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Abstract This paper discusses “geometric property (T)”. This is a property of metric
spaces introduced in earlier works of the authors for its applications to K-theory. Geometric
property (T) is a strong form of “expansion property”, in particular, for a sequence (Xn)
of bounded degree finite graphs, it is strictly stronger than (Xn) being an expander in the
sense that the Cheeger constants h(Xn) are bounded below.

In this paper, the authors show that geometric property (T) is a coarse invariant,
i.e., it depends only on the large-scale geometry of a metric space X. The authors also
discuss how geometric property (T) interacts with amenability, property (T) for groups,
and coarse geometric notions of a-T-menability. In particular, it is shown that property
(T) for a residually finite group is characterised by geometric property (T) for its finite
quotients.
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1 Introduction

In [18, Section 7], the current authors introduced geometric property (T): This is a patho-
logical property of metric spaces designed to be an obstruction to the maximal version (see [8])
of the coarse Baum-Connes conjecture in K-theory and higher index theory. The treatment in
[18] was quite brief; moreover, we expect that geometric property (T) will see some applications
outside of K-theory and higher index theory. It is the purpose of this paper to develop the
theory more fully.

Throughout we will work with discrete metric spaces X of bounded geometry: This means
that if B(x; r) denotes the ball of radius r at x ∈ X , then the quantity sup

x∈X
|B(x; r)| is finite for

all r. We allow our metrics to take infinite distances. For applications, the two most interesting
examples of such spaces are: The vertex set of a graph equipped with the edge metric (for
example, the Cayley graph of a finitely generated group); and the disjoint union of a sequence
(Xn) of finite graphs, where each Xn has the edge metric, and the distance between different
graphs is infinity (the coarse geometry of such a space is essentially the “asymptotic geometry”
of the sequence). The bounded geometry assumption amounts to the existence of an absolute
bound on the degree of all vertices in either case.
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Geometric property (T) for a discrete metric space X says that unitary representations of
the Gromov-Roe translation algebra Cu[X ] (see [9, p. 262] and [13, Chapter 4]) that have
almost invariant vectors must have invariant vectors (see Definition 3.4 below). This is a direct
analogue of property (T) for a (discrete) group Γ, which says that any unitary representation of
the group algebra C[Γ] having almost invariant vectors actually has invariant vectors. In order
to make sense of “invariant” and “almost invariant” in the case of metric spaces one has to do
a little work, but the basic idea is the same as in the group case.

Geometric property (T) can also be characterised (see Proposition 5.2 below) in terms of
a spectral gap property for a Laplacian operator Δ in Cu[X ], much as was done by Valette
for groups [16, Theorem 3.2]. In the case that X is a graph (or is built from a sequence of
graphs), Δ simply is the graph Laplacian. This was our original definition in [18, Section 7],
but we found the version based on almost invariant vectors more convenient to work with in
the current paper.

In this paper we establish the machinery needed to make rigorous sense of the above defini-
tions. We then prove the following results.

Theorem 1.1 (1) Geometric property (T ) is a coarse invariant (Theorem 4.1).
(2) Geometric property (T ) for a sequence of finite graphs implies that the sequence is an

expander (Corollary 5.2), but is strictly stronger than this (Corollary 7.1).
(3) An infinite connected graph X has geometric property (T ) if and only if it is not amenable

(Corollary 6.1).
(4) Let Γ be a finitely generated discrete group, and Γ = Γ0 �Γ1 � · · · be a sequence of finite

index normal subgroups such that ∩nΓn is the trivial subgroup. Then Γ has property (T ) if and
only if the sequence (Γ/Γn) of finite Cayley graphs1 has geometric property (T ) (Theorem 7.1).

(5) A sequence of finite graphs (Xn) with geometric property (T ) can not admit a fibered
coarse embedding into Hilbert space [5], or have the boundary Haagerup property [7], unless
supn |Xn| is finite (Theorem 8.1).

A few remarks are in order. Points (2) and (3) together suggest that geometric property (T)
is not interesting for a single connected graph, but it has serious content for a sequence of finite
graphs. Points (1) and (4) have the following consequence, which is perhaps surprising: for a
residually finite group, property (T) can be characterised by the geometry of the finite quotients
of the group; this contrasts with the well-known fact that property (T) for the group itself is
not a geometric invariant (see [1, Section 3.6]). Property (5) is a strong analogue in coarse
geometry of the well-known incompatibility of property (T) and a-T-menability for groups.

Outline To facilitate algebraic computations involving Cu[X ], we use the language of
abstract coarse structures (see [13]), rather than the metric space language of the introduction,
throughout the body of this paper; Section 2 recalls the basic definitions of coarse structures
and proves some combinatorial lemmas. Section 3 introduces the translation algebra Cu[X ],
the notion of invariant vectors in its representations, and geometric property (T). Section 4
proves that geometric property (T) is a coarse invariant; we could not find a short proof of
this result and this is probably the most technical part of the paper. Section 5 defines general
combinatorial Laplacian operators, and characterises invariant vectors and geometric property

1Defined with respect to some fixed generating of Γ.
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(T) in terms of them.
Having established the basic properties of geometric property (T), the next three sections

discuss the relationship between geometric property (T) and some other properties. Section
6 discusses the relationship of representations of Cu[X ] with amenability, and uses this to
characterise geometric property (T) for spaces as in part (3) of Theorem 1.1. Section 7 studies
the relationship with property (T) for groups, proving part (4) of Theorem 1.1. Section 8
discusses the relationship with the coarse a-T-menability properties in part (5) of Theorem 1.1.

We conclude the paper with some natural open questions in Section 9.

2 Coarse Structures and Some Combinatorics

In this section we first recall the definition of a coarse structure on a set X . We then recall
the definition of partial translation, and prove some combinatorial lemmas about decomposing
general controlled sets into partial translations.

If X is a set and E,F are subsets of X ×X , then the composition of E and F , denoted by
E ◦ F , is the set

E ◦ F := {(x, y) ∈ X ×X | there exists z such that (x, z) ∈ E and (z, y) ∈ F}

and the inverse of E is
E−1 := {(x, y) ∈ X ×X | (y, x) ∈ E}.

For n ≥ 1, we use the shorthand
E◦n := E ◦ · · · ◦ E︸ ︷︷ ︸

n

.

Finally, we will write diag(E) for the “diagonal part” of E, that is

diag(E) := E ∩ {(x, x) ∈ X ×X | x ∈ X}.

Definition 2.1 Let X be a set. A coarse structure on X consists of a collection E of subsets
of X ×X such that

(1) the diagonal {(x, x) ∈ X ×X | x ∈ X} is in E ;2

(2) if E ∈ E and F ⊆ E, then F ∈ E;
(3) if E,F ∈ E, then E ◦ F ∈ E;
(4) if E ∈ E, then E−1 ∈ E.

The members of E are called controlled sets for the coarse structure.
A set X equipped with a coarse structure is called a coarse space.

The motivating example comes when X is a metric space, and a set is controlled if and only
if it is a subset of a “tube” {(x, y) ∈ X ×X | d(x, y) ≤ r} for some r > 0.

The following definition lists some additional properties of controlled sets and coarse spaces
that we will need.

Definition 2.2 Let X be a coarse space, and E be the coarse structure on X.
(1) A controlled set E is called symmetric if E = E−1.

2This condition is not always assumed: coarse structures satisfying this condition are sometimes called unital.
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(2) The coarse structure is said to have bounded geometry if for any controlled set E, there
is a bound M = M(E) such that for any x ∈ X,

|{y ∈ X | (x, y) ∈ E ∪ E−1}| ≤M.

(3) A controlled set E is said to be generating if for any controlled set F , there exists n such
that F ⊆ E◦n. A coarse space is said to be monogenic if there exists a generating controlled set
for the coarse structure.

(4) Two elements x, y of X are in the same coarse component of X if the set {(x, y)} is
controlled. “Being in the same coarse component” defines an equivalence relation on X, and
the equivalence classes are called coarse components. If there is only a single coarse component,
X is said to be coarsely connected.

(5) If Y is a subset of X, it is itself a coarse space with the controlled sets being the inter-
section of the controlled sets for X with Y ×Y . This is called the induced coarse structure, and
will be used implicitly many times below.

Definition 2.3 We will say that X is a space as an abbreviation for “X is a bounded
geometry, monogenic coarse space, with at most countably many coarse components”.

Note that spaces are automatically countable; this and being monogenic implies that the
coarse structure on a space always comes from a metric (see [13, Section 2.5]), with possibly
infinite distances. Nonetheless, the language of abstract coarse structures is more convenient
for the computations in this paper.

The reader will probably find it useful to keep the following example in mind.

Example 2.1 Let X be the vertex set of an undirected graph, and E be the set of edges,
which we consider as a symmetric subset of X ×X . The coarse structure generated by the set
E is monogenic, and is bounded geometry if and only if there is a uniform bound on the degrees
of all vertices in X . The coarse components of X are exactly the (vertex sets of the) connected
components of the underlying graph. The coarse structure above is the same as that defined
by the edge metric, which sets the distance between two vertices to be the shortest number of
edges in a path between them, and infinity if no such path exists.

Particularly important classes of examples are Cayley graphs of discrete groups, and dis-
cretisations of Riemannian manifolds. Another important example for us is obtained when X

is a disjoint union X = 	Xn of finite connected graphs: Examples of this form are important
in coarse geometry as they are relatively easy to analyse, and as questions about general spaces
can often be reduced to questions about spaces of this form.

Remark 2.1 Let X = 	Xn be a disjoint union of finite connected graphs as in Example 2.1
above. It is common in coarse geometry (in order to avoid infinite-valued metrics) to metrize
such spaces with any metric that restricts to the edge metric on the individual Xn and satisfies
d(Xn, X \Xn) → ∞ as n → ∞. The corresponding coarse structure is not monogenic, but is
“weakly monogenic” in the following sense. A controlled set E is said to be a weak generating
set for the coarse structure if for any controlled set F , there exists n ∈ N such that F \ E◦n

is finite. A coarse space is said to be weakly monogenic if there is a weak generating set for
the coarse structure. Most of the results of this paper hold for weakly monogenic spaces, up to
minor adjustments (see Remark 3.1 below), so can be applied to such spaces directly.
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The following definition is based on [3, Definition 8].

Definition 2.4 Let X be a space. A partial translation on X consists of the following data:
subsets A and B of X and a bijection t : A→ B such that the graph3 of t

graph(t) := {(t(x), x) ∈ X ×X | x ∈ A}
is controlled. The subset A is called the support of t, and B its range. The inverse of a partial
translation t : A→ B is the partial translation t−1 : B → A defined by inverting the bijection t.

A controlled set E is called elementary if there exists a (necessarily unique) partial transla-
tion t : A → B such that E = graph(t). An elementary controlled set is called antisymmetric
if the domain and range of the corresponding partial translation do not intersect4.

In the remainder of this section, we prove some combinatorial lemmas about decomposing
controlled sets into partial translations; these will be useful for algebraic computations later in
the paper.

The following very general lemma is probably well-known.

Lemma 2.1 Let A be a set, and B and C be subsets of A. Let t : B → C be a bijection
such that t(a) �= a for all a ∈ B. Then there exists a decomposition

B = B0 	B1 	B2

of B into (at most) three disjoint subsets such that t(Bi) ∩Bi = ∅ for all i ∈ {0, 1, 2}.
The example A = B = C = {1, 2, 3}, t is a cyclic permutation, shows that one can not get

away with less than three subsets.

Proof of Lamma 2.1 Let s : C → B be any bijection which is the identity on C ∩ B.
Replacing t with s ◦ t, it is not difficult to see that it suffices to prove the following statement:
If B is a set and t : B → B is a bijection such that t(b) �= b for all b ∈ B, then there exists a
decomposition B = B0 	B1 	B2 such that t(Bi) ∩Bi = ∅ for all i ∈ {0, 1, 2}. We now prove
this.

The bijection t : B → B gives rise to an action of Z, which partitions B into orbits. As
t(b) �= b for all b ∈ B, each orbit for this action has one of the following forms.

(1) {· · · , t−2(b), t−1(b), b = t0(b), t(b), t2(b), · · · } (going on infinitely in both directions) for
some b ∈ B.

(2) {b = t0(b), t(b), · · · , tn(b)} for some n ≥ 1 and b ∈ B such that tn+1(b) = b.
Define subsets B0, B1 and B2 of B as follows. For each orbit, fix once and for all a

representation of one of the types above. For an orbit of type (2) with n even and i = n, put
ti(b) into B2. In all other cases, put ti(b) into Bi mod 2 (where i mod 2 is always construed as
0 or 1). A routine case-by-case analysis shows that this works.

Lemma 2.2 Let E ⊆ F be symmetric controlled sets on a space X. Then there exist
elementary controlled sets E1, · · · , En such that F is the disjoint union

F = E 	 diag(F\E) 	
n⊔

i=1

(Ei 	 E−1
i ).

3We have defined the graph of t the “wrong way round” to better match matrix multiplication later.
4Equivalently, the images of the two coordinate projections are disjoint when restricted to E.
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We may assume moreover that each Ei is antisymmetric.

Proof Inductively define E0 = E and Ei+1 to be any maximal elementary subset of

F\(E ∪ diag(F\E) ∪ (E1 ∪ E−1
1 ) ∪ · · · ∪ (Ei ∪ E−1

i ))

such that Ei+1 ∩ E−1
i+1 = ∅.

Assume that Ei+1 is not empty, and assume that (x, y) is in Ei+1, noting that this forces
x �= y. Then maximality of each Ej forces the existence of distinct y0, · · · , yi such that (x, yj)
is in Ej ∪ E−1

j for each j = 0, · · · , i. In particular,

|{z ∈ X | (x, z) ∈ F}| ≥ i+ 2,

which is impossible for i suitably large by the bounded geometry condition. Thus F = E ∪
diag(F\E) ∪ (E1 ∪ E−1

1 ) · · · ∪ (En ∪ E−1
n ) for some n.

Finally, note that Lemma 2.1 applied to the partial translation underlying each Ei decom-
poses Ei into three antisymmetric parts. Decomposing further, we may thus assume that each
Ei is antisymmetric.

Lemma 2.3 Let t : A→ B be a partial translation on a space X and E be a controlled set
for X. Assume that

E◦n ⊇ graph(t)

for some n ≥ 1.
Then there exists a decomposition A = A1 	 · · · 	Am such that if ti is the restriction of t to

Ai then there exist partial translations {sj
i}m, n

i=1,j=1 such that
(1) ti = s1i ◦ · · · ◦ sn

i ;
(2) graph(sj

i ) ⊆ E for all i = 1, · · · ,m and j = 1, · · · , n;
(3) for each i and each j = 1, · · · , n− 1, the range of sj

i is equal to the domain of sj+1
i ;

(4) for each i and j = 1, · · · , n, either sj
i is the identity map, or the range of sj

i is disjoint
from its support.

Proof For each x ∈ A the pair (t(x), x) is contained in E◦n, whence we may choose points
x = r0(x), r1(x), · · · , rn(x) = t(x) such that for each j = 1, · · · , n, the pair (rj(x), rj−1(x)) is
in E. In this way, we define functions rj : A→ X .

Note that the bounded geometry assumption and the fact that the graph of r1 is contained
in E imply that there exists N1 such that A decomposes into N1 sets A1

1, · · · , A1
N1

such that
the following hold:

• r1 is a bijection restricted to each A1
i ;

• either r1(x) = r0(x) for all x ∈ A1
i , or r1(A1

i ) ∩ r0(A1
i ) = ∅.

Similarly, as the graph of r2 is contained in E◦2, there exists N2 such that each A1
i decomposes

into at most N2 sets A2
ij , for which the restriction of r2 to each A2

ij is a bijection, and such that
either r2(x) = r1(x) for all x ∈ A2

ij , or r2(A2
ij) ∩ r1(A2

ij) = ∅. Continuing in this way, we get a
decomposition A = A1, · · · , Am, where m is at most N1N2 · · ·Nn, such that

(1) each rj is a bijection when restricted to each Ai;
(2) for each i, j either rj(x) = rj−1(x) for all x ∈ Ai, or rj(Ai) ∩ rj−1(Ai) = ∅.
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Define for each i = 1, · · · ,m, a function sj
i : rj−1(Ai) → rj(Ai) by the stipulation

sj
i (rj−1(x)) = rj(x);

as each rj is injective on each Ai, this is well-defined and bijective. It is not difficult to see that
these functions sj

i have the right properties.

3 Translation Algebras and Geometric Property (T)

In this section we introduce translation algebras and define geometric property (T) in terms
of their (unitary) representation theory.

Throughout this section, X denotes a space in the sense of Definition 2.3.

Definition 3.1 The translation algebra, or algebraic uniform Roe algebra of X, denoted by
Cu[X ], is the collection of all X-by-X indexed matrices T = (Txy)x,y∈X with entires in C such
that

sup
x,y∈X

|Txy|

is finite, and such that for any T ∈ Cu[X ] the support of T defined by

supp(T ) := {(x, y) ∈ X ×X | Txy �= 0}

is a controlled set. The usual matrix operations and adjoint make Cu[X ] into a ∗-algebra.
Note that the collection of matrices in Cu[X ] supported on the diagonal constitutes a copy

of l∞(X) inside Cu[X ].
Partial translations give rise to operators in Cu[X ] in the following way. Let t : A → B be

a partial translation. Then t gives rise to an operator v ∈ Cu[X ] defined by setting

vxy =
{

1, t(y) = x,
0, otherwise.

An operator arising in this way is called a partial translation; note that t and v determine each
other uniquely, so there should not be any confusion caused by the repeated terminology. It
is immediate from the definitions that if v is a partial translation operator corresponding to
t : A→ B, then v is a partial isometry, with v∗ the partial translation operator corresponding to
t−1. Moreover, the support and range projections v∗v and vv∗ are the characteristic functions
of A, and B respectively, considered as elements of the diagonal ∗-subalgebra l∞(X), and the
support of v is the graph of t.

Definition 3.2 A representation of Cu[X ] is a unital ∗-homomorphism π : Cu[X ] → B(H)
from Cu[X ] to the C∗-algebra of bounded operators on some Hilbert space H. We will usually
leave π implicit, saying just that H is a representation of Cu[X ], and writing Tξ for the image
of an element ξ of H under π(T ).

The assumption that representations are unital in the above is not very important, and it
does not significantly reduce generality but streamlines some arguments slightly. In contrast,
the assumption that all representations are ∗-preserving is crucial; such representations should
be thought of as the analogues of unitary representations of a group.
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Definition 3.3 Let H be a representation of Cu[X ]. A vector ξ ∈ H is said to be invariant,
or constant, if vξ = vv∗ξ for all partial translations v.

The constant elements form a closed subspace5 of H, which we denote Hc.

Example 3.1 If X = 	Xn is a disjoint union of finite connected graphs as in Example 2.1,
then the constant vectors in l2(X) are exactly those square-summable functions on X that are
constant on each coarse component Xn.

Geometric property (T) says that for any representation H of Cu[X ], vectors in H⊥
c can not

be “too close” to constants. Here is the formal definition.

Definition 3.4 A space X has geometric property (T ) if for any controlled generating set
E, there exists a constant c = c(E) > 0 such that for any representation H and ξ ∈ H⊥

c , there
exists a partial translation v in Cu[X ] with support in E such that

‖(vv∗ − v)ξ‖ ≥ c‖ξ‖.

The reader should compare this to the following definition of property (T) for a discrete
group (compare [1, Section 1.1]). For a unitary representation of a finitely generated group Γ,
let Hc denote the constant vectors: Those ξ ∈ H for which gξ = ξ for all g ∈ Γ. A finitely
generated6 group Γ then has property (T), if for any finite generating set E of Γ, there exists a
constant c = c(E) > 0 such that for any unitary representation H of Γ and any ξ ∈ H⊥

c , there
exists g ∈ E with

‖(gg∗ − g)ξ‖ ≥ c‖ξ‖.
Remark 3.1 A representation of Cu[X ] is called a boundary representation, if it contains

the ideal
Cf [X ] := {T ∈ Cu[X ] | Txy �= 0 for only finitely many x, y}

in its kernel. Geometric property (T) can be weakened to boundary property (T) by requiring
that the property in Definition 3.4 above holds only for all boundary representations. This no-
tion is more appropriate for weakly monogenic coarse spaces as discussed in Remark 2.1. Indeed,
the results in this paper all continue to hold for weakly monogenic bounded geometry coarse
spaces (with obvious minor variations), if “generating” is replaced by “weakly generating”,
“representation” by “boundary representation” and “geometric property (T)” by “boundary
property (T)” everywhere.

In the remainder of this section, we give some equivalent formulations of geometric property
(T) that will be useful later.

Define a linear map Φ : Cu[X ] → l∞(X) by

Φ(T ) : x �→
∑
y∈X

Txy. (3.1)

The map Φ can be used to characterise constant vectors as follows.

Lemma 3.1 Let ξ be a vector in a representation H of Cu[X ]. Then the following are
equivalent:

5It is not a subrepresentation in general.
6Property (T) forces finite generation on a discrete group, so there is no harm assuming this.
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(1) For all T ∈ Cu[X ], Tξ = Φ(T )ξ.
(2) For all partial translations v in Cu[X ], vv∗ξ = vξ.

Proof For a partial translation v, Φ(v) = vv∗, so clearly (1) implies (2). Assume that ξ
satisfies (2), and let T be an element of Cu[X ]. We may write T as a finite sum

T =
n∑

i=1

fivi,

where each vi is a partial translation, and each fi is the element of l∞(X) defined by

fi(x) =
{
Txy, (vi)xy = 1,
0, otherwise.

Noting that fiviv
∗
i = fi for all i, we then have

Tξ =
n∑

i=1

fiviξ =
n∑

i=1

fiviv
∗
i ξ =

n∑
i=1

fiξ = Φ(T )ξ,

as required.

Here then is the promised equivalent formulation of geometric property (T).

Proposition 3.1 The following are equivalent:
(1) X has geometric property (T ).
(2) There exists a controlled generating set E and a constant c > 0 such that for any

representation H and ξ ∈ H⊥
c , there exists a partial translation v in Cu[X ] with support in E

such that
‖(vv∗ − v)ξ‖ ≥ c‖ξ‖.

(3) For any controlled generating set E, there exists a constant c = c(E) > 0 such that for
any representation H and ξ ∈ H⊥

c , there exists an operator T ∈ Cu[X ] with support in E such
that

‖(T − Φ(T ))ξ‖ > c sup
x,y

|Txy|‖ξ‖.

(4) There exists a controlled generating set E and a constant c > 0 such that for any
representation H and ξ ∈ H⊥

c , there exists an operator T ∈ Cu[X ] with support in E such that

‖(T − Φ(T ))ξ‖ > c sup
x,y

|Txy|‖ξ‖.

Proof It is clear that the implication (1) implies (2). For the converse, assume that E and
c > 0 are as in (2), and let F be any controlled generating set for the coarse structure. As F
is generating, there exists n such that F ◦n contains E, and thus property (2) holds with F ◦n

replacing E. Now, let H be a representation of Cu[X ], and ξ be a unit vector in H⊥
c . Using

property (2) for F ◦n, there exists a partial translation t : A→ B with graph contained in F ◦n

such that if v is the corresponding operator, then ‖vv∗ξ − vξ‖ > c.
Now, using Lemma 2.3, there exist partial translations v1, · · · , vn such that v = v1 · · · vn, so

that supp(vi) ⊆ F for each i, and so that viv
∗
i = v∗i−1vi−1 for all i = 2, · · · , n. We then have
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that

c ≤ ‖(vv∗ − v)ξ‖
= ‖(v1 · · · vnv

∗
n · · · v∗1 − v1 · · · vn)ξ‖

= ‖v1 · · · vn−1v
∗
n−1 · · · v∗1 − v1 · · · vn)ξ‖

≤ ‖(v1 · · · vn−1v
∗
n−1 · · · v∗1 − v1 · · · vn−1)ξ‖ + ‖(v1 · · · vn−1 − v1 · · · vn)ξ‖

≤ ‖(v1 · · · vn−1v
∗
n−1 · · · v∗1 − v1 · · · vn−1)ξ‖ + ‖(vn−1 − vn−1vn)ξ‖

= ‖(v1 · · · vn−1v
∗
n−1 · · · v∗1 − v1 · · · vn−1)ξ‖ + ‖(vn−1vnv

∗
n − vn−1vn)ξ‖

≤ ‖(v1 · · · vn−1v
∗
n−1 · · · v∗1 − v1 · · · vn−1)ξ‖ + ‖(vnv

∗
n − vn)ξ‖.

Continuing in this way, we may conclude that

c ≤
n∑

i=1

‖(viv
∗
i − vi)ξ‖,

whence for some i = 1, · · · , n, ‖(viv
∗
i − vi)ξ‖ ≥ c

n . We may thus take c(F ) = c
n .

We will now show that (2) and (4) are equivalent; the proof that (1) and (3) are equivalent
is analogous. Noting as in the proof of Lemma 3.1 that for a partial translation v, Φ(v) = vv∗,
it is clear that (2) implies (4), so it suffices to show that (4) implies (2).

Let then E and c > 0 be as in the statement of (4). Let H be a representation of Cu[X ],
let ξ be an element of H⊥

c , and let T ∈ Cu[X ] be as in the statement of (4) for this ξ. We may

write T =
n∑

i=1

fivi as in the proof of Lemma 3.1, where n depends only on E (not on T , H or ξ)

and each fi has norm at most sup
x,y∈X

|Txy| as an element of l∞(X). As ∗-representations of the

C∗-algebra l∞(X) are contractive, each fi also has norm at most sup
x,y∈X

|Txy| when considered

as an operator on H. We have then that

c sup
x,y∈X

|Txy|‖ξ‖ < ‖(T − Φ(T ))ξ‖ ≤
n∑

i=1

‖(fivi − fi)ξ‖ =
n∑

i=1

‖(fivi − fiviv
∗
i )ξ‖

≤
n∑

i=1

‖fi‖‖(vi − viv
∗
i )ξ‖ ≤ sup

x,y∈X
|Txy|

n∑
i=1

‖(vi − viv
∗
i )ξ‖.

Hence for some i, ‖(vi − viv
∗
i )ξ‖ ≥ ( c

n )‖ξ‖; as n depends only on E, this implies (2).

4 Coarse Invariance

In this section we show that geometric property (T) is a coarse invariant, i.e. , it is invariant
under coarse equivalences as in the following definition.

Definition 4.1 A function f : X → Y between two spaces is uniformly expansive if for any
controlled set E for X, the set

{(f(x1), f(x2)) ∈ Y × Y | (x1, x2) ∈ E}

is controlled for Y . Two functions f, g : X → Y between two spaces are close if the set

{(f(x), g(x)) | x ∈ X}
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is controlled for Y .
Two spaces X and Y are coarsely equivalent if there exist uniformly expansive functions

f : X → Y, g : Y → X

such that the compositions f ◦ g and g ◦ f are close to the identities on Y and X respectively.

The following example will be important in the proofs that follow.

Example 4.1 A subset Y of a space X (with the inherited coarse structure) is coarsely
dense if there is a controlled set E for X such that the set

{y ∈ Y | (x, y) ∈ E} (4.1)

is non-empty for all x ∈ X . It is not difficult to see that Y is coarsely dense if and only if the
inclusion i : Y → X is a coarse equivalence, with “the inverse-up-to-closeness” given by any
function p : X → Y that takes each x ∈ X to any y in the set in (4.1) above.

Our main goal in this section then is to prove the following result: We stated that we
expected this to be true in [18, Section 7], but did not have a complete proof at that time.

Theorem 4.1 Let X and Y be coarsely equivalent spaces. Then X has geometric property
(T ) if and only if Y does.

We start with a well-known “structural result” about coarse equivalences.

Lemma 4.1 Let f : X → Y be a coarse equivalence. Then there exist coarsely dense
subspaces X ′ of X and Y ′ of Y such that f restricts to a bijection f ′ : X ′ → Y ′. In other
words, for any coarse equivalence f : X → Y , there is a factorization

X

p

��

f �� Y

X ′ g �� Y ′

i

��

where p : X → X ′ is an inverse-up-to-closeness of the inclusion of X ′ in X, g is a bijective
coarse equivalence, and i : Y ′ → Y is the inclusion of a coarsely dense subset.

Proof Let Y ′ = f(X). For each y ∈ Y ′, choose x(y) ∈ f−1(y), and define X ′ = {x(y) ∈
X | y ∈ Y }. It is not difficult to check that X ′ and Y ′ have the required properties.

To prove Theorem 4.1, it will thus suffice to prove the following two results.

Lemma 4.2 Let f : X → Y be a bijective coarse equivalence. Then X has geometric
property (T ) if and only if Y does.

Proposition 4.1 Let Y be a coarsely dense subspace of a space X. Then Y has geometric
property (T ) if and only if X does.

Proof of Lemma 4.2 Define a function f∗ : Cu[Y ] → Cu[X ] by f∗(T )x1x2 := Tf(x1)f(x2).
It is not difficult to see that f∗ is a ∗-isomorphism that restricts to a bijection between the
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collections of partial translations in Cu[Y ] and Cu[X ]. The result follows immediately from
this.

The proof of Proposition 4.1 is more involved. For the benefit of those readers who know
about Morita equivalence, we explain the basic idea as follows. We will define a projection
A ∈ Cu[X ] such that

ACu[X ]A ∼= Cu[Y ], Cu[X ]ACu[X ] = Cu[X ],

so A is a full projection, implementing a “∗-algebra Morita equivalence” between Cu[X ] and
Cu[Y ]. This Morita equivalence implements a bijective correspondence between the sets of
representations of Cu[X ] and Cu[Y ] roughly defined by

Rep(Cu[X ]) → Rep(Cu[Y ]), Rep(Cu[Y ]) → Rep(Cu[X ]),
H �→ A · H, H �→ Cu[X ]A⊗Cu[Y ] H. (4.2)

The projection A = χY , the characteristic function of Y in l∞(X), has the above properties,
but it does not behave well with respect to constant vectors. We will thus take A to be a sort
of “averaging operator”: This has the crucial property that the correspondences in (4.2) above
almost take constant vectors to constant vectors.

Now for the details. We require some notational preliminaries. Fix a decomposition X =⊔
y∈Y

Uy of X into subsets Uy parametrized by Y such that for each y ∈ Y , Uy contains y and so

that there is a controlled set E such that Uy × Uy ⊆ E for all y (and in particular, max
y∈Y

|Uy| is

finite); it is not difficult to see that coarse denseness of Y in X implies that such a decomposition
exists. For x ∈ X , write y(x) for the (unique) y ∈ Y such that x is in Uy. For y ∈ Y , define
n(y) = |Uy|. For x in X , we also define

n(x) := |Uy(x)| = n(y(x)), N(x) := n(x)
1
2 . (4.3)

We will think of N as an (invertible) element of l∞(X) ⊆ Cu[X ].
Define now an operator A in Cu[X ] by the formula

Axz =
{
n(x)−1, y(z) = y(x),
0, otherwise.

The operator A can be thought of as an “averaging operator”: As an operator on l2(X), it is
the orthogonal projection onto the subspace of functions that are constant on each Uy. Note
that A commutes with N .

The proof of Proposition 4.1 now proceeds via a series of (mainly algebraic) lemmas.

Lemma 4.3 The following hold for the operator A:
(1) If Φ : Cu[X ] → l∞(X) is as in (3.1) above, then Φ(A) is the constant function 1.
(2) If H is any representation of Cu[X ], then the constant vectors are a subspace of A · H.
(3) An element T of Cu[X ] is in ACu[X ]A if and only if Tx1z1 = Tx2z2 whenever y(x1) =

y(x2) and y(z1) = y(z2).
(4) The maps α : ACu[X ]A→ Cu[Y ] and β : Cu[Y ] → ACu[X ]A defined by

α(T )y1y2 = n(y1)−
1
2n(y2)−

1
2

∑
x∈Uy1
z∈Uy2

Txz, (4.4)
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and

β(T )xz = n(x)−
1
2n(z)−

1
2Ty(x)y(z) (4.5)

are mutually inverse ∗-isomorphisms between ACu[X ]A and Cu[Y ].
(5) The set {TAS ∈ Cu[X ] | T, S ∈ Cu[X ]} spans Cu[X ].

Proof For (1), we clearly have

Φ(A)(x) =
∑

z∈Uy(x)

n(x)−1 = 1.

Part (2) follows from part (1) and Lemma 3.1.
For (3), let T be an element of Cu[X ] and x, z ∈ X . Then

(TA)xz =
∑
u∈X

TxuAuz = n(z)−1
∑

u∈Uy(z)

Txu, (TA)xz = n(x)−1
∑

u∈Uy(x)

Tuz.

The claim follows from these formulas. We will often implicitly use these formulas from now
on.

For (4), note that α is clearly linear and ∗-preserving. Note also that for S, T ∈ ACu[X ]A,

α(TS)y1y2 = n(y1)−
1
2n(y2)−

1
2

∑
x∈Uy1
z∈Uy2

∑
u∈X

TxuSuz

= n(y1)−
1
2n(y2)−

1
2

∑
x∈Uy1
z∈Uy2

∑
y∈Y

∑
u∈Uy

TxuSuz

= n(y1)−
1
2n(y2)−

1
2

∑
x∈Uy1
z∈Uy2

∑
y∈Y

n(y)−1
∑

u,v∈Uy

TxuSvz,

where the third equality uses part (3). This, however, is equal to∑
y∈Y

(
n(y1)−

1
2n(y)−

1
2

∑
x∈Uy1
u∈Uy

Txu

)(
n(y2)−

1
2n(y)−

1
2

∑
v∈Uy2
v∈Uy

Svz

)

=
∑
y∈Y

α(T )y1yα(S)yy2 = (α(T )α(S))y1y2 .

This implies that α is a ∗-homomorphism. The fact that β defines the inverse for α now follows
from more direct computations7 of matrix coefficients, completing the proof of this part.

Finally, for (5), let T be an element of Cu[X ] such that for each y ∈ Y , there is at most one
x such that y(x) = y and {Txz | z ∈ X} is not {0}, and similarly there is at most one z such
that y(z) = y and {Txz | x ∈ X} is not {0}. Define C,D ∈ Cu[X ] by

Cxz =
{

1, y(x) = y(z) and Txz′ �= 0 for some z′,
0, otherwise,

and

Dxz =

⎧⎨
⎩

∑
x′∈X

Tx′z , y(x) = y(z),

0, otherwise
7From now on in this section, to keep the length controlled, we will leave such matrix coefficient computations

to the reader.
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(note that the sum defining D has at most one non-zero element). A direct computation shows
that T = CAD. As any operator in Cu[X ] can be written as a finite sum of operators T with
the properties above, this completes the proof.

Lemma 4.4 For any non-degenerate representation H of Cu[Y ], there is a canonically
associated non-degenerate representation HX of Cu[X ] with the following properties.

(1) The representation A · HX of ACu[X ]A identifies canonically with the representation of
Cu[Y ] on H via the isomorphisms in Lemma 4.3(4).

(2) If H′ is any non-degenerate representation of Cu[X ] giving rise to a representation
A · H′ of ACu[X ]A ∼= Cu[Y ], we have that H′ and (A · H′)X are canonically isomorphic as
Cu[X ] representations.

Proof Given H as in the statement, let Cu[X ]�H denote the algebraic tensor product of
H and Cu[X ], taken over C. Define a form on this tensor product by the formula

〈S � ξ, T � η〉HX := 〈ξ, α(AS∗TA)η〉H (4.6)

on elementary tensors, and extending to finite sums of elementary tensors by linearity in the
second variable, and conjugate linearity in the first. This form is clearly linear in the second
variable, and conjugate linear in the first. It is also positive semi-definite. Indeed, note that for

any element
n∑

i=1

Si � ξi of Cu[X ] �H, we have

〈 n∑
i=1

Si � ξi,

n∑
i=1

Si � ξi

〉
=

n∑
i,j=1

〈ξi, α(AS∗
i SjA)ξj〉.

To show that this is non-negative, it suffices to show that the matrix (AS∗
i SjA)n

i,j=1 is equal to
a finite sum of matrices of the form B∗B with B in Mn(ACu[X ]A).

For each y ∈ Y , then, temporarily write the elements of Uy as y1, y2, · · · , yn(y). For each
i ∈ {1, · · · , n} and k ∈ {

1, · · · ,max
y∈Y

n(y)
}
, define Sk

i by

(Sk
i )xz :=

{
(Si)xz, x = yk for some y ∈ Y,
0, otherwise,

and note that

Si =

max
y∈Y

n(y)∑
k=1

Sk
i .

Note moreover that for any i, j ∈ {1, · · · , n} and k, l ∈ {
1, · · · ,max

y∈Y
n(y)

}
, (Sk

i )∗(Sl
j) = 0 unless

k = l, whence

ASiS
∗
jA =

max
y∈Y

n(y)∑
k=1

A(Sk
i )∗Sk

j A.

It thus suffices to show that for each k ∈ {
1, · · · ,max

y∈Y
n(y)

}
, the matrix (A(Sk

i )∗Sk
j A)n

i,j=1 is of

the form B∗B for some B ∈Mn(ACu[X ]A), which we will now do. Set

Rk
i := ANSk

i A ∈ ACu[X ]A.
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Then one checks that (Rk
i )∗Rk

j = A(Sk
i )∗Sk

j )A, whence the matrix (A(Sk
i )∗(Sk

j )A)n
i,j=1 is equal

to ⎛
⎜⎜⎜⎝
Rk

1 . . . Rk
n

0 . . . 0
...

...
0 . . . 0

⎞
⎟⎟⎟⎠

∗⎛
⎜⎜⎜⎝
Rk

1 . . . Rk
n

0 . . . 0
...

...
0 . . . 0

⎞
⎟⎟⎟⎠

in ACu[X ]A; this is of the desired form.
Now let HX be the corresponding separated completion of H� Cu[X ] for the semi-definite

inner product in (4.6) above. Let HX
0 denote the image of Cu[X ]�H in this Hilbert space and

write [S � ξ] for the class of an element S � ξ ∈ Cu[X ] �H in HX
0 . For T ∈ Cu[X ], define an

operator π(T ) on HX
0 by the formula

π(T ) :
n∑

i=1

[Si � ξi] �→
n∑

i=1

[TSi � ξi].

A similar argument to that used above for positivity shows that π(T ) is bounded, and thus
extends to all of HX . The map π : Cu[X ] → B(HX) is then clearly a unital ∗-homomorphism,
so this gives the desired representation. We now look at properties (1) and (2).

For property (1), define a linear map L : A · HX
0 → H by the formula

L :
n∑

i=1

[ASi � ξi] �→
n∑

i=1

α(ASiA)ξi, (4.7)

and note that
〈 n∑

i=1

[ASi � ξi],
n∑

i=1

[ASi � ξi]
〉
HX

=
n∑

i,j=1

〈ξi, α(AS∗
i AASjA)ξj〉H

=
n∑

i,j=1

〈α(ASiA)ξi, α(ASjA)ξj〉

=
〈 n∑

i=1

α(ASiA)ξi,
n∑

i=1

α(ASiA)ξi
〉
H
.

This implies that L as in (4.7) is an isometry from A · HX
0 to H, thus extending to an iso-

metric map, which is clearly onto by non-degeneracy. It is also clear that L intertwines the
representations of ACu[X ]A ∼= Cu[Y ].

Finally, we look at property (2). Define a map M : (A · H′)X
0 → H′ by the formula

M :
n∑

i=1

[Si �Aξi] �→
n∑

i=1

SiAξi.

Computing

〈 n∑
i=1

[Si �Aξi],
n∑

i=1

[Si �Aξi]
〉

(A·H′)X
=

n∑
i,j=1

〈ξi, β(α(AS∗
i SjA))ξj〉H′

=
〈 n∑

i=1

SiAξi,
n∑

i=1

SiAξi

〉
H′
.



776 R. Willett and G. L. Yu

This implies that M again extends to an isometric linear map, and Lemma 4.3(5) and non-
degeneracy imply that this is onto. Again, it clearly intertwines the representations of Cu[X ],
so the proof is complete.

It follows from the lemma above that non-degenerate Cu[X ] and Cu[Y ] ∼= ACu[X ]A repre-
sentations come canonically in pairs (HX ,HY ) such that A · HX = HY . We will make these
assumptions (and use this notation) throughout the rest of the proof of Proposition 4.1.

Our next task is to study the relationship between the constant vectors HX
c and HY

c in the
spaces above. Note that Lemma 4.3 (1) implies that HX

c is a subspace of HY (and that HY
c is

a subspace of HY by definition). Let ΦX : Cu[X ] → l∞(X) and ΦY : Cu[Y ] → l∞(X) be the
linear maps defined in (3.1) above and define

ΨY := β ◦ ΦY ◦ α : ACu[X ]A→ β(l∞(Y )) ⊆ ACu[X ]A. (4.8)

Note that Lemma 3.1 implies that a vector ξ ∈ HY is in HY
c if and only if ΨY (ATA)ξ = ATAξ

for all T ∈ Cu[X ]. The following computations contain the bulk of the rest of the proof of
Proposition 4.1.

Lemma 4.5 The following hold:
(1) For any partial translation v ∈ Cu[Y ],

ΦX(Nβ(v)N−1)A = β(vv∗)A.

(2) For any partial translation v ∈ Cu[X ] such that for all y ∈ Y,

|{x ∈ Uy | (vv∗)xx = 1}| ≤ 1 and |{z ∈ Uy | (v∗v)zz = 1}| ≤ 1, (4.9)

we have the formula

ΨY (N−1AvAN) = Avv∗A.

(3) The operator N from (4.3) above on HX restricts to an isomorphism

N : HY
c → HX

c .

(4) For any ξ ∈ (HX
c )⊥ ∩HY , if we decompose N−1ξ = ξ1 + ξ2, where ξ1 ∈ HY

c and ξ2 is in
(HY

c )⊥, then

‖ξ2‖ ≥ ‖ξ‖√
1 + (‖N‖‖N−1‖)2 .

(5) For any ξ ∈ (HY
c )⊥ ∩ HY , if we decompose Nξ = ξ1 + ξ2, where ξ1 ∈ HX

c and ξ2 is in
(HX

c )⊥, then

‖ξ2‖ ≥ ‖ξ‖√
1 + (‖N‖‖N−1‖)2 .

Proof For part (1), direct computations show that for any x, z ∈ X , the corresponding
matrix coefficients are given by

(β(vv∗)A)xz = (ΦX(Nβ(v)N−1)A)xz = n(x)−1
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if y(x) = y(z) and (vv∗)y(x)y(x) = 1, and zero otherwise. For part (2), a direct computation
using the formulas in (3.1), (4.4)–(4.5) shows that for any T ∈ ACu[X ]A, the matrix coefficients
of ΨY (T ) are given by

(ΨY (T ))xz = n(x)−
3
2

∑
y∈Y

∑
x′∈Uy(x)

z′∈Uy

n(z′)−
1
2 Tx′z′ .

From here, more direct computation shows that the matrix coefficients of the operators in the
statement are given by

(Avv∗A)xz = (ΨY (N−1AvAN))xz = n(x)−2

if y(x) = y(z) and there exists x′ ∈ Uy(x) such that (vv∗)x′x′ = 1, and zero otherwise.
For part (3), assume first that ξ is an element of HX

c , we want to show that N−1ξ is in HY
c

and thus N · HY
c is a superspace of HX

c . Let v ∈ Cu[Y ] be an arbitrary partial translation, we
want to show that β(v)N−1ξ = β(vv∗)N−1ξ. Then using the fact that ξ is in HX

c ⊆ HY , we
have

Nβ(v)N−1ξ = ΦX(Nβ(v)N−1)ξ = ΦX(Nβ(v)N−1)Aξ.

Using part (1), this is equal to

β(vv∗)Aξ = Nβ(vv∗)N−1ξ

using the fact that N commutes with β(vv∗). Hence Nβ(v)N−1ξ = Nβ(vv∗)N−1ξ and can-
celling the N gives the desired conclusion.

Conversely, assume that ξ is an element of HY
c ; we want to show that Nξ is in HX

c and
thus N · HY

c is a subspace of HX
c . Let v ∈ Cu[X ] be a partial translation; we want to show

vv∗Nξ = vNξ. Splitting v up as a finite sum of at most (max
x∈X

n(x))2 elements, we may assume

that v satisfies the conditions in (4.9) for any y ∈ Y . Now let C ∈ Cu[X ] be defined by

Cxz =
{

(vv∗)xx, y(x) = y(z),
0, otherwise (4.10)

(roughly speaking, C collapses each Uy that intersects the range of v into the single point in
which it intersects the range of v). Note that N commutes with C. We then have the formula
CAv = v. Now,

N−1vNξ = N−1CAvNξ = CN−1AvANξ = CΨY (N−1AvAN)ξ,

where the last equality uses the fact that ξ is in HY
c . Continuing to use part (2), this is equal

to
CAvv∗Aξ = vv∗ξ = N−1vv∗Nξ,

where the second equality uses the fact that N commutes with vv∗ by the assumption in (4.9).
Hence N−1vv∗Nξ = N−1vNξ, so vv∗Nξ = vNξ as required.

For part (4), note that if ξ = Nξ1 +Nξ2 and Nξ1 is in HX
c by part (3). Hence taking the

inner product with Nξ1 gives
0 = ‖Nξ1‖2 + 〈Nξ1, Nξ2〉,
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whence
‖Nξ1‖2 = |〈Nξ1, Nξ2〉| ≤ ‖Nξ1‖‖Nξ2‖

and so (assuming as we may that Nξ1 �= 0) ‖Nξ1‖ ≤ ‖Nξ2‖. This in turn implies that

‖ξ1‖
‖N−1‖ ≤ ‖Nξ1‖ ≤ ‖Nξ2‖ ≤ ‖N‖‖ξ2‖,

so
‖ξ1‖ ≤ ‖N‖‖N−1‖‖ξ2‖.

This combined with the fact that ‖ξ1‖2 + ‖ξ2‖2 = ‖ξ‖2, forces

‖ξ2‖2(1 + (‖N‖‖N−1‖)2) ≥ ‖ξ‖2,

from which the claimed inequality follows. Part (5) is analogous, and we are done.

We are now finally ready to complete the proof of Proposition 4.1, and thus also that of
Theorem 4.1.

Proof of Proposition 4.1 Assume first that Y has geometric property (T). Let F be a
generating controlled set for the coarse structure on Y , and let E be any generating controlled set
for the coarse structure on X that contains F , the controlled set {(x, z) ∈ X×X | y(x) = y(z)}
for X × X , and the composition of these two. Using Proposition 3.1, it will suffice to show
that there exists some constant ε > 0 depending only on F and the cover {Uy} such that for
any unit vector ξ ∈ (HX

c )⊥, there exists T ∈ Cu[X ] supported in E with matrix coefficients
bounded by a number depending only on {Uy} and F , and with ‖(T − Φ(T ))ξ‖ ≥ ε.

Let c ∈ (0, 1) be a constant, which will be chosen later in a way that depends only on the
cover {Uy} of X and F . Note that if ‖(1 − A)ξ‖ ≥ c, then we are done, as Φ(A) = 1. Then
assume that

‖(1 −A)ξ‖ ≤ c. (4.11)

Now, by part (4) of Lemma 4.5 (and the fact that A preserves (HX
c )⊥), we may write

N−1Aξ = ξ1 + ξ2, where ξ1 is in HY
c , ξ2 is in (HY

c )⊥, and ‖ξ2‖ ≥ c1‖Aξ‖ for some c1 > 0
depending only on the cover {Uy}. Using geometric (T) for Y (and the fact that ξ1 is in HY

c ),
there exists a partial translation v ∈ Cu[Y ] supported in F and a constant c2 > 0 depending
only on F such that

‖(β(v) − β(vv∗))N−1Aξ‖ = ‖(β(v) − β(vv∗))ξ2‖ ≥ c2‖ξ2‖ ≥ c2c1‖Aξ‖.
Hence

‖N(β(v) − β(vv∗)N−1)Aξ‖ ≥ c1c2
‖N−1‖‖Aξ‖.

Now, using Lemma 4.5(1) and the fact that N commutes with β(vv∗), this implies that

‖Nβ(v)N−1 − ΦX(Nβ(v)N−1))Aξ‖ ≥ c3‖Aξ‖,
where c3 > 0 depends only on {Uy} and F again. Finally, this forces

‖Nβ(v)N−1 − ΦX(Nβ(v)N−1))ξ‖
≥ c3 − ‖Nβ(v)N−1 − ΦX(Nβ(v)N−1))(1 −A)ξ‖
≥ c3 − ‖Nβ(v)N−1 − ΦX(Nβ(v)N−1)‖c,
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where c is as in (4.11). Noting that

‖Nβ(v)N−1 − ΦX(Nβ(v)N−1)‖ = ‖N(β(v) − β(vv∗)N−1)‖ ≤ 2‖N‖‖N−1‖,

and setting c = c3
4‖N‖‖N−1‖ , we see that

‖Nβ(v)N−1 − ΦX(Nβ(v)N−1)ξ‖ ≥ c3
2
.

Note that Nβ(v)N−1 is supported in F ◦ {(x, z) ∈ X ×X | y(x) = y(z)}.
In summary, we have shown the desired conclusion with ε = min{c, c3

2 }: if ‖(1 −A)ξ‖ ≥ c,
we may take T = A, and otherwise we may take T = Nβ(v)N−1.

For the converse implication, assume that X has geometric property (T), and let F be a
controlled generating set for X . Let E be any controlled set for X that contains a generating
set for Y and such that

F ◦ {(x, z) ∈ X ×X | y(x) = y(z)}.
Using Proposition 3.1 and the isomorphism ACu[X ]A ∼= Cu[Y ] from Lemma 4.3(4), it will
suffice to show that there exists some constant ε > 0 depending only on F and the cover {Uy}
such that for any unit vector ξ ∈ (HY

c )⊥, there exists T ∈ ACu[X ]A supported in E with
matrix coefficients bounded by some number depending only on F and {Uy}, and such that
‖(T − Φ(T ))ξ‖ ≥ ε.

Let ξ be a unit vector in (HY
c )⊥ ∩ HY . Using Lemma 4.5(5) we may write Nξ = ξ1 + ξ2,

where ξ1 is in HX
c , ξ2 is in (HX

c )⊥ and ‖ξ2‖ ≥ c1‖ξ‖ for some c1 > 0 depending only on the
cover {Uy}.

Using geometric property (T), there exists a partial translation v ∈ Cu[X ] supported in F

and c2 > 0 depending only on F such that

‖(vv∗ − v)Nξ‖ = ‖(vv∗ − v)ξ2‖ ≥ c2‖ξ2‖ ≥ c1c2.

We may split v up as a finite sum of at most max
x∈X

n(x)2 partial translations satisfying the

support condition in (4.9), and thus assume that

‖(vv∗ − v)Nξ‖ ≥ c3, (4.12)

where c3 = c1c2
max
x∈X

n(x)2 and v satisfies the support condition in (4.9).

Now, let C be the “collapsing” operator defined as in (4.10) above for this v. Using that
CAv = v and Aξ = A, we see that

‖(vv∗ − v)Nξ‖ = ‖C(Avv∗ −Av)Nξ‖ = ‖C(Avv∗A−AvA)Nξ‖.

As Aξ = ξ and N commutes with A, C and vv∗, this implies that

‖C(Avv∗A−N−1AvAN)ξ‖ ≥ c2
‖N‖ .

Hence by Lemma 4.5(2), we see that

‖C(ΨY (N−1AvAN) −N−1AvAN)ξ‖ ≥ c2
‖N‖ ,
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so, as A commutes with N ,

‖(ΨY (AN−1vNA) −AN−1vNA)ξ‖ ≥ c2
‖N‖‖C‖ .

As ‖C‖ admits an upper bound c3 depending only on the cover {Uy}, this completes the proof:
Take ε = c2

‖N‖c3
and T = AN−1vNA.

The following corollary gives our first examples of spaces with geometric property (T); in
some sense, these could be considered “trivial” examples.

Lemma 4.6 Let X be a space which splits into coarse components X = 	Xn such that
max
n∈N

|Xn| is finite. Then X has geometric property (T ).

Proof If eachXn is a single point, then for any representation H of Cu[X ], we have H = Hc,
so geometric property (T) is trivially satisfied. Any space X as in the statement is coarsely
equivalent to such a space where each Xn is a single point, however.

5 Laplacians

In this section, we define Laplacian operators, and use them to give another characterisation
of geometric property (T). This characterisation in terms of Laplacians was our original defini-
tion of geometric property (T) in [18, Section 7], and is more closely connected to K-theory. It
also lets us relate geometric property (T) to expanding graphs.

Throughout this section, X denotes a space as in Definition 2.3.

Definition 5.1 Let E be a controlled set for X. The Laplacian associated to E, denoted by
ΔE, is the element of Cu[X ] with matrix coefficients defined by

ΔE
xy =

⎧⎨
⎩
−1, (x, y) ∈ (E ∪ E−1) \ diag(E),
|{z ∈ X | (x, z) ∈ (E ∪E−1)\diag(E)}|, x = y,
0, otherwise.

Note that ΔE only depends on (E ∪ E−1)\diag(E). Also note that if E is empty, or is a
subset of the diagonal, then ΔE is 0.

Example 5.1 Suppose that X is the vertex set of an undirected graph, with the coarse
structure generated by the subset E of X × X consisting of all the edges as in Example 2.1.
The (un-normalised) combinatorial Laplacian of X in the sense of spectral graph theory (see
[11, Section 4.2]) is then the same as our ΔE . This is the motivating example.

The next two lemmas record some basic properties of Laplacians associated to antisymmetric
elementary controlled sets (see Definition 2.4 for the terminology).

Lemma 5.1 Let E be an antisymmetric elementary controlled set, and ΔE be the corre-
sponding Laplacian. Let t : A → B be the partial translation8 such that E = graph(t) and v be
the partial translation operator corresponding to t.

(1) ΔE and v are related by the equation

ΔE = vv∗ + v∗v − v − v∗.
8Recall that E being antisymmetric means that A ∩ B = ∅.
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(2) The image of ΔE in any representation is a positive operator.
(3) If H is any representation of Cu[X ], then the kernel of ΔE consists precisely of those

vectors ξ ∈ H such that

vξ = vv∗ξ (equivalently, such that v∗ξ = v∗vξ).

Proof For the first part, one checks directly that for both operators ΔE and vv∗ + v∗v −
v − v∗, the (x, y)th matrix coefficient is equal to

⎧⎨
⎩
−1, x �= y, and either t(x) = y or t(y) = x,
1, x = y, and x ∈ A ∪B,
0, otherwise.

The second and third parts both follow from the formula

ΔE = vv∗ + v∗v − v − v∗ = (vv∗ − v)∗(vv∗ − v).

Corollary 5.1 Let E be an elementary controlled set such that

(E ∩ E−1) \ diag(E) = ∅.

Let v be the corresponding partial translation operator, and ΔE be the corresponding Laplacian.
Then in any representation H of Cu[X ], the kernel of ΔE consists precisely of those vectors
ξ ∈ H such that

vξ = vv∗ξ (equivalently, such that v∗ξ = v∗vξ).

Proof Let t : A → B be the partial translation underlying E. Using Lemma 2.1, we may
decompose

A = A0 	A1 	A2 	A3,

such that for i ∈ {0, 1, 2}, t(Ai) ∩Ai = ∅, and so that the restriction of t to A3 is the identity.
Write ti for the restriction of t to Ai, Ei for the graph of ti, and vi for the corresponding partial
translation operator. The condition

(E ∩ E−1) \ diag(E) = ∅

on E implies that we have a disjoint union

(E ∪ E−1) \ diag(E) = (E0 	 E−1
0 ) 	 (E1 	 E−1

1 ) 	 (E2 	 E2)−1,

which implies by a direct computation of matrix coefficients that

ΔE = ΔE0 + ΔE1 + ΔE2 .

Lemma 5.1(2) implies that all the operators ΔEi are positive, and combining this with Lemma
5.1(3), we have that in any ∗-representation H of Cu[X ],

Kernel(ΔE) =
2⋂

i=0

Kernel(ΔEi) = {ξ ∈ H | viξ = viv
∗
i ξ for all i ∈ {0, 1, 2}}.
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On the other hand, the facts that v0, v1, v2, v3 have mutually orthogonal domains and mutually
orthogonal ranges, and that v∗3v3 = v∗3 = v3 imply that

v = v0 + v1 + v2 + v3 and vv∗ = v0v
∗
0 + v1v

∗
1 + v2v

∗
2 + v3v

∗
3 ,

and moreover that the condition “viξ = viv
∗
i ξ for all i ∈ {0, 1, 2}” on vectors in H is equivalent

to “vv∗ξ = vξ”, so we are done.

Lemma 5.2 If E ⊆ F are controlled sets, then there exist antisymmetric elementary con-
trolled sets E1, · · · , En such that

ΔF = ΔE +
n∑

i=1

ΔEi .

In particular, in any ∗-representation of Cu[X ], we have the operator inequality

ΔF ≥ ΔE ≥ 0.

Proof Lemma 2.2 implies that there exist antisymmetric elementary controlled sets E1, · · · , En

such that (F ∪ F−1)\diag(F ) can be written as the disjoint union

(F ∪ F−1)\diag(F ) = ((E ∪ E−1)\diag(E)) 	
n⊔

i=1

(Ei 	E−1
i ).

It follows by a direct computation of matrix coefficients that

ΔF = ΔE +
n∑

i=1

ΔEi .

The operator inequality ΔF ≥ ΔE now follows from positivity of each ΔEi as in Lemma 5.1(2).
The fact that ΔE ≥ 0 for any controlled set E follows from the special case inclusion ∅ ⊆ E.

Proposition 5.1 Let E be a controlled set and H be a representation of Cu[X ]. The
constant vectors Hc in H are contained in the kernel of ΔE. If moreover, E is generating, then
the kernel of ΔE is precisely equal to Hc.

Proof Assume first that E is a general controlled set. Lemma 5.2 implies that there are
antisymmetric elementary controlled sets E1, · · · , En, such that

ΔE =
n∑

i=1

ΔEi .

Letting vi be the partial translation operator corresponding to Ei, Lemma 5.1(3) implies that
the kernel of ΔEi consists precisely of those ξ ∈ H such that viξ = viv

∗
i ξ, and thus contains

Hc. On the other hand,

Kernel(ΔE) =
n⋂

i=1

Kernel(ΔEi),

whence Kernel(ΔE) ⊇ Hc.
Now assume that E is generating and that ΔEξ = 0. Let v be a partial translation operator;

we must show that vξ = vv∗ξ. Suppose that v corresponds to the partial translation t : A→ B.
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As E is generating, there exists n such that E◦n contains graph(t), whence Lemma 2.2 implies
that there exists m and a decomposition A = A1 	 · · · 	Am such that if ti := t|Ai , then there
exist partial translations s1i , · · · , sn

i such that
(1) ti = sn

i ◦ · · · ◦ s1i ;
(2) graph(sj

i ) ⊆ E for all i = 1, · · · ,m and j = 1, · · · , n;
(3) for each i and each j = 1, · · · , n− 1, the range of sj

i is equal to the domain of sj+1
i ;

(4) for each i and each j = 1, · · · , n− 1, either sj
i is the identity map, or the range of sj+1

i

is disjoint from its support.
Let vj

i be the operator corresponding to sj
i , and vi be the operator corresponding to ti. For

fixed i, j, let
F = graph(sj

i ).

Then 0 ≤ ΔF ≤ ΔE by Lemma 5.2 whence ΔF ξ = 0. Corollary 5.1 then implies that vj
i ξ =

vj
i (v

j
i )

∗ξ (and this is true for all i, j, as the choice of indices is arbitrary).
To complete the proof, assume inductively for some i and j = 1, · · · , n − 1 that if u :=

vj
i v

j−1
i · · · v1

i , then uu∗ξ = uξ. Then as the support of w := vj+1
i is the range of u, we have

wuξ = wuu∗ξ = wξ = ww∗ξ = (wu)(wu)∗ξ,

whence by induction viξ = viv
∗
i ξ for each i. Finally, note that

vξ = (v1 + · · · + vn)ξ = (v1v∗1 + · · · + vnv
∗
n)ξ;

this, however, is equal to vv∗ξ using that the operators vi all have orthogonal ranges, and we
are done.

Definition 5.2 Let T be an element of Cu[X ] and H be a representation of Cu[X ]. Define
σH(T ) to be the spectrum of T considered as an operator on H via this representation.

Define the maximal spectrum of T , σmax(T ) to be the union of all the sets σH(T ) as H
ranges over all representations of Cu[X ].

We are now ready to relate geometric property (T) to Laplacians.

Proposition 5.2 The following are equivalent:
(1) X has geometric property (T ).
(2) For any controlled set E, there exists c = c(E) > 0 such that σmax(ΔE) ⊆ {0} 	 [c,∞).
(3) For some controlled set E, there exists c > 0 such that σmax(ΔE) ⊆ {0} 	 [c,∞).

Proof We will only prove that (1) and (2) are equivalent: One can show that (3) is
equivalent to conditions (2) and (4) from Proposition 3.1 analogously.

Assume first that X satisfies condition (2). Noting that Φ(ΔE) = 0 for any controlled set
E and using Proposition 5.1, it is clear that X then satisfies condition (3) from Proposition 3.1
with T = ΔE .

Assume conversely that X has geometric property (T), and let E be a controlled set, and
c = c(E) > 0 be as in the definition of geometric property (T). Let H be a representation of
Cu[X ], and ξ ∈ H⊥

c be a unit vector. Let v be a partial translation with support in E such
that ‖(vv∗− v)ξ‖ ≥ c, which exists by geometric property (T). Lemma 2.1 implies that we may
write v = v0 + v1 + v2, where each vi is a partial translation corresponding to an antisymmetric
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elementary controlled set, and the vi have mutually orthogonal ranges. It follows that from the
orthogonality of the ranges that

2∑
i=0

‖(viv
∗
i − vi)ξ‖2 = ‖(vv∗ − v)ξ‖2 ≥ c2,

whence for some i, ‖(viv
∗
i − vi)ξ‖ ≥ c√

3
. In particular, on altering the constant c and replacing

v by one of the vi, we may assume that v comes from an antisymmetric elementary set.
Now by Lemmas 5.1–5.2, we may write

ΔE =
n∑

i=1

viv
∗
i + v∗i vi − vi − v∗i ,

where v1 = v, and the other vi are partial translations with support in E. Using Lemma 5.1
again (and its proof), it follows that

〈ξ,ΔEξ〉 ≥ 〈ξ, (vv∗ + v∗v − v − v∗)ξ〉 = ‖(vv∗ − v)ξ‖2 ≥ c2;

as ξ is an arbitrary element of H⊥
c , and H is itself arbitrary, this shows that σmax(ΔE) is

contained in {0} 	 [c2,∞), so we are done.

Our work on Laplacians allows us to give an easy proof of the following consequence of
geometric property (T) for sequences of graphs: It implies that the sequence of graphs is an
expander in the sense of the following condition.

Definition 5.3 Let (Xn) be a sequence of (vertex sets of) finite connected graphs. The
sequence (Xn) is an expander if the following hold:

(i) the cardinalities |Xn| tend to infinity;
(ii) there is a uniform bound on the degrees of all vertices in each Xn;
(iii) there exists some c > 0 such that if Δn is the graph Laplacian on l2(Xn) as in Example

5.1, then the spectrum of Δn is contained in {0} 	 [c,∞).

Expanders have applications in several areas of pure mathematics, as well as computer
science and information theory (see [11] for more information).

Corollary 5.2 Let X be a space that decomposes into coarse components as X = 	Xn,
and assume that |Xn| is finite and that |Xn| tends to infinity. Let E be a symmetric generating
set for the coarse structure. Define a (connected) graph structure on each Xn by decreeing that
E ∩ (Xn ×Xn) is the edge set, and call the corresponding graph Gn.

Then the sequence (Xn) is an expander.

Proof Let Δn be the graph Laplacian on each Xn. Then (Xn) is an expander if and only
if the operator

Δ := ⊕Δn ∈ B(⊕il
2(Xn))

has a spectrum contained in some set of the form {0} 	 [c,∞). This follows, however, as Δ
identifies with ΔE acting on l2(X), so the spectrum of Δ is equal to σl2(X)(ΔE), which is
contained in σmax(ΔE), and is a subset of {0} 	 [c,∞) by geometric property (T).
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Remark 5.1 The methods of Section 4 can be used to show that “being an expander”
is a coarse invariant of a sequence of graphs in the obvious sense. Although known to some
experts9, this does not seem to have been observed in the literature before.

6 Relationship with Amenability

In this section we discuss the relationship between geometric property (T) and amenability.
Throughout the section, X denotes a space.

The main result is Proposition 6.1; phrased slightly differently, it says that Cu[X ] admits
a representation H where the space Hc of constant vectors is non-zero, if and only if X is
amenable. It follows (Corollary 6.1) that for coarsely connected spaces, geometric property T
is equivalent to non-amenability.

We start with a lemma. Variants of this are very well-known, but we include a proof for the
readers’ convenience, as we could not find exactly what we needed in the literature.

Lemma 6.1 The following are equivalent:
(1) There exists an invariant mean on X, a positive unital linear functional

φ : l∞(X) → C

such that if f ∈ l∞(X), and t : A → B is any partial translation such that B contains the
support of f , then

φ(f) = φ(f ◦ t).
(2) There exists a net (ξi)i∈I of unit vectors in l2(X) such that for any partial translation

v,
lim
i∈I

‖vξi − vv∗ξi‖ = 0.

Proof Assume first condition (1). Fix a finite set {v1, · · · , vm} of partial translations. It
suffices to show that there exists a sequence of unit vectors (ξn) in l2(X) such that

lim
n→∞ ‖viξn − viv

∗
i ξn‖ = 0

for all i = 1, · · · ,m. Let P (X) denote the space of finitely supported probability measures on
X (a subset of l1(X)), which identifies with a weak-∗ dense subset of the space of positive unital
linear functionals on l∞(X) via the standard pairing between l1 and l∞. Let (φj)j∈J be a net
in P (X) that converges weak-∗ to φ, and for each i = 1, · · · ,m, let ti : Ai → Bi be the partial
bijection corresponding to vi. Then for each i and any f ∈ l∞(Bi), we have

lim
j∈J

(φj(f) − φj(f ◦ ti)) = 0,

or in other words,
φj |Bi − (φj ◦ t−1

i )|Ai

converges weakly to zero in l1(X), whence 0 is in the weak closure of the convex set

{ m⊕
i=1

(ψ|Bi − (ψ ◦ t−1
i )|Ai) ∈

m⊕
i=1

l1(X)
∣∣∣ ψ ∈ P (X)

}
.

9It also admits a rather easier proof, as pointed out to us by Romain Tessera.
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The Hahn-Banach theorem thus implies that it is in the norm closure, i.e., there is a sequence
(φn) of elements of P (X) such that

lim
n→∞ ‖φn|Bi − (φn ◦ t−1

i )|Ai‖1 = 0 (6.1)

for i = 1, · · · ,m. Set ξn(x) =
√
φn(x) for each n and x ∈ X , so each ξn is a unit vector in

l2(X). For any i = 1, · · · ,m, we have

‖viξn − viv
∗
i ξn‖2 = ‖(ξn ◦ t−1

i )|Ai − ξn|Bi‖2 ≤ 2‖φn|Bi − (φn ◦ t−1
i )|Ai‖1,

which tends to zero as n tends to infinity.
For the converse, let (ξi) be a net with the properties given. Then it is not difficult to check

that any weak-∗ limit point of the functionals

φi : f �→ 〈ξi, fξi〉

will have the desired properties.

Definition 6.1 A space X is amenable if it satisfies the conditions in Lemma 6.1.

It is not difficult to see that this is equivalent to the definitions of amenability in [2, Section
3] or [13, Sections 3.3–3.6]

The equivalence of the first and third conditions in the proposition below is fairly well-known;
the main point is that this equivalence still holds if one takes the “maximal spectrum”.

Proposition 6.1 Let E be a generating controlled set for X. With notation as in Section
5, the following are equivalent:

(1) 0 is in σl2(X)(ΔE);
(2) 0 is in σmax(ΔE);
(3) X is amenable.

Proof It is clear that (1) implies (2).
To see that (2) implies (3), assume that 0 is an element of σmax(ΔE). This is equivalent to 0

being an element of the spectrum of ΔE in the C∗-algebra C∗
u,max(X) defined as the completion

of Cu[X ] for the norm

‖T ‖max := sup{‖π(T )‖B(H) | π : Cu[X ] → B(H) a representation}

(the arguments of [8, Section 3] show that this supremum is finite for each T ∈ Cu[X ]). Any
point in the spectrum of a positive operator in a C∗-algebra can be realized as an eigenvalue
in some representation, whence there exists a representation H of C∗

u,max(X) (equivalently, of
Cu[X ]) in which 0 is an eigenvalue of ΔE . Proposition 5.1 then implies that this representation
contains non-zero constant vectors. Let ξ be any norm-one constant vector, and let

φ : Cu[X ] → C, a �→ 〈ξ, aξ〉

be the corresponding vector state. We will show that the restriction of φ to l∞(X) is an
invariant mean.
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Indeed, let f be an element of l∞(X), let t : A → B be a partial translation such that B
contains the support of f , and let v be the operator corresponding to t. Then f ◦ t = v∗fv and
vv∗f = fvv∗ = f , so the fact that ξ is constant implies that

φ(f ◦ t) = φ(v∗fv) = 〈vξ, fvξ〉 = 〈vv∗ξ, fvv∗ξ〉 = 〈ξ, fξ〉 = φ(f).

To see that (3) implies (1), let (ξi) be a net of functions in l2(X) with the properties in
Lemma 6.1(2). Using Lemmas 5.1–5.2, we may write

ΔE =
N∑

j=1

vjv
∗
j + v∗j vj − vj − v∗j

for some partial translations v1, · · · , vN . For any ξi, we then have that

〈ξi,ΔEξi〉 =
N∑

j=1

〈ξi, (vjv
∗
j − vj)ξi〉 + 〈ξi, (v∗j vj − v∗j )ξi〉,

which tends to zero in the limit over i. As ΔE is a positive operator on l2(X), this implies that
its spectrum contains zero.

In particular, note that whether or not 0 is in the above variations of the spectrum of ΔE

is a property not of E, but of the coarse space X .
We now turn to the relationship between geometric property (T) and amenability.

Lemma 6.2 Let X be a coarsely connected amenable space. Then for any generating con-
trolled set E, 0 is a non-isolated point of the spectrum of σmax(ΔE).

Proof Using Proposition 6.1, 0 is also in σl2(X)(ΔE); it suffices to show that 0 is not an
isolated point in σl2(X)(ΔE). If it were, then 0 would be an eigenvector of ΔE for its action on
l2(X). Let ξ be an eigenvector, and note that Proposition 5.1 implies that ξ is a fixed vector.
Let x0 be a point in the support of ξ, and note that as X is infinite, coarsely connected and
monogenic, there exists a sequence

x0, x1, x2, · · ·
of distinct points in X such that (xi, xi+1) is in E for all i. Let v be the partial translation
operator corresponding to the partial translation defined by

t : {xn | n ≥ 1} → {xn | n ≥ 0}, xn �→ xn−1.

Then as ξ is a fixed vector, we have

(vξ)(xn) = (vv∗ξ)(xn−1)

for all n, and thus by induction all the values ξ(xn) are non-zero and equal. This contradicts
the fact that ξ is in l2(X).

Finally, here is the characterization of coarsely connected spaces with geometric property
(T).

Corollary 6.1 Let X be an infinite coarsely connected space. Then X has geometric prop-
erty (T ), if and only if it is not amenable.
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The special case of this result when X is a group was proved in [18, Lemma 7.2].

Proof of Corollary 6.1 If X is amenable, then by Lemma 6.2, 0 is a non-isolated point in
σmax(ΔE) for any generating set E for the coarse structure, and this contradicts geometric (T).
Conversely, if X is not amenable, then 0 is not in the spectrum of σmax(ΔE) for any generating
set E by Proposition 6.1. As the spectrum is closed and ΔE is positive, it is contained in a set
of the form [c,∞) for some c > 0, and this, in particular, implies geometric property (T).

This says that geometric property (T) is not very interesting for coarsely connected spaces!
In the next section, we will finally look at a class of interesting examples of spaces with geometric
property (T).

7 Relationship with Property (T) Groups

In this section, we give some non-trivial examples of spaces with geometric property (T). Up
to trivial adjustments, these are the only examples we know. Most of this material is contained
in [18, Section 7], but fairly sketchily; we provide more detail here for the readers’ convenience.

It will be very convenient to use some C∗-algebraic machinery in this section, mainly as
the following C∗-algebras are useful to organize certain arguments. This material was already
briefly used in the proof of Proposition 6.1.

Definition 7.1 Let X be a space. The uniform Roe algebra of X, denoted by C∗
u(X), is the

completion of Cu[X ] for its natural ∗-representation on l2(X).
The maximal uniform Roe algebra of X, denoted C∗

u,max(X), is the completion of Cu[X ] for
the norm

‖T ‖ := sup{‖π(T )‖B(H) | π : Cu[X ] → B(H) a ∗-representation}
(see [8, Section 3] for a proof that this norm is finite).

Using the notation from Definition 5.2, note that for any T ∈ Cu[X ], σl2(X)(T ) is the
spectrum of T considered as an element of C∗

u(X), and σmax(T ) is the spectrum of T considered
as an element of C∗

u,max(X).

Definition 7.2 Let Γ be an infinite finitely generated discrete group with a fixed finite
generating set S. Assume that S = S−1. Let

Γ = Γ0 � Γ1 � Γ2 � · · ·

be a nested sequence of finite index normal subgroups of Γ such that ∩nΓn = {e}. For each n,
set Xn = Γ/Γn, and set

X =
⊔
n∈N

Xn.

Set
En = {(x, y) ∈ Xn ×Xn | x−1y ∈ S}

and
E = 	En ⊆ X ×X.

Finally, equip X with the monogenic coarse structure generated by E.
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The following theorem characterizes when a space built from a group as above has geometric
property (T).

Theorem 7.1 Let X be a space built from data (Γ, (Γn)) as above. Then X has geometric
property (T ), if and only if Γ has property (T ).

In order to prove this, we need a lemma. Let C[Γ] denote the complex group algebra of Γ,
and note that the right actions of Γ on the various Xn give rise to a ∗-homomorphism

ι : C[Γ] → Cu[X ]. (7.1)

This ∗-homomorphism is injective as ∩nΓn = {e}. Moreover, if C∗
max(Γ) denotes the completion

of C[Γ] for the norm
∥∥∥∑

g∈Γ

zgg
∥∥∥ := sup

{∥∥∥(∑
g∈Γ

zgπ(g)
)∥∥∥

B(H)

∣∣∣ π : Γ → H a unitary representation
}
,

then ι also induces a ∗-homomorphism ι : C∗
max(Γ) → C∗

u,max(X) by the universal property of
C∗

max(Γ). We have the following injectivity result, which is stronger than the statement that
the map in (7.1) is injective.

Lemma 7.1 The ∗-homomorphism ι : C∗
max(Γ) → C∗

u,max(X) is injective.

Proof Note that the algebraic direct sum ⊕nCu[Xn] is an ideal in Cu[X ]; let I denote its
closure in C∗

u,max(X). It follows from the argument of [12, Proposition 2.8] that

C∗
u,max(X)/I ∼= (

l∞(X)/C0(X)
)

�max Γ,

where the right-hand side denotes the maximal crossed product defined by using the action of
Γ on l∞(X)/C0(X) induced by the right action on X . It suffices to prove that the composed
map

C∗
max(Γ) → C∗

u,max(X) → (
l∞(X)/C0(X)

)
�max Γ

is an injection.
Now, for each n, let ξn be the normalised characteristic function of Xn in l2(X), and let

φn : l∞(X) → C, f �→ 〈ξn, fξn〉

be the corresponding vector state. Let φ be any cluster point of the sequence (φn) of vector
states on l∞(X), and note that φ descends to a state on l∞(X)/C0(X). It is Γ-invariant, as all
the φn are. Finally, consider the maps

C
1→ l∞(X)/C0(X)

φ→ C,

where the first map is the unit inclusion which is split by the ucp map φ. As maximal crossed
products are functorial for ucp maps (see [4, Exercise 4.1.4]), this gives rise to maps

C∗
max(Γ) → (

l∞(X)/C0(X)
)

�max Γ → C∗
max(Γ)

whose composition is the identity; the first map is thus injective.



790 R. Willett and G. L. Yu

Remark 7.1 The above proof is a disguised version of the following fact: We guess this
is known, but do not know if it appears in the literature. Let G be a locally compact group
acting on a compact Hausdorff topological space X . Then the canonical ∗-homomorphism

C∗
max(G) → C(X) �max G

is injective, if and only if there is an invariant measure on X .

Proof of Theorem 7.1 Consider the element

ΔΓ :=
∑
s∈S

1 − [s] ∈ C[Γ]

of the group algebra of Γ, and let E be the controlled set appearing in the definition of a box
space (Definition 7.2). Then the image of ΔΓ under ι is the Laplacian ΔE associated to E. As
ι is injective on the level of maximal completions (and injective maps of C∗-algebras preserve
spectra) it follows that the spectrum of ΔΓ in C∗

max(Γ) is equal to σmax(ΔE). However, it is
well-known that Γ has property (T), if and only if the spectrum of ΔΓ in C∗

max(Γ) is contained
in a set of the form {0}	 [c,∞) for some c > 0 (see [16, Theorem 3.2]); as E is generating (and
using Proposition 3.1), this is equivalent to geometric property (T) for X .

Corollary 7.1 For spaces built from sequences of quotients as above, having geometric
property (T ) is a strictly stronger property that being an expander.

Proof A space associated to the pair (Γ, (Γn)) is an expander, if and only if the pair has
property (τ) (see [11, Theorem 4.3.2]). The result now follows as there are many pairs (Γ, (Γn)),
for example, with Γ a free group, which have property (τ), where Γ does not have property (T).

Also note that whether a space as above has property (T) depends only on the ambient
group Γ, instead of the given sequence of subgroups; on the other hand, whether or not such a
space is an expander in general does depend on the choice of sequence of subgroups.

8 Geometric Property (T) and Coarse a-T-Menability Properties

It follows from Lemma 4.6 and Corollary 6.1 that geometric property (T) is only really
interesting when a space X admits a decomposition

X =
⊔
n∈N

Xn

into non-empty finite coarse components such that |Xn| tends to infinity. We assume for
simplicity10 throughout this section that we are dealing with a space of this form.

Given such a space, we define its box space �X to be the set X equipped with the coarse
structure generated by the original coarse structure on X , and all the singletons {(x, y)}, as x
and y vary across X (note that this coarse structure is never monogenic).

Our goal in this section is to show that geometric property (T) is incompatible with the
following notions of “coarse a-T-menability” for X : X admits a coarse embedding into Hilbert

10Slightly more general results, for example, allowing, index sets other than N, or only assuming that |Xn|
is unbounded, are certainly possible, but we did not think that the extra messiness this would force on the
statements is worthwhile.
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space (see [19]); X admits a fibered coarse embedding into Hilbert space (see [5]); the restriction
of the coarse groupoid of X to its boundary is a-T-menable (see [7]).

Theorem 8.1 Assume that X = 	Xn splits into finite coarse components such that |Xn|
tends to infinity as above, and X has geometric property (T ). Then the following are impossible:

(1) �X admits a coarse embedding into Hilbert space;
(2) �X admits a fibered coarse embedding into Hilbert space;
(3) the restriction of the coarse groupoid of X (or �X) to its boundary is a-T-menable.

Natural examples satisfying conditions (2) and (3) are sequences of finite quotients of a-T-
menable groups, and sequences of graphs (Xn) such that the girth11 of Xn tends to infinity
(see [5, Examples 2.4 and 2.5]). It follows from the theorem that such spaces can not have
geometric property (T). On the other hand, note that there are many expander sequences with
girth tending to infinity; this gives another difference between geometric property (T) and
general sequences of expanding graphs.

Special cases of this theorem follow from known results in K-theory (see [5–7, 12, 17–18]),
but the proof we give here is more direct and a little more general. The theorem is definitely
not true for coarsely connected spaces, this follows from Corollary 6.1.

The basic idea of the proof is to show that any of the coarse a-T-menability properties
appearing in the statement allow one to construct representations of Cu[X ] that contradict
geometric property (T). Unfortunately, properties (2) and (3) from the above theorem are
quite technical, and are not stated anywhere in the literature in a form that is particularly
well-suited for our purposes; as a result, in order to keep the proof of Theorem 8.1 reasonably
short and self-contained, we have had to be a little ad-hoc in some constructions below.

In order to cover part (3) of the above theorem, we must use the language of the Stone-Čech
compactification of X ; we thus start by recalling the relevant facts. Let Y be a discrete topo-
logical space. The Stone-Čech compactification of Y , denoted by βY , is a compact Hausdorff
space containing Y as a dense open subset. It is determined by the following universal property:
For any compact Hausdorff space K and any function f : Y → K, there is a unique continuous
extension f : βY → K. We write ∂Y := βY \ Y for the associated Stone-Čech corona. Note
that the universal property implies that for any A ⊆ Y , the inclusion map A → Y extends to
an injection βA→ βY ; in particular, the closure of A in βY is canonically identified with βA.

Now let E denote the coarse structure on X × X . For each controlled set E ∈ E , let E
denote its closure in βX × βX . Define also ∂E to be the intersection E ∩ (∂X × ∂X). Define

βEX :=
⋃

E∈E
E.

We think of this space as a subset of βX × βX (and correspondingly write elements as pairs
(ω1, ω2)), but equip it with the (weak) topology determined by the following condition: A subset
U of βEX is open, if and only if its intersection with each E is open in βX × βX . Set

∂EX :=
⋃

E∈E
∂E,

equipped with the subspace topology from βEX .
11i.e., length of shortest non-trivial cycle.
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With this topology, βEX is a locally compact Hausdorff space, and ∂EX is a closed subspace:
βEX actually identifies as a topological space with the coarse groupoid G(X), and ∂EX with
the “restriction to the boundary” of G(X). We will not use this, but see [14] or [13, Chapter
10] for more information.

The following definition is easily seen to be equivalent to the property in part (3) of Theorem
8.1; we state it in this form to avoid having to introduce a lot of groupoid language.

Definition 8.1 The space X is boundary a-T-menable if there exists a continuous function
k : ∂EX → R+ such that the following hold:

(1) The function k is normalized: k(ω, ω) = 0 for all pairs (ω, ω) ∈ ∂EX.
(2) The function k is symmetric: k(ω1, ω2) = k(ω2, ω1) for all (ω1, ω2) ∈ ∂EX.
(3) The function k is negative type: for any finite subset {ω1, · · · , ωn} of ∂X such that all

the pairs (ωi, ωj) belong to ∂EX and any finite subset {z1, · · · , zn} of C such that
n∑

i=1

zi = 0, we

have
n∑

i,j=1

zizjk(ωi, ωj) ≤ 0.

(4) The function k is proper: If

cE := inf{k(ω1, ω2) | (ω1, ω2) ∈ ∂EX \ ∂E},

then the limit over the directed set of controlled sets (ordered by inclusion) lim
E∈E

cE is infinity.

The main result which we want to prove in this section is as follows.

Theorem 8.2 Assume that X = 	Xn splits into finite coarse components such that |Xn|
tends to infinity, and X is boundary a-T-menable. Then X does not have geometric property
(T ).

Before we prove this, we show how it implies Theorem 8.1.

Proof of Theorem 8.1 As already remarked, given the definition of the coarse groupoid
G(X) (see [14] or [13, Chapter 10]), it is clear that X is boundary a-T-menable in our sense if
and only if the restriction of G(X) to its boundary is a-T-menable in the sense of [15, Section
3] (see also [14, Section 5] and [7]). The result of [6, Corollary 20] thus implies that if �X
admits a fibered coarse embedding into Hilbert space in the sense of [5] (and in particular if
�X admits a coarse embedding into Hilbert space in the sense of [19]). Then X is boundary
a-T-menable. Theorem 8.1 follows.

The remainder of this section is devoted to the proof of Theorem 8.2. We assume from now
on that X is as in the statement of Theorem 8.2, and assume that k : ∂EX → C is as in the
definition of boundary a-T-menability.

For each t > 0, define a function kt : ∂EX → [0, 1] by

kt : (ω1, ω2) �→ e−tk(ω1,ω2). (8.1)

Lemma 8.1 The functions kt from (8.1) have the following properties:
(1) They are normalized: kt(ω, ω) = 1 for all ω ∈ ∂X.
(2) They are symmetric: kt(ω1, ω2) = kt(ω2, ω1) for all (ω1, ω2) ∈ ∂EX.
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(3) They are positive type: For any finite subset {ω1, · · · , ωn} of ∂X such that all the pairs
(ωi, ωj) are in ∂EX, and any finite subset {z1, · · · , zn} of C,

n∑
i,j=1

zizjkt(ωi, ωj) ≥ 0.

Proof Parts (1) and (2) are obvious. Part (3) is essentially a version of a well-known
theorem of Schoenberg (see [1, Theorem C.3.2]): It follows from the statement of [1, Theorem
C.3.2] by applying that result separately to each finite subset {ω1, · · · , ωn} of ∂X such that
(ωi, ωj) ∈ ∂EX for all i, j.

We will now use the functions kt to construct representations of Cu[X ]. First, extend12 the
functions kt : ∂EX → [0, 1] to continuous functions kt : βEX → [0, 1]; we may assume that
kt(x, x) = 1 for all x ∈ X . Define a form

〈〈, 〉〉t : Cu[X ] × Cu[X ] → l∞(X) = C(βX)

via the formula
〈〈S, T 〉〉t(x) =

∑
(y,z)∈X×X

SxyTxzkt(y, z);

as X has bounded geometry, the sum contains uniformly finitely many terms for each x, so this
is well-defined.

In order to use these functions to build representations of Cu[X ], we need some preliminaries.
First, we have the following lemma about elementary controlled sets.

Lemma 8.2 Let E be an elementary controlled set on X which is the graph of a partial
translation t : A→ B. Let t : A→ B denote the extension of t to the Stone-Čech compactifica-
tions. Then the closure E of E in βX × βX is the set

{(t(ω), ω) | ω ∈ A},

which identifies homeomorphically with βE.

Proof Denote by g : A → X ×X the “graph bijection” g : x �→ (t(x), x) with image E.
Consider the maps

A
g→ βX × βX

π→ βX,

where π is the projection onto the second factor. The composition of these maps is just the
inclusion of A into βX . Now, the universal property of the Stone-Čech compactification gives
rise to maps

A
g→ βX × βX

π→ βX,

where the image of g is E. Uniqueness of the extension g implies that it must be equal to
the map ω �→ (t(ω), ω), which gives the characterization of E. On the other hand, π ◦ g is
the identity inclusion βA = A → βX (by uniqueness again), which implies that g is injective.
Hence E identifies canonically with βA, and so with βE.

12The exact extensions we use will not affect the representations we build; however, we will make slightly
refined choices of extension below in order to analyze properties of the representations.
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Now, let f : X ×X → C be a bounded function with support in a controlled set E. Using
Lemma 2.2, we may write E = E1 	 · · · 	 En, where each Ei is elementary. Say Ei is the
graph of the partial translation ti : Ai → Bi. For each i = 1, · · · , n, define gi : Ai → C by
gi(x) = fi(ti(x), x), and extend gi to Ai. The extension of f |Ei to Ei

∼= βEi must be given by

(t(ω), ω) �→ g(ω)

by uniqueness. This formula then extends f to all of E = E1 ∪ · · · ∪ En. Using subdivisions,
it is not difficult to see that this extension does not depend on the choice of decomposition
E = E1 	 · · · 	 En.

If T is any operator in Cu[X ] supported in a controlled set E, and (ω1, ω2) is an element of
∂E, we define Tω1ω2 by using the extension process above applied to the function from E to C

defined by (x, y) �→ Txy.
For a controlled set E, we also define

N(E) := max
x∈X

|{y ∈ X | (x, y) ∈ E ∪ E−1}| (8.2)

and for an element T of Cu[X ], define

N(T ) := N({(x, y) ∈ X ×X | Txy �= 0}). (8.3)

Lemma 8.3 For each t > 0, the form

〈〈, 〉〉t : Cu[X ] × Cu[X ] → l∞(X) = C(βX)

has the following properties:
(1) The form 〈〈, 〉〉t is linear in the second variable and conjugate linear in the first.
(2) For any S, T ∈ Cu[X ] the l∞-norm of 〈〈S, T 〉〉t is bounded by

‖〈〈S, T 〉〉t‖ ≤ sup
x,y∈X

|Txy| sup
x,y∈X

|Sxy|N(T )N(S).

(3) The restriction of 〈〈S, T 〉〉t to ∂X is given by the formula

〈〈S, T 〉〉t(ω) =
∑

(ω1,ω2)∈∂EX

Sωω1Tωω2kt(ω1, ω2).

(4) For any S in Cu[X ], the restriction of 〈〈S, S〉〉t to ∂X only takes non-negative values.

Proof Part (1) is clear. Part (2) follows from the fact that kt takes values in [0, 1] and the
triangle inequality.

For part (3), note that any S ∈ Cu[X ] is a finite sum of operators with the property that

{(x, y) | Sxy �= 0}

is elementary. Using part (1), it suffices to assume that S and T have this property. Assuming
this, let s : As → Bs be the partial translation corresponding to S, and define f : As → C

by f(x) = Ss(x)x. Similarly, define g : At → C by g(x) = Tt(x)x, where t : At → Bt is the
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partial translation corresponding to T . Then for any fixed ω ∈ ∂X , we have via the discussion
preceding this lemma, that

Sωω′ =
{
f(s−1(ω)), ω ∈ Bs and ω = s(ω′),
0, otherwise

and similarly for T . We thus have

∑
(ω1,ω2)∈∂EX

Sωω1Tωω2kt(ω1, ω2)

=
{
f(s−1(ω))g(t−1(ω))kt(s−1(ω), t−1(ω)), ω ∈ Bt ∩Bs,
0, otherwise.

On the other hand, for any x ∈ X ,

〈〈S, T 〉〉t(x) =
∑

(y,z)∈X×X

SxyTxzkt(y, z)

=
{
f(s−1(x))g(t−1(x))kt(s−1(x), t−1(x)), x ∈ Bt ∩Bs,
0, otherwise.

The claimed formula follows.
Part (4) follows from part (3) and Lemma 8.1.

Now, for each n, define a state on l∞(X) by the formula

φn : l∞(X) → C, f �→ 1
|Xn|

∑
x∈Xn

f(x).

Let φ be any cluster point of the sequence (φn) in the state space of l∞(X). Note that φ
descends to a state on the quotient l∞(X)/C0(X), which naturally identifies with C(∂X).

For each t > 0, we may thus define a form on Cu[X ] by

〈S, T 〉t = φ(〈〈S, T 〉〉t).

Using Lemma 8.3(1)–(2), and that φ is a state, each form 〈, 〉t is linear in the second variable,
conjugate linear in the first, and positive semi-definite. Separation and completion thus define
a Hilbert space Ht for each t > 0. An element S ∈ Cu[X ] gives rise to an equivalence class [S]
in this Hilbert space. Provisionally define a representation πt of Cu[X ] on Ht via the formula

πt(T ) : [S] �→ [TS].

Lemma 8.3(3), and that φ has norm one, imply that each operator πt(T ) extends to a bounded
linear operator on Ht, and thus we have a well-defined map

πt : Cu[X ] → B(Ht). (8.4)

Lemma 8.4 The map πt in (8.4) above is a ∗-representation. It does not depend on the
choice of extension of kt.
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Proof Linearity and multiplicativity of πt are clear, so to show that πt is a ∗-representation
it suffices to check that it preserves adjoints.

As φ is cluster point of the functionals φn, it suffices to show that

φn(〈〈R∗S, T 〉〉t) = φn(〈〈S,RT 〉〉t)

for all n and all R,S, T ∈ Cu[X ]. Computing

φn(〈〈R∗S, T 〉〉t) =
1

|Xn|
∑

x∈Xn

∑
y,z∈Xn

∑
u∈Xn

R∗
xuSuyTxzkt(y, z)

=
1

|Xn|
∑

x,y,z,u∈Xn

SuyRuxTxzkt(y, z)

=
1

|Xn|
∑

x∈Xn

∑
y,z∈Xn

Sxy

∑
u∈Xn

RxuTuzkt(y, z)

= φn(〈〈S,RT 〉〉t).

The fact that πt does not depend on the choice of extension of kt follows from Lemma 8.3(3)
and that φ only depends on the restriction of a function in C(βX) to ∂X .

Our eventual goal is to preclude geometric property (T) by showing that the representations
Ht “come close” to containing constant vectors for small t > 0, although none of them actually
does contain constant vectors. The following lemma is the next step.

Lemma 8.5 For any t > 0, the ∗-representation πt : Cu[X ] → B(Ht) contains no constant
vectors.

In order to prove this, we need a combinatorial lemma.

Lemma 8.6 Let E be a symmetric generating set for the coarse structure on X that contains
the diagonal, and fix r ∈ N. Then there exist s,N ∈ N such that for all n ≥ N , there exists a
bijective partial translation tn : Xn → Xn such that

graph(tn) ⊆ E◦s \ E◦r.

Proof Let r be given, and let s be so large that �s/3� − r ≥ N(E◦r), where N(E◦r) is as
in (8.2). As |Xn| tends to infinity, and using the bounded geometry assumption, there exists
N such that for all n ≥ N and all points x ∈ Xn, there is a point y = y(x) ∈ Xn such that
(x, y) �∈ E◦�s/3�. Fix n ≥ N , and let G be the graph with vertex set Xn where two vertices
x, y are connected by an edge if and only if (x, y) is in E◦s \E◦r. It suffices to show that there
is a bijection σ : Xn → Xn such that (x, σ(x)) is an edge in G for all x ∈ Xn. It suffices by
Tutte’s 2-matching theorem (see [10, Proposition 2]) to show that if C is a subset of Xn, no
two vertices of which are connected by an edge in G, and if we set

d(C) = {x ∈ Xn | there exists y ∈ Xn such that (x, y) is an edge of G},

then |d(C)| ≥ |C|.
Fix such a set C, and define a relation on C by x ∼ y, if and only if (x, y) ∈ E◦r. This

is an equivalence relation: It is symmetric and reflexive as E is symmetric and contains the
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diagonal. It is transitive, as if x ∼ y and y ∼ z then (x, z) is in E◦2r; as x, z are in C, they are
not connected by an edge in G, and so this is impossible unless (x, z) is actually in E◦r. Fix
a subset C0 of C containing one representative of each equivalence class, and for each x ∈ C0,
define

Cx := {y ∈ C | (x, y) ∈ E◦r}

to be its equivalence class, which has at most N(E◦r) members. For each x ∈ C0, define

Dx := {y ∈ Xn | (x, y) ∈ E◦�s/3� \ E◦r}.

The choice of N implies that there exists y ∈ Xn such that (x, y) �∈ E◦�s/3�. As E is generating,
it follows that there is m ≥ �s/3� and a sequence of distinct points

x = x0, x1, · · · , xm = y

such that (xi, xi+1) is in E for i = 0, · · · ,m− 1, and (x, xi) �∈ E◦i−1 for i = 1, · · · ,m. Hence in
particular, xr+1, · · · , x�s/3� are in Dx, and thus

|Dx| ≥ �s/3� − r ≥ N(E◦r) ≥ |Cx|,

where the central inequality follows by choice of s. Finally, note that if x and y are distinct
points in C0, then (x, y) is not an edge and (x, y) �∈ E◦r. It follows by the definition of G that
(x, y) �∈ E◦s and in particular, Dx ∩Dy = ∅. Moreover, each Dx is contained in d(C) whence

|d(C)| ≥
∣∣∣ ⋃

x∈C0

Dx

∣∣∣ =
∑

x∈C0

|Dx| ≥
∑

x∈C0

|Cx| = |C|,

thus completing the proof.

Proof of Lemma 8.5 Fix t > 0, and assume for contradiction that ξ ∈ Ht is a constant
vector of norm one. Let [T ] ∈ Ht be an element of norm one coming from T ∈ Cu[X ] such that
‖[T ] − ξ‖Ht <

1
4 . Let E be a symmetric generating set for the coarse structure that contains

the diagonal. Let K ∈ N such that Txy = 0 whenever (x, y) �∈ E◦K and define τ := sup
x,y∈X

|Txy|.
Let r > 2K be so large such that whenever (ω1, ω2) �∈ ∂E◦(r−2K), we have that

kt(ω1, ω2) ≤ 1
4N(T )2τ2

,

where N(T ) is as in (8.3) (such an r exists by properness of k). Adjusting the extensions of kt

to βEX if necessary, we may assume that this estimate holds in the stronger form:

for all (y, z) �∈ E◦(r−2K), kt(y, z) ≤ 1
4N(T )2τ2

. (8.5)

Let N and s be as in Lemma 8.6 for r as above, and let tn : Xn → Xn be the bijective partial
translation given by that lemma for n ≥ N , and be the empty partial translation otherwise.
Let v ∈ Cu[X ] be the partial translation that is defined by using tn on each Xn. As all but
finitely many of the tn are bijections, πt(v) is a unitary operator on Ht.
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Now, for any n ≥ N and x ∈ Xn,

〈〈T, vT 〉〉t(x) =
∑

(y,z)∈X×X

Txy

∑
u∈X

vxuTuzkt(y, z)

=
∑

(y,z)∈X×X

TxyTt−1
n (x)zkt(y, z).

If the term TxyTt−1
n (x)z is non-zero, then (x, y) and (t−1

n (x), z) are in E◦K . As (x, t−1
n (x)) is

not in E◦r, however, this forces (y, z) �∈ E◦(r−2K), and thus by line (8.5), kt(x, y) ≤ 1
4N(T )2τ2 .

Hence for all x ∈ Xn

|〈〈T, vT 〉〉t(x)| ≤
∑

(y,z)∈X×X

|Txy||Tt−1
n (x)z|kt(y, z) ≤ 1

4

for all x ∈ X , whence φn(〈〈T, vT 〉〉t) ≤ 1
4 for all n and so

|〈[T ], πt(v)[T ]〉t| ≤ 1
4
. (8.6)

On the other hand, the facts that πt(v) is unitary, ξ is constant, [T ] and ξ have norm one,
and ‖[T ]− ξ‖ < 1

4 together imply that

|〈[T ], πt(v)[T ]〉t| ≥ |〈ξ, πt(v)ξ〉t| − |〈[T ], πt(v)(ξ − [T ])〉t| − |〈[T ] − ξ, πt(v)ξ〉t|
> |〈ξ, πt(vv∗)ξ〉t| − 1

4
− 1

4

=
1
2
.

This contradicts (8.6), so we are done.

The following lemma completes the proof of Theorem 8.2.

Lemma 8.7 Let ΔE be a Laplacian operator in Cu[X ], and let ε > 0. Then for all suitably
small t > 0, the spectrum of πt(ΔE) contains points from [0, ε].

Proof Let I be the identity operator in Cu[X ]. Then for any x ∈ X , we have the formula

〈〈I,ΔEI〉〉t(x) =
∑

(y,z)∈X×X

IxyΔxzkt(y, z) =
∑

z

Δxzkt(x, z),

whence

φn(〈〈I,ΔEI〉〉t) =
1

|Xn|
∑

x,y∈Xn

Δxykt(x, y). (8.7)

Now, by boundedness of k on ∂E, there exists t > 0 such that

sup
(ω1,ω2)∈∂E

|1 − kt(ω1, ω2)| < ε

N(E)2
.

We may assume without loss of generality that the extension of kt to X ×X satisfies

sup
(x,y)∈∂E

|1 − kt(x, y)| < ε

N(E)2
.
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Looking back at (8.7), we have

|φn(〈〈I,ΔEI〉〉t)| ≤ 1
|Xn|

∣∣∣ ∑
x,y∈Xn

Δxy

∣∣∣+
1

|Xn|
∣∣∣ ∑

x,y∈Xn

Δxy(1 − kt(x, y))
∣∣∣.

A simple computation shows that the first term on the right-hand side is zero, whence, however

|φn(〈〈I,ΔEI〉〉t)| ≤ 1
|Xn|N(E)|Xn| sup

x,y∈E∩(Xn×Xn)

|Δxy(1 − kt(x, y))| < ε.

Finally, as φ is a cluster point of the sequence (φn), it follows from this and the fact that
πt(ΔE) is a positive operator that 〈[I], πt(ΔE)[I]〉t is in [0, ε]; as the set of values

{〈ξ, πt(ΔE)ξ〉t | ξ ∈ Ht}
is contained in the convex hull of the spectrum of πt(ΔE), this completes the proof.

9 Questions and Comments

We conclude the paper with some open questions and comments.

Questions 9.1 (1) Does a “generic” sequence of graphs have geometric property (T)? This
is a strengthening of the well-known fact that a generic sequence of graphs is an expander (see
[11, Proposition 1.2.1]). It is also possibly connected to the fact that a “generic” hyperbolic
group has property (T) (see [20]).

(2) Are there useful necessary and/or sufficient conditions for geometric property (T) that
can be stated purely in terms of graph theoretic properties? To answer question (1), it is
probably necessary to answer this question first.

(3) Similarly, are there useful necessary and/or sufficient conditions for conditions (2) and/or
(3) from Theorem 8.2 that can be stated purely in terms of graph theoretic properties, other
than the known condition using girth?

(4) We suspect that the results of Section 8 are really part of a general result about groupoids.
Precisely, treating Cu[X ] as the convolution ∗-algebraCc(G(X)) of the coarse groupoidG(X), it
is not too difficult to extrapolate the ideas of this paper to define a “topological property (T)” for
this groupoid, and indeed any “reasonable” locally compact groupoid. We then suspect that the
results of Section 8 say that this “topological property (T)” is incompatible with a-T-menability
in the presence of an invariant measure on the unit space of the groupoid (the existence of an
invariant measure corresponds to the amenability of the space in the assumptions of Theorem
8.1). It might be interesting to develop this further: For example, Theorem 4.1 naturally
corresponds to a statement about Morita invariance of the general “topological property (T)”;
but we have no idea if the corresponding general result would be true.

(5) Our version of geometric property (T) only really has good properties for disjoint unions
of finite metric spaces; in the language of point (4) above, the issue is the presence of an invariant
measure on the unit space of the groupoid. Is there a property that has more interesting
consequences in the context of more general metric spaces, e.g. including Cayley graphs of
infinite groups? Compare for example (see [13, Section 11.4.3]).
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