi), 0 · · · )
ith item

, if a ∈ Xi\CR,

b �→ (0, · · · , 0), if b ∈ CR.

The proof follows using the similar argument as in Proposition 4.1.

5 Relative Hyperbolic Group

Let G be a finitely generated group with generating set S (closed under taking the inverse),
and then G is a proper metric space with word-length metric induced by the generating set
S. Let H be a finitely generated subgroup of G. We denoted H\{e} by H . Then the Cayley
graphs (G,S) and (G,S ∪ H ) are both metric spaces with word-length metrics dS and dS∪H ,
respectively.

Definition 5.1 Let p be a path in (G,S∪H ). An H -component of p is a maximal sub-path
of p contained in the same left coset gH. The path is said to be without backtracking, if it
does not have two distinct H -components in the same coset gHi.

Definition 5.2 A path-metric space X is hyperbolic if there exists some δ > 0 such that
the δ-neigborhood of any two sides of a geodesic triangle contains the third side. The group G
is said to be weakly hyperbolic relative to H if the Cayley graph (G,S ∪ H ) is hyperbolic.
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Definition 5.3 (see [6]) We say the pair (G,H) satisfies the bounded coset penetration
property (BCP for short), if for every R ≥ 0, there exists a = a(R) such that p, q are two
geodesics in (G,S ∪ H ) with p− = q− and dS(p+, q+) ≤ R. So then

(1) suppose that p has an H -component s with dS(s−, s+) ≥ a(R), and then q has an
H -component contained in the same left coset of s.

(2) Suppose s, t that are two H -components of p, q respectively, contained in the same left
coset, and then dS(s−, t−) ≤ a(R), dS(s+, t+) ≤ a(R).

Definition 5.4 The group G is strongly relatively hyperbolic to H, if it is weakly hyperbolic
to H and satisfies BCP .

Denote B(n) = {g ∈ G | |g|S∪H ≤ n}. Osin proved in [14] that B(n) has an asymptotic
dimension at most d if the subgroup H has an asymptotic dimension at most d. Dadarlat and
Guentner proved that G admits a coarse embedding into a Hilbert space if H admits a coarse
embedding into a Hilbert space (see [5]). Fukaya and Oguni proved the coarse Baum-Connes
conjecture holds for G if H does (see [8]). We prove the following theorem.

Theorem 5.1 If H admits a coarse embedding into E, then B(n) admits a coarse embedding
into Ep for each n ∈ N.

Proof We proceed by induction on n. First B(0) = {e} is trivial. B(1) = H ∪ S is just in
the 1-neighborhood of H , so it can be coarsely embedded. We assume that B(n−1) is coarsely
embedded into �p. We know

B(n) =
( ⋃
x∈S

B(n− 1)x
)
∪B(n− 1)H.

Since B(n−1)x is just in the 1-neighborhood of B(n−1) in (G,S), it can be coarsely embedded.
We are concerned about B(n − 1)H . we can find a subset R(n− 1) in B(n − 1) such that for
any b ∈ B(n− 1), bH = gH for a unique g ∈ R(n− 1). Thus

B(n− 1)H =
⊔

g∈R(n−1)

gH.

∀R ≥ 0, ε ≥ 0, we have an a(R) from the BCP . We can assume that a(R) ≥ R and a(R) is
increasing. Let TR = {g ∈ G | |g|S ≤ a(R)}. Let YR = B(n− 1)TR, and then Osin proved that
{gH\YR}g∈R(n−1) is R-separated (see [14]). We find maps ϕ1 and ϕ2 for embedding of YR and
H , respectively, such that

(1) sup{‖ϕi(x) − ϕi(y)‖p : x, y ∈ X, dS(x, y) ≤ 3a(R)} ≤ ε
2 ,

(2) Cm = sup{‖ϕi(x) − ϕi(y)‖p : x, y ∈ X, dS(x, y) ≤ m} < +∞, ∀m ∈ N,
(3) lim

t→+∞ inf{‖ϕi(x) − ϕi(y)‖P : x, y ∈ X, dS(x, y) ≥ t} ≥ δ.

We define a map:
ϕ : B(n− 1)H → E ⊕

( ⊕
gi∈R(n−1)

E
)

as following.
For x ∈ giH\YR, fix the shortest word Ai for gi in (G,S ∪ H ). Let Ai = g′ih

′
i, where

h′i is the H -component in giH . Replacing gi with g′i, we can assume that gi does not have
an H -component in giH . Then x = gixi is a geodesic in (G,S ∪ H ) (see [14]). We define
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ϕ(x) = ϕ1(gi) ⊕ ϕ2(xi), where ϕ2(xi) is in the gi item in
⊕

gi∈R(n−1)

E. Let ϕ(y) = ϕ1(y) for

y ∈ YR. We need to verify the conditions in Theorem 3.1.
(1) For dS(x, y) ≤ R, we have two cases. If x, y ∈ YR, then ‖ϕ1(x) − ϕ1(y)‖ ≤ ε. If

x ∈ giH\YR, we have y ∈ giH by BCP.
If y ∈ giH\YR, let y = giyi, x = gixi be the geodesics in (G,S ∪ H ). Thus dS(xi, yi) =

dS(x, y) ≤ R and ‖ϕ(x) − ϕ(y)‖ = ‖ϕ2(xi) − ϕ2(yi)‖ < ε.

Otherwise, y ∈ giH ∩ YR, and let y = g′iy
′
i be a geodesic in (G,S ∪ H ). For dS(x, y) ≤ R,

we have dS(gi, g′i) ≤ a(R) and |yi|s ≤ a(R). Then

dS(gi, y) ≤ dS(gi, g′i) + dS(g′i, y) ≤ 2a(R),

|xi|s = dS(gi, x) ≤ dS(gi, y) + dS(y, x) ≤ 3a(R).

We have
‖ϕ(x) − ϕ(y)‖ = (‖ϕ(gi) − ϕ(y)‖p + ‖ϕ2(xi)‖p) 1

p ≤ ε.

(2) For m ∈ N and dS(x, y) ≤ m, let Tm = {g | |g|S ≤ a(m)} and Ym = B(n− 1)Tm. Then
{giH\Ym} is m-separated. If x, y are both in YR or in giH for some i, it is easy to see that
‖ϕ(x) − ϕ(y)‖ is bounded. So we only need to consider x ∈ giH , y ∈ gjH with i 
= j. For
dS(x, y) ≤ m, either x or y is in Ym. We assume y ∈ Ym. For x ∈ giH ∩ (Ym\YR), let x = gixi

be a geodesic in (G,S ∪ H ). We have the following two cases.
Case a. If y ∈ gjH ∩ (Ym\YR), let y = gjyj be geodesics in (G,S ∪ H ). Then

‖ϕ(x) − ϕ(y)‖p = ‖ϕ1(gi) − ϕ1(gj)‖p + ‖ϕ2(xi)‖p + ‖ϕ2(yj)‖p .

From dS(gi, gj) ≤ a(m), |x|S ≤ a(m), and |yj |S ≤ a(m), we know ‖ϕ(x) − ϕ(y)‖ ≤ 3Cm.
Case b. If y ∈ gjH∩YR, let y = g′iy

′
i be the geodesic in (G,S∪H ) with yi an H -component

and |y′i|S ≤ a(R). For dS(x, y), then dS(gi, g′i) ≤ a(m) and dS(gi, y) ≤ 2a(m), |x|S ≤ 3a(m).
Then

‖ϕ(x) − ϕ(y)‖p = ‖ϕ1(gi) − ϕ1(y)‖p + ‖ϕ2(xi)‖p .
We have that ‖ϕ(x) − ϕ(y)‖ ≤ 2Cm.

(3) We have dS(x, y) ≤ l(xg) + dS(gi, gj) + l(yg), and thus that dS(x, y) tends to infinity
implies at least term must tend to infinity. So

lim
t→+∞ inf{‖ϕ(x) − ϕ(y)‖ , dS(x, y) ≥ t} = ∞.

By Theorem 3.1, B(n) admits a coarse embedding into Ep.

We should mention that the problem whether G admits a coarse embedding into a uniformly
Banach space if H dose is still open.
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