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Abstract The notions of metric sparsification property and finite decomposition com-
plexity are recently introduced in metric geometry to study the coarse Novikov conjecture
and the stable Borel conjecture. In this paper, it is proved that a metric space X has finite
decomposition complexity with respect to metric sparsification property if and only if X
itself has metric sparsification property. As a consequence, the authors obtain an alterna-
tive proof of a very recent result by Guentner, Tessera and Yu that all countable linear
groups have the metric sparsification property and hence the operator norm localization
property.
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1 Introduction

The metric sparsification property and finite decomposition complexity are notions of metric
geometry, which were introduced very recently in studying the coarse Novikov conjecture (see
[3–4]) and the stable Borel conjecture (see [9]), respectively. Both properties were motivated
by the notion of finite asymptotic dimension of a metric space introduced by Gromov [7].

Recall that a metric space X has finite asymptotic dimension if there is an integer n ≥ 0,
such that for any (large) number r > 0, the space X may be written as a union of n + 1
subspaces Xi, each of which may be further decomposed as an r-disjoint union:

X =
n⋃

i=0

Xi, Xi =
∞⊔

j=1

Xij , dist(Xij , Xij′) > r,

in which the metric family {Xij : i, j} is bounded, i.e., S := sup
i,j

diam(Xij) < ∞. In general,

we say that a countable family of metric spaces X = {X} is (n, r)-decomposable over another
metric family Y, if every X ∈ X admits a decomposition as above, where each Xij ∈ Y.
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Inspired by the feature of finite asymptotic dimension, Guentner, Tessera and Yu [9] intro-
duced the notion of finite decomposition complexity as a measure of computational complexity
of metric spaces. Roughly speaking, a metric family X has finite decomposition complexity,
if it can be decomposed, through a finite number of applications of the decomposability rela-
tion as above, into a bounded family. Guentner, Tessera and Yu proved that the stable Borel
conjecture holds for an aspherical manifold whose fundamental group has finite decomposition
complexity (see [9]).

On the other hand, the metric sparsification property was introduced by Chen, Tessera,
Wang and Yu [3] to supply a more flexible geometric condition for operator norm localization,
which can be applied to the coarse Novikov conjecture in operator K-theory (see [6]). Roughly
speaking, a metric space has the metric sparsification property, if there exists a constant 0 <

c < 1, such that, for every positive finite Borel measure μ on X , there exists a Borel subset
Ω, which is a union of “well-separated” subsets of uniformly bounded diameters, such that
μ(Ω) ≥ cμ(X). Chen, Tessera, Wang and Yu proved that any solvable locally compact group
equipped with a proper, locally finite left-invariant metric has metric sparsification property.
This provides the first example of finitely generated group with infinite asymptotic dimension
satisfying operator norm localization property (see [3]).

The motivation for studying the permanence property in coarse geometry is inspired by
[5], in which it is proved that the operator norm localization is stable under some operations
of coarse metric spaces. In [8], Guentner gave a survey on various permanence properties of
coarse metric spaces. In this paper, we shall regard finite decomposition complexity as a type
of operation of metric spaces to provide a permanence result for metric sparsification property.
To do this, we introduce a notion of finite decomposition complexity with respect to metric
sparsification property, and show that if a metric space X has this property, then X itself has
the metric sparsification property. That is, the metric sparsification property is stable under
large scale decompositions of finite complexity. Combined with a result of Guentner, Tessera
and Yu [9] that all countable linear groups have finite decomposition complexity, this also
implies another result of Guentner, Tessera and Yu [10] that all countable linear groups have
the metric sparsification property, and hence the operator norm localization property. This fact
can be used to prove the coarse Novikov conjecture for the box spaces associated to countable
linear groups, including many interesting sequences of expander graphs (see [6, 10]).

2 Preliminaries

Definition 2.1 (see [3]) Let X be a metric space. We say that X has metric sparsification
property with constant 0 < c ≤ 1 (we say that X has MS(c) for short), if there exists a (non-
decreasing) function f : R+ → R+, such that for all m ∈ R+ and every finite positive Borel
measure μ on X, there is a Borel subset Ω =

⊔
i∈I

Ωi, such that

(i) dist(Ωi, Ωj) ≥ m for all i �= j ∈ I;
(ii) diam(Ωi) ≤ f(m) for all i ∈ I;
(iii) μ(Ω) ≥ cμ(X).

When we need to be more explicit, we will say that X has MS(c) with function f . If m, μ

are given, and if we want to say that a subset Ω satisfies the Definition 2.1, we will simply write
Ω = Ω(μ, f, m, c).
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Definition 2.2 (see [3]) We say that a family of metric spaces has uniform MS(c), if there
is a common f that works for all the elements of the family.

The following property plays an important role in the next section.

Proposition 2.1 (see [3]) If X has metric sparsification property, then it has the property
with constant c for all 0 < c < 1.

To recall the notion of finite decomposition complexity (see [9]), we shall use X , Y, etc. to
denote the (countable) families of the metric spaces, and use Δ, Γ, etc. to denote the collections
of the metric families.

A metric family X = {Xj}∞j=1 is bounded, if there is a uniform bound on the diameter of the
individual space Xj, namely, sup{diamXj : j} < ∞. Let D0 denote the collection of bounded
families:

D0 = {X : X is bounded}.
A metric family X is (n, r)-decomposable over a metric family Y, if every X ∈ X admits a

decomposition

X =
n⋃

i=0

Xi, Xi =
∞⊔

j=1

Xij , dist(Xij , Xij′) > r,

with each Xij ∈ Y.

Definition 2.3 (see [9]) Let F be a collection of metric families. A family X is decomposable
over F, if there exists an n ≥ 0, such that for every r > 0, there exists a Y ∈ F, such that X
is (n, r)-decomposable over Y. The collection F is closed under decomposability, if every family
X decomposable over F actually belongs to F.

Note that a space X , always viewed as a singleton family, is decomposable over the collection
D0 of bounded families precisely when it has finite asymptotic dimension. A family X = {Xi}
is decomposable over the collection of bounded families D0 precisely when the metric spaces Xi

comprising it have uniformly finite asymptotic dimension in the sense of Bell and Dranishnikov
[1–2].

Definition 2.4 (see [9]) The collection of metric families D having finite decomposition
complexity is the smallest collection containing the bounded families and closed under decom-
posability.

Let F be a Borel map from a metric space X to another metric space Y . Recall that F is
said to be a coarse map if

(1) for every R > 0, there exists an S > 0, such that d(F (x), F (y)) < S for every pair of
points x, y ∈ X with d(x, y) < R;

(2) the inverse image F−1(B) for every bounded subset B of Y is bounded.
We say that X is coarsely equivalent to Y if there exist coarse maps F : X → Y and

G : Y → X , such that there exists a constant C > 0 satisfying d(G ◦F (x), x) < C for all x ∈ X

and d(F ◦ G(y), y) < C for all y ∈ Y . It turns out that both finite decomposition complexity
and operator norm localization property are invariant under coarse equivalence (see [3, 9]).

In the following, let MSP denote the collection of metric families having uniform metric
sparsification property. In order to express the idea of this paper, we introduce the following
notion.
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Definition 2.5 The collection FDC′MSC of metric families, having finite decomposition
complexity with respect to metric sparsificaton property, is the smallest metric collection con-
taining MSP, which is closed under decomposability. A metric space X is said to have finite
decomposition complexity with respect to metric sparsification property, if the singleton family
{X} belongs to FDC′MSP.

3 Main Result

The main result of this paper is the following permanence property.

Theorem 3.1 A metric space X has finite decomposition complexity with respect to metric
sparsification property if and only if X itself has metric sparsification property.

It follows that FDC′MSP = MSP, or in other words, the collection MSP of metric families,
having uniform metric sparsification property, is closed under decomposability.

Since the converse of the above theorem is obviously true, we only have to show the necessity
of Theorem 3.1. To begin with, note that Definition 2.5 can be reformulated as follows.

Proposition 3.1 A metric space X has finite decomposition complexity with respect to
metric sparsification property if and only if, for any sequence {rk}∞k=1 of positive numbers,
there exists an integer m > 0 and m non-negative integers {nk}m−1

k=0 , where n0 depends only
on X and each nk with k > 0 depends only on r1, · · · , rk−1 and n0, n1, · · · , nk−1, such that we
have m levels of decomposition as follows:

(1) For X and r1 > 0, we have

X =
n0⋃

i1=0

Xi1 , Xi1 =
⊔

r1−disjoint

Xi1j1 .

(2) For all Xi1j1 and r2 > 0, we have

Xi1j1 =
n1⋃

i2=0

Xi1j1i2 , Xi1j1i2 =
⊔

r2−disjoint

Xi1j1i2j2 .

· · ·
(m) For all Xi1j1···im−1jm−1 and rm > 0, we have that

Xi1j1···im−1jm−1 =
nm−1⋃
im=0

Xi1j1···im−1jm−1im ,

Xi1j1···im−1jm−1im =
⊔

rm−disjoint

Xi1j1···imjm ,

and the family of metric spaces {Xi1j1···imjm}i1,j1,··· ,im,jm has uniform metric sparsification
property.

To prove Theorem 3.1, we first prove the following “quantitative version of the finite union
theorem” for metric sparsification property of metric spaces.

Let
M(X) = {all the finite positive Borel measure on X}.
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Lemma 3.1 Let X be a metric space, expressed as a union of finite, i.e., n + 1, metric
subspaces:

X = X0 ∪ X1 ∪ · · · ∪ Xn.

Let r > 0 be given, and fix a natural number k ∈ N. If there exist common constants S > 0 and
0 < c ≤ 1 for all i = 0, 1, · · · , n, such that, for all νi ∈ M(Xi), there exist Ωi =

⊔
j

Ωij ⊂ Xi,

where j runs through a countable index set, such that

(1) d(Ωiα, Ωiβ) ≥
(
4
⌈ 1

1 − n

√
1 − 1

2k+1

⌉
− 3

)
2r for all α �= β;

(2) diam(Ωiα) ≤ S for each α;
(3) νi(Ωi) ≥ cνi(Xi),

where �x� denote the least integer greater than or equal to x.
Then, for any finite positive measure μ on X, i.e., μ ∈ M(X), there always exists a subset

Ω =
⊔
i

Ωi ⊂ X, where i runs through a countable index set, such that

(i) d(Ωi, Ωj) ≥ r for all i �= j;

(ii) diam(Ωj) ≤ S +
(⌈ 1

1 − n

√
1 − 1

2k+1

⌉
− 1

)
4r for each j;

(iii) μ(Ω) ≥
(
1 − 1

2k+1

)
cμ(X).

Proof First, consider the case in which X is a union of 2 subspaces, i.e., n = 1,

X = X0 ∪ X1.

In this case, ⌈ 1

1 − n

√
1 − 1

2k+1

⌉
= 2k+1.

Let N = 2k+1. For each m = 0, 1, 2, · · · , let

Zm = {x ∈ X : m(2r) ≤ d(x, X0) < (m + 1)(2r)}.

For each 1 ≤ i ≤ N , let
Vi = ∪{Zm : m ≡ i mod N}.

Then X =
N⊔

i=1

Vi. Since μ(X) < ∞, there is an i0, such that μ(Vi0 ) ≤ μ(X)
N . Let U0 =

⋃
m<i0

Zm

and U1 =
⋃

m>i0

Zm. Note that U0 and U1 are 2r-disjoint if none of them are empty.

Fix arbitrarily a measure μ ∈ M(X). Let i : U1 → X1 be the inclusion map. Take a Borel
map p : U0 → X0, such that

p(x) = x, if x ∈ X0

and
d(p(x), x) ≤ (N − 1) · 2r.

Let μ0 = p(μ|U0) on X0 be the push-forward measure of the restriction measure μ|U0 on U0.
Then for any Borel subset A ⊂ X0, we have μ0(A) = μ(p−1(A)). Similarly, let μ1 = i(μ|U1) be
the measure on X1. It is easy to check that μ0 ∈ M(X0) and μ1 ∈ M(X1) if none of them are
empty.
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By the conditions of this lemma, there are subsets

Ω0 =
⊔
j

Ω0j ⊂ X0, Ω1 =
⊔
j

Ω1j ⊂ X1,

satisfying
(1) d(Ωiα, Ωiβ) ≥ (2k+3 − 3)r for α �= β;
(2) diam(Ωiα) ≤ S;
(3) μi(Ωi) ≥ cμi(Xi)

for i = 0, 1.
Let Ω̃0 = p−1(Ω0) =

⊔
j

p−1(Ω0j) =:
⊔
j

Ω̃0j and Ω̃1 = i−1(Ω1) =
⊔
j

i−1(Ω1j) =:
⊔
j

Ω̃1j , where

j runs through a countable index set.
Then the subset Ω̃1 =

⊔
j

Ω̃1j ⊂ U1 satisfies d(Ω̃1α, Ω̃1β) ≥ (2k+3 − 3)r > r for α �= β,

diam(Ω̃1α) ≤ S, μ(Ω̃1) ≥ cμ(U1).
The subset Ω̃0 =

⊔
j

Ω̃0j ⊂ U0 satisfies

d(Ω̃0α, Ω̃0β) ≥ (2k+3 − 3)r − 2(N − 1) · 2r = (2k+3 − 3)r − 4(2k+1 − 1)r = r,

diam(Ω̃0α) ≤ S + 2(N − 1)2 · r = S + (2k+1 − 1) · 4r,

μ(Ω̃0) ≥ cμ(U0).

Taking Ω = Ω̃0 � Ω̃1, we have

c
N − 1

N
μ(X) ≤ cμ(U0 � U1) = c[μ(U0) + μ(U1)] ≤ μ(Ω̃0) + μ(Ω̃1) = μ(Ω).

Then we get c
(
1− 1

N

)
μ(X) ≤ μ(Ω), i.e., c

(
1− 1

2k+1

)
μ(X) ≤ μ(Ω). Now we rearrange the index

set of Ω as Ω =
⊔
i

Ωi. Then, we get

(i) d(Ωi, Ωj) ≥ r for all i �= j;
(ii) diam(Ωj) ≤ S + (2k+1 − 1)4r for each j;
(iii) μ(Ω) ≥ (

1 − 1
2k+1

)
cμ(X).

In the general case, suppose

X = X0 ∪ X1 ∪ X2 ∪ · · · ∪ Xn.

Let r > 0 and k ∈ N be given. Let δ = 1 − n

√
1 − 1

2k+1 , and let N ∈ N be the least integer

greater than or equal to 1
δ , i.e.,

N =
⌈ 1

1 − n

√
1 − 1

2k+1

⌉
,

where �x� denotes the least integer greater than x. Fix arbitrarily a measure μ ∈ M(X).
The strategy of arguments in the above case of 2 subspaces implies that there exist 2r-disjoint
subspaces U0 and V1 by cutting off a subset of X of measure at most μ(X)

N (see Figure 1), such
that

(1) U0 is contained in the (2N − 2)r-neighborhood of X0, i.e., U0 ⊆ N(2N−2)r(X0);
(2) V1 is a subspace of X1 ∪ X2 ∪ · · · ∪ Xn, such that

(1 − δ)μ(X) ≤ μ(U0) + μ(V1).
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X0

U0

X1

U1

X2 U2

Figure 1 Incursive cutting off

Similarly, there exist 2r-disjoint subspaces U1 and V2 of X − X1 by cutting off a subset of
measure at most μ(X−X1)

N , such that
(1) U1 is contained in the (2N − 2)r-neighborhood of X1, i.e., U1 ⊆ N(2N−2)r(X1);
(2) V2 is a subspace of X2 ∪ X3 ∪ · · · ∪ Xn, such that

(1 − δ)μ(V1) ≤ μ(U1) + μ(V2).

We get

(1 − δ)2μ(X) ≤ (1 − δ)μ(U0) + (1 − δ)μ(V1)

≤ μ(U0) + μ(U1) + μ(V2)

=
1∑

i=0

μ(Ui) + μ(V2).

By induction, we assume that at the (n − 1)-th step, there are 2r-disjoint subspaces Un−2 and
Vn−1, such that

(1) Un−2 is contained in the (2N − 2)r-neighborhood of Xn−2;
(2) Vn−1 is a subspace of Xn−1, such that

(1 − δ)μ(Vn−2) ≤ μ(Un−2) + μ(Vn−1),

(1 − δ)n−1μ(X) ≤
n−2∑
i=0

μ(Ui) + μ(Vn−1).

Then at the n-th step, finally there exist 2r-disjoint subspaces Un−1 and Un = Vn, such that
(1) Un−1 is contained in the (2N − 2)r-neighborhood of Xn−1;
(2) Un is a subspace of Xn, such that

(1 − δ)μ(Vn−1) ≤ μ(Un−1) + μ(Vn = Un).
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Further, we get that

(1 − δ)nμ(X) = (1 − δ)(1 − δ)n−1μ(X)

≤ (1 − δ)
n−2∑
i=0

μ(Ui) + (1 − δ)μ(Vn−1)

≤
n−2∑
i=0

μ(Ui) + (1 − δ)μ(Vn−1)

≤
n−2∑
i=0

μ(Ui) + μ(Un−1) + μ(Vn = Un)

=
n−1∑
i=0

μ(Ui) + μ(Vn = Un),

i.e., (1 − δ)nμ(X) ≤
n∑

i=0

μ(Ui).

Note that the family of subsets {Ui}n
j=0 are disjoint from each other, and each Ui is contained

in (N − 1) · 2r neighborhood of Xi. Hence, with the same technique as used to deal with the
2r-neighborhood in the above for the union of 2 subsets, associated to each Ui, i = 0, 1, · · · , n,
there exists a subset Ωi =

⊔
α

Ωiα, such that

(1) d(Ωiα, Ωiβ) ≥ r if α �= β;

(2) diam(Ωiα) ≤ S + 2(N − 1) · 2r = S +
(⌈ 1

1 − n

√
1 − 1

2k+1

⌉
− 1

)
4r;

(3) μ(Ωi) ≥ cμ(Ui). It follows that

(1 − δ)ncμ(X) ≤
n∑

i=0

cμ(Ui) ≤
n∑

i=0

μ(Ωi).

Let Ω = �Ωi. Then Ω = �Ω′
i, if we rearrange the index of subsets. Hence, we have

(1) d(Ω′
i, Ω

′
j) ≥ r for i �= j;

(2) diam(Ω′
j) ≤ S +

(⌈ 1

1 − n

√
1 − 1

2k+1

⌉
− 1

)
4r;

(3) μ(Ω) ≥ c(1 − δ)nμ(X). Note that

(1 − δ)n ≥
(
1 − 1

N

)n

≥
(
1 − 1

1

1− n
√

1− 1
2k+1

)n

= 1 − 1
2k+1

.

The proof is complete.

Proof of Theorem 3.1 Suppose that a metric space X has finite decomposition complexity
with respect to metric sparsification property. Let c0 = 0.4. We proceed to find an f : R+ → R+

for X to have the metric sparsification property.
Let

N(k, n) =
⌈ 1

1 − n

√
1 − 1

2k+1

⌉
for all k, n ∈ N.

For any r > 0, by Proposition 2.1, there exists an m > 0 and m non-negative integers
{nk}m−1

k=0 corresponding to the sequence of positive numbers

r1 = (4N(1, n0) − 3)r, r2 = (4N(2, n1) − 3)r1, · · · , rm = (4N(m, nm−1) − 3)rm−1, · · · ,
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such that
(1) for X and r1, we have

X =
n0⋃
i1

Xi1 , Xi1 =
⊔

r1-disjoint

Xi1j1 ,

(2) for all Xi1j1 and r2 > 0, we have

Xi1j1 =
n1⋃
i2

Xi1j1i2 , Xi1j1i2 =
⊔

r2-disjoint

Xi1j1i2j2 ,

· · ·
(m) for all Xi1j1···im−1jm−1 and rm > 0, we have

Xi1j1···im−1jm−1 =
nm−1⋃
im=0

Xi1j1···im−1jm−1im ,

Xi1j1···im−1jm−1im =
⊔

rm-disjoint

Xi1j1···imjm ,

and the family of metric spaces {Xi1j1···imjm}i1,j1,··· ,im,jm has uniform metric sparsification
property. By proposition 2.1, we can take the common constant c = 0.8 and the corresponding
function f̃ : R+ → R+ as in Definition 2.2.

Let Sm = f̃(rm) for all m = 0, 1, 2, · · · . By the step (m), for any positive finite measure μ

on Xi1j1···imjm , there exists a subset Ωi1j1···imjm =
⊔
α

Ωα
i1j1···imjm

of Xi1j1···imjm , such that

(1) d(Ωα
i1j1···imjm

, Ωβ
i1j1···imjm

) ≥ rm for all α �= β,
(2) diam(Ωα

i1j1···imjm
) ≤ Sm for each α,

(3) μ(Ωi1j1···imjm) ≥ cμ(Xi1j1···imjm).
Let Ωi1j1···im =

⊔
jm

Ωi1j1···imjm . Since dist(Xi1j1···imjm , Xi1j1···imj′m) ≥ rm, by rearranging the

index of the subsets {Ωα
i1j1···imjm

}, we can write

Ωi1j1···im =
⊔
α

Ωα
i1j1···im

⊂ Xi1j1···im .

Then we have
(1)d(Ωα

i1j1···im
, Ωβ

i1j1···im
) ≥ rm for all α �= β,

(2) diam(Ωα
i1j1···im

) ≤ Sm for each α,
(3) μ(Ωi1j1···im) ≥ cμ(Xi1j1···im).

By Lemma 3.1, there exist nonempty subsets of Ω =
⊔
j

Ωj , such that

(1) d(Ωi, Ωj) ≥ rm

4N(m,nm−1)−3 = rm−1 for all i �= j,
(2) diam(Ωi) ≤ Sm + (N(m, nm−1) − 1)4r for each i,
(3) μ(Ω) ≥ (1 − 1

2m+1 )cμ(Xi1j1···im−1jm−1).
Taking a measure μ ∈ M(X), we have

μ|Xi1j1···imjm
∈ M(Xi1j1···imjm).

By the above arguments and applying Lemma 3.1 for m times, we have that, for any measure
μ ∈ M(X), there exists a subset Ω =

⊔
j

Ωj of X , such that
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(1) d(Ωi, Ωj) ≥ r0 = r for all i �= j,

(2) diam(Ωi) ≤ Sm +
m∑

j=1

(N(j, nj−1) − 1)4r for each i,

(3) μ(Ω) ≥ c
m∏

j=1

(
1 − 1

2j+1

)
μ(X).

Note
m∏

j=1

(
1 − 1

2j+1

)
≥ 1 −

∞∑
j=2

1
2j

=
1
2
.

Let

f(r) = Sm +
m∑

j=1

(N(j, nj−1) − 1)4r.

We have that X has metric sparsification property relative to f with constant c
2 = 0.4 = c0.

The proof is complete.
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