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1 Introduction

The interesting properties of Thompson’s group F have made it a favorite object of study
among group theorists and topologists. It was discovered by Richard Thompson in 1965, initially
used to construct finitely presented groups with unsolvable word problems. This group was
invented as a group of certain transformations of terms in the λ-calculus (mathematical logic),
and then emerged in such areas as functional analysis, homological algebra, homotopy theory
and group theory itself. Many questions about F are still open, and in particular, it is not
known whether F is an amenable group. The question is of considerable interest since both
the affirmative and negative answers would provide counterexamples to open questions (see [4,
11]).

Questions concerning distortion of subgroups is a topical subject of investigation in geometric
group theory (see [3, 8, 14–15]). Bridson asked the question of whether or not a quasi-isometry
exists between Thompson’s group F and the group F ×Z. Burillo [2] gave a positive answer to
this question by finding quasi-isometric embedding in F of subgroups isomorphic to F×Z

n (n ≥
1). Guba and Sapir [9–10] proved that the subgroups of the form Fm×Z

n, for integersm,n ≥ 0,
are embedded in F without distortion. Cleary and Taback used shift maps of F , which also
shows this result (see [6]). In [5], Clearly showed that Z �Z is embedded in F without distortion.
In this paper, using the important tools of the reduced forest diagrams and the reduced tree
diagrams, we prove that the restricted wreath products F � Z and Z � Z are quasi-isometrically
embedded subgroups of Thompson’s group F .
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2 Preliminaries

2.1 Distortion of subgroups in finitely generated groups

We recall several definitions.
Let S be a finite generating set for a group G, and for any g ∈ G, define |g|S to be the

length of the shortest word representing g in elements of the generating set S. Then we say
that | · |S is a word-length function for G with respect to S.

Let φ, ψ : G→ N be functions from G into N, and then we write φ � ψ if there is a positive
integer constant C, such that φ(g) ≤ Cψ(g) for all g ∈ G. If φ � ψ and ψ � φ, then we say
that these functions are equivalent, and we denote this fact by φ ∼ ψ. It is obvious that ∼ is
indeed an equivalence relation. If S and T are finite generating sets for the same group G, then
an elementary argument shows that the functions | · |S and | · |T are equivalent.

Suppose that G and H are finitely generated groups, such that H is a subgroup of G. S
and T are finite generation sets for G and H , respectively. The functions | · |S and | · |T can be
regarded as functions on H . An elementary argument shows that | · |S � | · |T . If | · |T � | · |S
also holds, then the subgroup H is said to be embedded in G quasi-isometrically or without
distortion. Note that the equivalence of | · |S and | · |T does not depend on the choice of finite
generating sets S and T . So one can introduce the word-length functions | · |G and | · |H for G
and H , respectively, which depend only on G and H . The subgroup H is quasi-isometrically
embedded in G if and only if | · |G ∼ | · |H .

2.2 Wreath product

Let G and N be finitely generated groups, and let 1G ∈ G and 1N ∈ N be their units. The
support of a function f : N → G is the set

supp(f) = {x ∈ N | f(x) 	= 1G}.

The direct sum ⊕
N
G of groups G (or restricted direct product) is the group of functions

C0(N,G) = {f : N → G with finite support}.

There is a natural action of N on C0(N,G): For all a ∈ N, x ∈ N, f ∈ C0(N,G),

a(f)(x) = f(xa−1).

The semidirect product C0(N,G) � N is called restricted wreath product and is denoted as
G �N . We recall that the product in G �N is defined by the formula

(f, a)(g, b) = (fa(g), ab).

Let S and T be finite generating sets for G and N , respectively. Let e ∈ C0(N,G) denote the
constant function taking value 1G, and let δb

v : N → G, v ∈ N, b ∈ G be the δ-function, i.e.,

δb
v(v) = b and δb

v(x) = 1G for x 	= v.
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Note that a(δb
v) = δb

va, and hence (δb
v, 1N ) = (e, v)(δb

1N
, 1N)(e, v−1). Since every function

f ∈ C0(N,G) can be presented by δb1
v1
· · · δbk

vk
,

(f, 1N ) = (δb1
v1
, 1N) · · · (δbk

vk
, 1N) and (f, u) = (f, 1N )(e, u).

The set S̃ = {(δs
1N
, 1N), (e, t) | s ∈ S, t ∈ T } is a generating set for G � N . We will use an

abbreviations f for (f, 1N ) and t for (e, t) for elements of the group G � N . So we denote
(f, t) = (f, 1N )(e, t) by ft.

In the case N = Z, let us now state a formula computing the word length of an element of
G � Z from [12–13].

Lemma 2.1 (see [12, Theorem 1.2] and [13, Proposition 2.4]) Let G be a finitely generated
group with a finite generating set S, and let S̃ = {(δs

0, 0), (e, 1) | s ∈ S}, where e is the identity
of ⊕

Z

G. Then S̃ is a finite generating set for G � Z. Let x = (f, n) ∈ G � Z, m = min{k ∈ Z |
f(k) 	= 1G}, and M = max{k ∈ Z | f(k) 	= 1G}. Then the word-length function with respect to
S̃ of x satisfies

|x|S̃ =

⎧⎨
⎩
|n|, if f = e,∑
i∈Z

|f(i)|S + LZ(x), otherwise,

where LZ(x) denotes the length of the shortest path starting from 0, ending at n and passing
through m and M in the (canonical) Cayley graph of Z.

Let Λ be a group, H be a subgroup of Λ and v : H → Λ be an injective homomorphism.
The HNN-extension with basis Λ and stable letter t relative to H and v is defined by

HNN(Λ, H, v) = 〈Λ, t | t−1ht = v(h), ∀h ∈ H〉.

One may express G � Z as an HNN-extension in three ways (we denote by s the positive
generator of Z in G � Z and by t+, t−, t the stable letters of the HNN-extensions):

(1) Set Λ+ = ⊕
n≥0

G and v+ : Λ+ → Λ+ given by

v+(λ)0 = 1G, v+(λ)n = λn−1, ∀n ≥ 1.

One has HNN(Λ+,Λ+, v+) = G � Z and the isomorphism is given by λ �→ λ, t+ �→ s−1.

(2) Set Λ− = ⊕
n≤0

G and v− : Λ− → Λ− given by

v−(λ)0 = 1G, v−(λ)n = λn+1, ∀n ≤ −1.

One has HNN(Λ−,Λ−, v−) = G � Z and the isomorphism is given by λ �→ λ, t− �→ s.

(3) Set Λ = ⊕
n∈Z

G and v : Λ → Λ given by v(λ)n = λn−1, ∀n ∈ Z. One has HNN(Λ,Λ, v) =

G � Z and the isomorphism is given by λ �→ λ, t+ �→ s−1.

2.3 Thompson’s group F

Thompson’s group F is a remarkable, finitely generated, finitely presented group which can
be understood via a wide range of perspectives. Canon, Floyd and Parry [4] gave an excellent
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overview of the properties of F . Here we present a brief introduction to Thompson’s group
F and refer the interested readers to [1, 4] for more detailed and comprehensive descriptions.
Thompson’s group F has been studied for several decades. We remind the reader of some of
its known properties.

(1) It can be described as the group of piecewise-linear homeomorphisms of the unit interval
[0,1], all of whose derivatives are integer powers of 2 and have a finite number of break points
which are all dyadic rational numbers (i.e., points of the form m

2n , m, n ∈ Z). The group
operation is defined as follows: For every f, g ∈ F,

(fg)(t) = g(f(t)), ∀t ∈ [0, 1].

(2) It can be described as the group of all functions satisfying the properties indicated above
if the segment [0,1] is replaced by [0,∞) and in addition the derivative is equal to 1 at +∞.

(3) It can also be described as the group with the following infinite presentation:

〈x0, x1, · · · , xn, · · · | xnxk = xkxn+1, ∀k < n〉.

From this presentation, we may see xn+1 = x−1
0 xnx0 for n ≥ 1, and thus F is finitely

generated by {x0, x1}.
We define a caret to be a vertex of the tree together with two downward oriented edges,

which we refer to as the left and right edges of the caret. Every caret has the form of the rooted
tree in Figure 1.

Figure 1 A caret

Elements of F can be viewed as pairs of finite binary rooted trees, each with the same
number of carets, called tree diagrams. A binary forest is a sequence (T0, T1, · · · ) of finite
binary trees. A binary forest is bounded if only finitely many trees Ti are nontrivial. A Forest
diagram, which represents an element of F as a pair of bounded binary forests, is another useful
diagram representation for F . A forest diagram (or a tree diagram) is reduced if it does not
have any opposing pairs of carets.

Figure 2 An example of the unreduced and the reduced forest diagrams representing the
same element in F
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Lemma 2.2 (see [1, Proposition 2.2.4]) Every element of Thompson’s group F has a unique
reduced forest diagram (or reduced tree diagram).

It is easy to translate between tree diagrams and forest diagrams (see [1]). Given a tree
diagram, we simply remove the right stalk of each tree to get the corresponding forest diagram
(see Figure 3).

Figure 3 A tree diagram being translated into a forest diagram

The reduced tree diagrams and the reduced forest diagrams for the infinite generating set
{x0, x1, · · · } are pictured in Figures 4–5.

Figure 4 The reduced tree diagrams for {x0, x1, · · · }

Figure 5 The reduced forest diagrams for {x0, x1, · · · }

Let T be a tree, and the right side of T is the maximal path of right edges in T which begins
at the root of T .

Define the exponents of T as follows. Let I0, · · · , In be the leaves of T in order. For every
integer k with 0 ≤ k ≤ n, let ak be the length of the maximal path of left edges in T , which
begins at Ik and does not reach the right side of T . Then ak is the kth exponent of T .

Example 2.1 The right side of tree S in Figure 6 is highlighted. Its leaves are labeled 0,
1, 2, 3, 4, 5 in order and the exponents of S in order are 0, 2, 1, 0, 0, 0.

Let f be a non-trivial element of F with the reduced tree diagram (R,S), and once the
exponents of the leaves in R and S have been computed, the normal form of f is easily obtained.
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Figure 6 A tree S

Lemma 2.3 (Normal Form (see [4])) Let f be a non-trivial element of F with the reduced
tree diagram (R,S). Let a0, · · · , an be the exponents of R, and b0, · · · , bn be the exponents of
S. Then f can be expressed uniquely in the form: f = xa0

0 x
a1
1 · · ·xan

n x−bn
n · · ·x−b0

0 , such that
(1) exactly one of an and bn is nonzero;
(2) for every integer i with 0 ≤ i < n, if ai > 0 and bi > 0, then either ai+1 > 0 or bi+1 > 0.

In this case, we say that f = xa0
0 x

a1
1 · · ·xan

n x−bn
n · · ·x−b0

0 is the normal form for f .

Given the normal form of an element f of F , we can easily obtain the reduced tree diagram
and the reduced forest diagram of f . Conversely, given either the reduced tree diagram or the
reduced forest diagram of f , we can immediately get the normal form of f .

Cleary and Taback [7] estimated the word length |f |S with respect to S = {x0, x1} in terms
of the number of carets in any tree of the reduced tree diagrams.

Proposition 2.1 (see [7, Theorem 3.1]) Let f be a non-trivial element of F with the
reduced tree diagram (Rf , Sf ). The number of carets in Rf (or Sf ) is denoted by N(f). Let
S = {x0, x1}. Then

N(f) − 2 ≤ |f |S ≤ 4N(f) − 4.

In this paper, for every f ∈ F with the reduced tree diagram (Rf , Sf), let N(f) denote the
number of carets in Rf (or Sf ).

3 Main Results

We have indicated two presentations of F by piecewise linear functions. Pick the represen-
tation by functions on [0,∞), and for every integer k ≥ 0, let

Φk = {f ∈ F | f(t) = t, ∀t /∈ [k + 1, k + 2]}.

Guba and Sapir [9] proved that x0 and Φ0 generate the restricted wreath product F � Z.

Lemma 3.1 (see [9]) The restricted wreath product F � Z is a group isomorphic to the
subgroup H generated by x0 and Φ0 of F .

Proof Note that

F � Z = HNN
( ⊕

n≥0

F,
⊕
n≥0

F, v+

)
=

〈 ⊕
n≥0

F, t
∣∣∣ t−1ht = v+(h), ∀h ∈

⊕
n≥0

F
〉
.

For every integer k ≥ 0, it is easy to see that Φk is a group isomorphic to F and

ΦiΦj = ΦjΦi, ∀i 	= j.
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Therefore, Φk (k ≥ 0) generate ⊕
n≥0

F . Besides,

x−1
0 Φkx0 = Φk+1, ∀k ≥ 0.

Thus x0 and Φ0 generate the restricted wreath product F � Z.

Now we give our main result.

Theorem 3.1 The subgroup H isomorphic to F � Z in F generated by x0, x2
1x

−1
2 x−1

1 and
x1x

2
2x

−1
3 x−1

2 x−1
1 is quasi-isometrically embedded.

Proof Note that x2
1x

−1
2 x−1

1 and x1x
2
2x

−1
3 x−1

2 x−1
1 generate Φ0.

Indeed, there is a group isomorphism σ : F → Φ0 defined as follows.
For every f ∈ F , let (Rf , Sf ) be the reduced tree diagram of f . Then define σ(f) to be the

element of Φ0 with the reduced forest diagram as Figure 7. Since x0 and x1 generate F , σ(x0)
and σ(x1) generate Φ0, it is easy to see that σ(x0) = x2

1x
−1
2 x−1

1 and σ(x1) = x1x
2
2x

−1
3 x−1

2 x−1
1 .

Figure 7 The reduced forest diagram of σ(f)

By Lemma 2.1 and the fact that {x0, x1} is a finite generating set for F , {(δx0
0 , 0), (δx1

0 , 0),
(e, 1)} is a finite generating set for F � Z, where e is the identity element of ⊕

Z

F . There is a

group isomorphism ϕ : F � Z → H which is given by

(δx0
0 , 0) �→ x2

1x
−1
2 x−1

1 , (δx1
0 , 0) �→ x1x

2
2x

−1
3 x−1

2 x−1
1 , (e, 1) �→ x−1

0 .

In general, let f be an element of F with the reduced tree diagram (Rf , Sf ). Then ϕ((δf
0 , 0)),

which is denoted by ϕ(δf
0 ), is the element in F with the reduced forest diagram in Figure 7.

Moreover, let n be a natural number. Since

(δf
−n, 0) = (e,−n)(δf

0 , 0)(e, n),

we have
ϕ(δf

−n) = xn
0ϕ(δf

0 )x−n
0 .

Note that if ϕ(δf
0 ) = xa0

0 x
a1
1 · · ·xan

n x−bn
n · · ·x−b0

0 is the normal form, then a0 = 0, b0 = 0 and
xn

0x
a1
1 · · ·xan

n x−bn
n · · ·x−b1

1 x−n
0 is the normal form of ϕ(δf

−n). Therefore, we obtain the reduced
forest diagram for ϕ(δf

−n) in Figure 8.
Similarly, since

(δf
n, 0) = (e, n)(δf

0 , 0)(e,−n),

we have
ϕ(δf

n) = x−n
0 ϕ(δf

0 )xn
0 .

We obtain the reduced forest diagram for ϕ(δf
n) in Figure 9.
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Figure 8 The reduced forest diagram of ϕ(δf
−n)

Figure 9 The reduced forest diagram of ϕ(δf
n)

For every f ∈ F , let |f |F denote the word length of f with respect to {x0, x1}. For every
y ∈ F � Z, let |y|F �Z denote the word length of y with respect to {(δx0

0 , 0), (δx1
0 , 0), (e, 1)}, and

let |ϕ(y)|H denote the word length of of ϕ(y) with respect to {x0, x
2
1x

−1
2 x−1

1 , x1x
2
2x

−1
3 x−1

2 x−1
1 }.

Note that |ϕ(y)|H = |y|F �Z. We are going to prove that for every y ∈ F �Z, |ϕ(y)|H ≤ 12|ϕ(y)|F .
Now let x = (g, k) ∈ F � Z, m = min{j ∈ Z | g(j) 	= 1F } and M = max{j ∈ Z | g(j) 	= 1F}.

Let (Ri, Si) be the reduced tree diagram of g(i), and N (g(i)) be the number of carets in Ri (or
Si).

If g = e, then by Lemma 2.1, |ϕ(x)|H = |x|F �Z = |(e, k)|F �Z = |k|. Besides,

|ϕ(x)|F = |ϕ ((e, k)) |F = |x−k
0 |F = |k| = |ϕ(x)|H .

Now consider the case when g 	= e, and then
∑
i∈Z

|g(i)|F ≥ 1. Observe that

ϕ(x) = ϕ ((g, k)) = ϕ ((g, 0)(e, k)) = ϕ(g)x−k
0

and

ϕ(g) = ϕ(δg(m)
m δ

g(m+1)
m+1 · · · δg(M)

M ) = ϕ(δg(m)
m )ϕ(δg(m+1)

m+1 ) · · ·ϕ(δg(M)
M ).

Case 1 0 ≤ m ≤M . It is easy to picture the reduced forest diagram for ϕ(g) in Figure 10.

Figure 10 The reduced forest diagram of ϕ(g)
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(a) If 0 ≤ k ≤M + 1, then by Lemma 2.1,

|ϕ(x)|H = |(g, k)|F �Z =

⎧⎪⎪⎨
⎪⎪⎩

(∑
i∈Z

|g(i)|F
)

+M + 1, k = M + 1,
(∑

i∈Z

|g(i)|F
)

+ 2M − k, otherwise.

Since ϕ(x) = ϕ(g)x−k
0 , we can obtain the reduced forest diagram for ϕ (x) in either Figure

11 or Figure 12.

Figure 11 The reduced forest diagram of ϕ (x)

Figure 12 The reduced forest diagram of ϕ (x)

By the translation between the reduced forest diagrams and the reduced tree diagrams, we
can observe that N (ϕ (x)) =

(∑
i∈Z

N(g(i))
)

+M + 2. By Proposition 2.1,

|ϕ(x)|F ≥ N(ϕ(x)) − 2 =
( ∑

i∈Z

N(g(i))
)

+M

≥ 1
4

( ∑
i∈Z

|g(i)|F
)

+M ≥ 1
4

( ∑
i∈Z

|g(i)|F + 2M
)
≥ 1

8
|ϕ(x)|H .

(b) If k > M + 1, then

|ϕ(x)|H = |(g, k)|F �Z =
(∑

i∈Z

|g(i)|F
)

+ k.

And we obtain the reduced forest diagram for ϕ (x) in Figure 13.
Observe that

N (ϕ (x)) =
(∑

i∈Z

N(g(i))
)

+ k + 1.
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Figure 13 The reduced forest diagram of ϕ (x)

Then

|ϕ (x) |F ≥ N (ϕ (x)) − 2 =
(∑

i∈Z

N(g(i))
)

+ k − 1

≥ 1
4

( ∑
i∈Z

|g(i)|F
)

+ k − 1 =
1
4

(∑
i∈Z

|g(i)|F + 4k − 4
)

≥ 1
4

( ∑
i∈Z

|g(i)|F + k
)

=
1
4
|ϕ(x)|H .

(c) If k < 0, then
|ϕ(x)|H =

( ∑
i∈Z

|g(i)|F
)

+ |k| + 2M.

We obtain the reduced forest diagram for ϕ (x) in Figure 14.

Figure 14 The reduced forest diagram of ϕ (x)

Then

N(ϕ(x)) =
( ∑

i∈Z

N(g(i))
)

+ |k| +M + 2.

So

|ϕ(x)|F ≥
(∑

i∈Z

N(g(i))
)

+ |k| +M

≥ 1
4

( ∑
i∈Z

|g(i)|F + |k| + 2M
)

=
1
4
|ϕ(x)|H .

Case 2 m < 0 ≤M . Then we picture the reduced forest diagram for ϕ(g) in Figure 15.



Distortion of Wreath Products in Thompson’s Group F 811

Figure 15 The reduced forest diagram of ϕ(g)

(a) If 0 ≤ k ≤M + 1, then

|ϕ(x)|H =

⎧⎪⎪⎨
⎪⎪⎩

( ∑
i∈Z

|g(i)|F
)

+ 2|m| +M + 1, k = M + 1,
( ∑

i∈Z

|g(i)|F
)

+ 2|m| + 2M − k, otherwise.

We can obtain the reduced forest diagram for ϕ (x) in Figure 16.

Figure 16 The reduced forest diagram of ϕ (x)

Then N (ϕ (x)) =
(∑
i∈Z

N(g(i))
)

+ |m| +M + 2 and thus

|ϕ(x)|F ≥
( ∑

i∈Z

N(g(i))
)

+ |m| +M

≥ 1
4

(∑
i∈Z

|g(i)|F + 2|m| + 2M
)
≥ 1

8
|ϕ(x)|H .

(b) If k > M + 1, then

|ϕ(x)|H =
( ∑

i∈Z

|g(i)|F
)

+ k + 2|m|.
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We obtain the reduced forest diagram for ϕ (x) in Figure 17.

Figure 17 The reduced forest diagram of ϕ (x)

Then N(ϕ(x)) =
( ∑

i∈Z

N(g(i))
)

+ |m| + k + 1 and so

|ϕ(x)|F ≥
(∑

i∈Z

N(g(i))
)

+ |m| + k − 1 ≥ 1
4

(∑
i∈Z

|g(i)|F + 4k + 4|m| − 4
)

≥ 1
4

( ∑
i∈Z

|g(i)|F + k + 2|m|
)

=
1
4
|ϕ(x)|H .

(c) If m < k < 0, then

|ϕ(x)|H =
(∑

i∈Z

|g(i)|F
)

+ 2M + 2|m| − |k|.

We obtain the reduced forest diagram for ϕ (x) in Figure 18.

Figure 18 The reduced forest diagram of ϕ (x)
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Then N(ϕ(x)) =
( ∑

i∈Z

N(g(i))
)

+ |m| +M + 2 and so

|ϕ(x)|F ≥
(∑

i∈Z

N(g(i))
)

+ |m| +M ≥ 1
4

( ∑
i∈Z

|g(i)|F + 2|m| + 2M
)
≥ 1

4
|ϕ(x)|H .

(d) If k ≤ m, then
|ϕ(x)|H =

(∑
i∈Z

|g(i)|F
)

+ 2M + |k|.

We obtain the reduced forest diagram for ϕ (x) in Figure 19.

Figure 19 The reduced forest diagram of ϕ (x)

Then N(ϕ(x)) =
(∑
i∈Z

N(g(i))
)

+ |k| +M + 2 and so

|ϕ (x) |F ≥
(∑

i∈Z

N(g(i))
)

+ |k| +M ≥ 1
4

(∑
i∈Z

|g(i)|F + |k| + 2M
)

=
1
4
|ϕ(x)|H .

Case 3 m ≤M < 0. Then we picture the reduced forest diagram for ϕ(g) in Figure 20.

Figure 20 The reduced forest diagram of ϕ(g)

(a) If k ≥ 0, then
|ϕ(x)|H =

( ∑
i∈Z

|g(i)|F
)

+ k + 2|m|.
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We obtain the reduced forest diagram for ϕ (x) in Figure 21.

Figure 21 The reduced forest diagram of ϕ (x)

Then N(ϕ(x)) =
(∑
i∈Z

N(g(i))
)

+ |m| + k + 1 and so

|ϕ(x)|F ≥
(∑

i∈Z

N(g(i))
)

+ |m| + k − 1 ≥ 1
4

(∑
i∈Z

|g(i)|F + 4|m| + 4k − 4
)
≥ 1

12
|ϕ(x)|H .

(b) If m < k < 0, then

|ϕ(x)|H =
( ∑

i∈Z

|g(i)|F
)

+ 2|m| − |k|.

We obtain the reduced forest diagram for ϕ (x) in Figure 22.

Figure 22 The reduced forest diagram of ϕ (x)

Then N (ϕ (x)) =
(∑
i∈Z

N(g(i))
)

+ |m| + 1 and so

|ϕ(x)|F ≥
(∑

i∈Z

N(g(i))
)

+ |m|−1≥ 1
4

( ∑
i∈Z

|g(i)|+4|m|−4
)
≥ 1

4

(∑
i∈Z

|g(i)|+2|m|
)
≥ 1

4
|ϕ(x)|H .
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(c) If k ≤ m, then
|ϕ(x)|H =

( ∑
i∈Z

|g(i)|F
)

+ |k|.

We obtain the reduced forest diagram for ϕ (x) in Figure 23.

Figure 23 The reduced forest diagram of ϕ (x)

Then N (ϕ (x)) =
(∑
i∈Z

N(g(i))
)

+ |k| + 1 and so

|ϕ(x)|F ≥
(∑

i∈Z

N(g(i))
)

+ |k| − 1 ≥ 1
4

( ∑
i∈Z

|g(i)|F + 4|k| − 4
)
≥ 1

8
|ϕ(x)|H .

So far, we have shown that | · |H � | · |F , i.e., H is quasi-isometrically embedded in F .
In the same way, we can also prove that Z � Z is quasi-isometrically embedded in F .
Indeed, let H1 be the subgroup of F generated by x0 and x2

1x
−1
2 x−1

1 . Then there is a group
isomorphism ψ : Z � Z → H1 which is given by

(δ10 , 0) �→ x2
1x

−1
2 x−1

1 , (e, 1) �→ x−1
0 ,

where e is the identity element of ⊕
Z

Z. For every x = (g, k) ∈ Z � Z, let (Ri, Si) be the reduced

tree diagram of xg(i)
0 , and N (g(i)) be the number of carets in Ri (or Si). Then one can obtain

the reduced forest diagram of ψ(x) by the reduced tree diagram (Ri, Si) of xg(i)
0 and observe

that N (g(i)) = |g(i)| + 1. Then by the similar proof, we obtain the following theorem.

Theorem 3.2 The subgroup H1 isomorphic to Z �Z in F generated by x0 and x2
1x

−1
2 x−1

1 is
quasi-isometrically embedded.
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