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Abstract Let H be an extension of a finite group Q by a finite group G. Inspired by the
results of duality theorems for étale gerbes on orbifolds, the authors describe the number
of conjugacy classes of H that map to the same conjugacy class of Q. Furthermore, a
generalization of the orthogonality relation between characters of G is proved.
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1 Introduction

Extensions of finite groups play an important role in the theory of finite groups. For example,
the composition serious of a finite group H consists of a sequence of subgroups Hi

1 = H0 � H1 � H2 � · · · � Hn = H,

such that Hi is a strict normal subgroup of Hi+1 with a simple quotient group Hi+1/Hi, for
i = 0, · · · , n − 1. Therefore, with the classification theorem of finite simple groups, the study
of extensions of finite groups would describe and classify all finite groups.

The structure of extensions of finite groups has been studied for a long time (see [7]). In this
paper, we look at extensions of finite groups from a geometric point of view. A finite group G

is a groupoid with one unit. In the language of stacks (see [1]), such a group(oid) corresponds
to the classifying stack BG of principal G-bundles. An extension of a finite group Q by a finite
group G

1 → G → H → Q → 1

is equivalent to a G-gerbe
BH → BQ,

a bundle of BG over BQ (see [5]).
Our study of extensions of finite groups is motivated by a conjecture in mathematical physics

(see [4]). Let Ĝ be the finite set of isomorphism classes of irreducible unitary representations
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of G. The above extension H of Q by G gives a natural action of Q on Ĝ. Consider the
transformation groupoid Ĝ�Q ⇒ Ĝ. There is a canonical class c in H2(Ĝ�Q, U(1)) associated
to the extension H . The decomposition conjecture in [4] suggests that the geometry of a G-
gerbe associated to the extension H is equivalent to the geometry of the orbifold associated
to the groupoid Ĝ � Q twisted by c. We studied this conjecture in [8] from the view point
of noncommutative geometry. In particular, we proved that the group algebra of H is Morita
equivalent to the c-twisted groupoid algebra of Ĝ � Q. The details of this are reviewed in
Section 2.

In this short note, we present two results from our analysis of the structure of CH . One
result concerns the relations between conjugacy classes of H and Q (see Section 3). The other
result concerns a generalized orthogonality relation between characters of G (see Section 4).

2 Group Algebras of Finite Group Extensions

Consider an extension of finite groups as in

1 −→ G
i−→ H

j−→ Q −→ 1. (2.1)

As part of our study of gerbe duality, the structure of the group algebra CH is analyzed in [8].
We briefly recall the results.

Choose a section s : Q → H of j : H → Q above such that j ◦ s = id, and s(1) = 1. Since
G and Q are finite groups, such a section s always exists. For q1, q2 ∈ Q, define τ(q1, q2) :=
s(q1)s(q2)s(q1q2)−1. It is easy to see that τ(q1, q2) ∈ ker(j) = G, so we obtain

τ : Q × Q → G.

Clearly τ is trivial (i.e., τ(−,−) = 1) if and only if s : Q → H is a group homomorphism, which
in turn is equivalent to the extension (2.1) being a split extension.

The definition of τ may be written as

s(q1)s(q2) = τ(q1, q2)s(q1q2). (2.2)

By associativity, we have (s(q1)s(q2))s(q3) = s(q1)(s(q2)s(q3)). It follows that

τ(q1, q2)τ(q1q2, q3) = s(q1)τ(q2, q3)s(q1)−1τ(q1, q2q3). (2.3)

Given the section s, we can define a set-theoretic bijection between H and G × Q:

α : H → G × Q, α(h) := (hs(j(h))−1, j(h)).

The inverse of α is
G × Q → H, (g, q) �→ i(g)s(q).

The group structure on H induces a new group structure · on G×Q via α. This group structure
is given by

(g1, q1) · (g2, q2) = (g1 Ads(q1)(g2)τ(q1, q2), q1q2), (2.4)

where Adh(·) denotes the conjugation action of an element h ∈ H on G, which is an automor-
phism of G because G is normal in H . Denote by

G �s,τ Q
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the set G×Q with the group structure given by (2.4). The definition implies that α is a group
isomorphism:

α : H → G �s,τ Q.

It is easy to check that different choices of the section s yield isomorphic groups G �s,τ Q.
The group isomorphism α naturally induces an isomorphism of group algebras

α : CH
�−→ C(G �s,τ Q).

Given s and τ , we let an element q ∈ Q act on CG by conjugation by s(q). This does not
give an action of Q on CG, and the failure of this to be an action is governed by τ . In other
words, this defines a τ -twisted action of Q on CG. Hence the group algebra C(G �s,τ Q) can
be written as a twisted crossed product algebra CG �s,τ Q.

Let Ĝ be the set of isomorphism classes of irreducible complex linear representations of G.
Furthermore, for every element [ρ] in Ĝ, we choose an irreducible representation in the class [ρ]
denoted by

ρ : G → End(Vρ),

where Vρ is a certain finite dimensional C-vector space. The group algebra CG is isomorphic
to a direct sum of matrix algebras

⊕
[ρ]∈Ĝ

End(Vρ):

β : CG
�−→

⊕
[ρ]∈Ĝ

End(Vρ), g �→ (ρ(g))[ρ]∈Ĝ.

This is well-known (see e.g. [3, Proposition 3.29]).
Next we define an action of Q on Ĝ. Let ρ : G → End(Vρ) be a C-linear representation of

G. Given q ∈ Q, we obtain another G representation ρ̃ defined by

G � g �→ ρ(Ads(q)(g)).

It is easy to see that ρ̃ is irreducible if and only if ρ is. If s′ : Q → H is another section of j,
then we have ρ ◦ Ads(q) = ρ ◦ Ads′(q) Ads′(q)−1s(q). Since s′(q)−1s(q) ∈ G, Ads′(q)−1s(q) is an
inner automorphism of G. Hence ρ ◦ Ads(q) and ρ ◦ Ads′(q) are isomorphic G-representations.
Therefore the assignment (q, ρ) �→ ρ̃ yields a right Q-action on Ĝ; namely, q ∈ Q sends the
class [ρ] ∈ Ĝ to the class [ρ̃] ∈ Ĝ. For notational convenience, we write this right action as a
left action. We denote the image of the isomorphism class [ρ] ∈ Ĝ under the action by q by
q([ρ]). By abuse of notation, we denote the chosen irreducible G-representation that represents
the class q([ρ]) also by q([ρ]) : G → End(Vq([ρ])). Let

Ĝ � Q := (Ĝ × Q ⇒ Ĝ)

be the groupoid associated to this Q-action on Ĝ.
By construction, the representation q([ρ]) : G → End(Vq([ρ])) is equivalent to the repre-

sentation ρ̃ : G → End(Vρ) defined by g �→ ρ(Ads(q)(g)). Therefore there exists a C-linear
isomorphism

T [ρ]
q : Vρ → Vq([ρ]),

that intertwines the two representations, namely

ρ(Ads(q)(g)) = T [ρ]
q

−1 ◦ q([ρ])(g) ◦ T [ρ]
q .
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We may choose T
[ρ]
1 to be the identity map on Vρ. It can be shown that there are constants

c[ρ](q1, q2) such that T
q1([ρ])
q2 ◦ T

[ρ]
q1 ◦ ρ(τ(q1, q2)) ◦ T

[ρ]
q1q2

−1
is c[ρ](q1, q2) times the identity map.

In other words,

T q1([ρ])
q2

◦ T [ρ]
q1

= c[ρ](q1, q2)T [ρ]
q1q2

ρ(τ(q1, q2))−1. (2.5)

Since the collection {ρ} consists of unitary representations, the isomorphisms T
[ρ]
q can also be

chosen to be unitary. Therefore, c[ρ](q1, q2) actually takes value in U(1). By [8, Proposition
3.1], the function

c : Ĝ × Q × Q → U(1), ([ρ], q1, q2) �→ c[ρ](q1, q2)

is a 2-cocycle on the groupoid Ĝ � Q such that c[ρ](1, q) = c[ρ](q, 1) = 1 for any [ρ] ∈ Ĝ, q ∈ Q.
The cohomology class defined by c is independent of the choices of the section s and the operator
T

[ρ]
q .

Let C(Ĝ � Q, c) be the twisted groupoid algebra associated to the cocycle c on Ĝ � Q. We
explain the definition of C(Ĝ�Q, c) and refer the readers to [9] for more details. By definition,
C(Ĝ � Q, c) is the set of C(Ĝ)-valued functions on Q, i.e., C-valued functions on Ĝ × Q. By
abuse of notation, for ([ρ], q) ∈ Ĝ × Q, we also denote by ([ρ], q) the function on Ĝ × Q which
takes value 1 at ([ρ], q) and 0 elsewhere. The collection {([ρ], q)} of functions on Ĝ × Q forms
an additive basis of C(Ĝ � Q, c). The set C(Ĝ � Q, c) is endowed with a product structure
defined by

([ρ], q) ◦ ([ρ′], q′) =
{

c[ρ](q, q′)([ρ], qq′), if [ρ′] = q([ρ]),
0, otherwise.

The cocycle condition of c implies that this product is associative.
Let

⊕
[ρ]∈Ĝ

End(Vρ)⊗CQ be the C-vector space spanned by elements of the form (xρ, q), where

xρ is an element in End(Vρ) with [ρ] ∈ Ĝ and q ∈ Q. We equip this space with a product ◦
defined as follows:

(xρ1 , q1) ◦ (x̃ρ2 , q2) :=

{
(xρ1T

[ρ1]
q1

−1
x̃q1([ρ1])T

[ρ1]
q1 ρ1(τ(q1, q2)), q1q2), if [ρ2] = q1([ρ1]),

0, otherwise.

Let ⊕
[ρ]

End(Vρ) �T,τ Q

be the space
⊕

[ρ]∈Ĝ

End(Vρ) ⊗ CQ with the product ◦ defined above. We call this the twisted

crossed product algebra. This algebra plays an important role in the following structure result
on the group algebra CH .

Proposition 2.1 (see [8, Proposition 3.2]) The map

κ : G × Q � (g, q) �→
∑

[ρ]∈Ĝ

(ρ(g), q)

defines an algebra isomorphism from the group algebra CG�s,τ Q to the twisted crossed product
algebra

⊕
[ρ]

End(Vρ) �T,τ Q. Hence,

κ ◦ α : CH →
⊕
[ρ]

End(Vρ) �T,τ Q
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is an algebra isomorphism.

Proposition 2.1 is used in [8, Section 3.2] to prove the following structure result of CH .

Theorem 2.1 (see [8, Theorem 3.1]) The group algebra CH is Morita equivalent to the
twisted groupoid algebra C(Ĝ � Q, c).

We remark that the proof of Theorem 2.1 is done by explicitly constructing Morita equiva-
lence bimodules between the two algebras.

Since j : H → Q is a surjective group homomorphism, j induces a surjective homomorphism
of algebras from CH to CQ. It is well-known that the center of CQ has a canonical additive
basis indexed by the conjugacy classes of Q. This decomposition of the center Z(CQ) and the
surjection CH → CQ imply that the center of CH , as a vector space, decomposes into a direct
sum of subspaces Z(CH)〈q〉 indexed by conjugacy classes 〈q〉 of Q,

Z(CH) =
⊕

〈q〉⊂Q

Z(CH)〈q〉.

As shown in [8, Section 3.2], the center Z(C(Ĝ�Q, c)) decomposes into a direct sum of subspaces
Z(C(Ĝ � Q, c))〈q〉 indexed by conjugacy classes of Q,

Z(C(Ĝ � Q, c)) =
⊕

〈q〉⊂Q

Z(C(Ĝ � Q, c))〈q〉.

The explicit Morita equivalence bimodules in the proof of Theorem 2.1 yield an algebra
isomorphism from the center of CH to the center of C(Ĝ � Q, c), which we denote by I.

Proposition 2.2 (see [8, Proposition 3.4]) The isomorphism

I : Z(CH) → Z(C(Ĝ � Q, c))

is compatible with the decompositions into subspaces indexed by conjugacy classes of Q, i.e., I

is an isomorphism from Z(CH)〈q〉 to Z(C(Ĝ � Q, c))〈q〉.

In the rest of this paper, we discuss some group-theoretic applications of our analysis of the
group algebra CH .

3 Counting Conjugacy Classes in Group Extensions

Let j : H → Q be a surjective homomorphism of finite groups. Let 〈q〉 ⊂ Q be a conjugacy
class of Q. The pre-image j−1(〈q〉) ⊂ H may be partitioned into a disjoint union of conjugacy
classes of H . It is natural to ask the following question.

Question 3.1 How many conjugacy classes of H are contained in j−1(〈q〉)?
In this section, we discuss an answer to this question.
Let G be the kernel of j : H → Q. Then we are in the situation of the exact sequence (2.1).

The homomorphism j : H → Q induces a surjective homomorphism j : CH → CQ between
group algebras. This, in turn, induces a homomorphism j : Z(CH) → Z(CQ) between centers.
The centers Z(CH) and Z(CQ), viewed as vector spaces, admit natural bases, {1〈h〉} ⊂ Z(CH)
and {1〈q〉} ⊂ Z(CQ), indexed by conjugacy classes. These bases satisfy the requirement that
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if j(〈h〉) = 〈q〉, then j(1〈h〉) ∈ N1〈q〉. As j(〈s(q)〉) = 〈q〉, the map j : Z(CH) → Z(CQ) is
surjective. Let

Z(CH)〈q〉 :=
⊕

〈h〉⊂j−1(〈q〉)
C1〈h〉.

By construction, the dimension dimZ(CH)〈q〉 is the number of conjugacy classes of H that
are contained in j−1(〈q〉). By Proposition 2.2, the isomorphism I : Z(CH) → Z(C(Ĝ � Q, c))
restricts to an additive isomorphism

Z(CH)〈q〉 � Z(C(Ĝ � Q, c))〈q〉.

Clearly, the answer to Question 3.1 is the dimension dimZ(C(Ĝ � Q, c))〈q〉, which we now
compute.

Let Ĝq ⊂ Ĝ be the subset consisting of elements fixed by q ∈ Q. Let C(q) ⊂ Q be the
centralizer subgroup of q. Then, by [6], we have that Z(C(Ĝ�Q, c))〈q〉 is additively isomorphic
to the c-twisted orbifold cohomology H•

orb([Ĝq/C(q)], c). Decompose Ĝq into a disjoint union
of C(q)-orbits:

Ĝq =
∐

i

Oi. (3.1)

For each C(q)-orbit Oi, pick a representative [ρi] and denote by Qi := StabC(q)([ρi]) ⊂ C(q)
the stabilizer subgroup of [ρi]. Consider the homomorphism

γ
[ρi]
−,q : C(q) → U(1), C(q) � q1 �→ γ[ρi]

q1,q := c[ρi](q1, q)c[ρi](q, q1)−1.

Here, c[ρ](−,−) is the cocycle defined in (2.5). It follows from (3.1) that

H•
orb([Ĝq/C(q)], c) �

⊕
H•

orb(BQi, c).

By [6, Example 6.4], we have that H•
orb(BQi, c) = C if the following condition holds:

γ[ρi]
q1,q = 1 for all q1 ∈ Qi. (3.2)

Moreover, if (3.2) does not hold, then H•
orb(BQi, c) = 0. It follows that dimZ(C(Ĝ � Q, c))〈q〉

is equal to

#{Oi = C(q)-orbit of Ĝq | there exists [ρi] ∈ Oi s.t. γ[ρi]
q1,q = 1 for all q1 ∈ Qi = StabC(q)([ρi])}.

In summary, we have obtained the following theorem as an answer to Question 3.1.

Theorem 3.1 Let H = G �s,τ Q be an extension of Q by G. Consider the canonical
quotient map j : H → Q. For q ∈ Q, the number of conjugacy classes of H that are mapped to
the conjugacy class 〈q〉 of Q is equal to

#

{
Oi = C(q)-orbit of Ĝq

∣∣∣∣∣ there exists [ρi] ∈ Oi s.t. γ[ρi]
q1,q = 1

for all q1 ∈ Qi = StabC(q)([ρi])

}
. (3.3)

In the following, we discuss a few special cases of Theorem 3.1.
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Example 3.1 If the group G is abelian, then all irreducible representations of G are 1-
dimensional, and all intertwiners in (2.5) can be taken to be the identity. In this case, (3.3) can
be simplified into

#

{
Oi = C(q)-orbit of Ĝq

∣∣∣∣∣ there exists [ρi] ∈ Oi, s.t. ρi(τ(q1, q)τ(q, q1)−1) = 1

for all q1 ∈ Qi = StabC(q)([ρi])

}
. (3.4)

Example 3.2 If the group G is abelian and H is a semi-direct product of G and Q, then
the cocycle τ(−,−) can be taken to be trivial. In this case, (3.3) can be simplified into

#{C(q)-orbit of Ĝq}. (3.5)

Example 3.3 If the Q-action on Ĝ is trivial1, then Ĝq = Ĝ, and all intertwiners in (2.5)
can be taken to be the identity. In this case, (3.3) can be simplified into

#

{
[ρ] =

the isomorphism class of

irreducible G-representations

∣∣∣∣∣ ρ(τ(q1, q)τ(q, q1)−1) = 1

for all q1 ∈ C(q)

}
. (3.6)

4 An Orthogonality Relation of Characters

The material in this section is inspired by the proof of the orthogonality relation given in [2,
Chapter 2, Section 12]. Using Proposition 2.1, we prove a generalization of the orthogonality
relation between characters of G. For h ∈ H , write the centralizer subgroup of h by CH(h),
and the number of elements in CH(h) by |CH(h)|.

Theorem 4.1 Let H = G �s,τ Q be an extension of Q by G. For [ρ] ∈ Ĝ, let χG
ρ be the

character of the G-representation Vρ. For (g1, g2) ∈ G × G,∑
[ρ]∈Ĝ

∑
q∈Q

χG
ρ (g−1

1 )χG
q([ρ])(g2) =

{|CH(g1)|, if g1 and g2 are conjugate in H,
0, otherwise. (4.1)

Proof Consider (2.1) again. The group H ×H acts naturally on the group algebra CH via
(h1, h2) ·h = h−1

1 hh2. In this way, we may view CH as a representation of H ×H . Its character
χH×H

CH can be calculated as follows:

χH×H
CH ((h1, h2)) =#{h ∈ H | h−1

1 hh2 = h} = #{h ∈ H | hh2h
−1 = h1}

=
{|CH(h1)|, if h1 and h2 are conjugate in H,

0, otherwise.

We now consider CH as a representation of the subgroup G × G. The above calculation
gives the character of this representation: For (g1, g2) ∈ G × G,

χG×G
CH ((g1, g2)) = χH×H

CH ((g1, g2)) =
{|CH(g1)|, if g1 and g2 are conjugate in H,

0, otherwise. (4.2)

We calculate the character χG×G
CH by another method. By Proposition 2.1, there is an isomor-

phism of algebras
CH �

⊕
[ρ]∈Ĝ

End(Vρ) �T,τ Q.

1Equivalently, this means that the band of the gerbe BH → BQ is trivial.
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Under this isomorphism, the G×G action on CH is identified with the following G×G action
on

⊕
[ρ]∈Ĝ

End(Vρ) �T,τ Q:

(g1, g2) · (xρ, q) :=
(∑

ρ1

ρ1(g−1
1 ), 1

)
◦ (xρ, q) ◦

(∑
ρ2

ρ2(g2), 1
)

= (ρ(g−1
1 )xρT

[ρ]
q

−1
q([ρ])(g2)T [ρ]

q , q),

where ◦ is the algebra structure on
⊕

[ρ]∈Ĝ

End(Vρ) �T,τ Q.

For each ρ, fix an isomorphism of End(Vρ) with a matrix algebra, and let eρ
st denote the

standard basis of this matrix algebra. We use the symbol (xρ)st to denote the s, t-entry of xρ ∈
End(Vρ). Then we have (ρ(g−1

1 )eρ
stT

[ρ]
q

−1
q([ρ])(g2)T

[ρ]
q )st = (ρ(g−1

1 ))ss(T
[ρ]
q

−1
q([ρ])(g2)T

[ρ]
q )tt.

Therefore,

tr ((g1, g2)|End(Vρ)×{q}) =
∑
s,t

(ρ(g−1
1 ))ss(T [ρ]

q

−1
q([ρ])(g2)T [ρ]

q )tt

=tr (ρ(g−1
1 ))tr (T [ρ]

q

−1
q([ρ])(g2)T [ρ]

q )

=χG
ρ (g−1

1 )χG
q([ρ])(g2),

where χG
ρ and χG

q([ρ]) denote the characters of the G-representations ρ and q([ρ]). Summing

over [ρ] ∈ Ĝ and q ∈ Q, we find that

χG×G
CH ((g1, g2)) =

∑
[ρ]∈Ĝ

∑
q∈Q

χρ(g−1
1 )χq([ρ])(g2). (4.3)

Combining the above with (4.2), we obtain the desired identity:∑
[ρ]∈Ĝ

∑
q∈Q

χG
ρ (g−1

1 )χG
q([ρ])(g2) =

{|CH(g1)|, if g1 and g2 are conjugate in H,
0, otherwise.
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