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1 Introduction

Let Γ be a congruence subgroup of PSL(2, Z). For k ∈ N, a modular form of weight 2k is
a complex function f on the upper half plane H which satisfies the following (cf. [16, 25, 32]):

(1) (Holomorphicity) f is holomorphic.
(2) (Modularity) For γ =

(
a b
c d

) ∈ Γ and z ∈ H, f |2kγ = f , where

(f |2kγ)(z) = (cz + d)−2kf
(az + b

cz + d

)
. (1.1)

(3) (Growth Condition at the Boundary) We assume that |f(z)| would be majorized by a
polynomial in max{1, Im(z)−1}.

We denote by M(Γ) =
⊕
k∈N

M2k(Γ) the graded algebra (by the weight) of modular forms

with respect to this group.
In the 1950s, Rankin began the study of bi-differential operators over M(Γ) which produce

new modular forms (cf. [22]), and twenty years later Henri Cohen gave a complete answer (cf.
[4]) by proving that all these operators are linear combinations of the following brackets:

[f, g]n =
n∑

r=0

(−1)r

(
n + 2k − 1

n − r

)(
n + 2l − 1

r

)
f (r)g(n−r) ∈ M2k+2l+2n(Γ), (1.2)

where f ∈ M2k and g ∈ M2l are two modular forms, and f (r) =
(

1
2πi

d
dz

)r
f .

These brackets attracted interest of several authors. In [31], Zagier used the Ramanujan
derivation X : M2k → M2k+2 as follows:

Xf =
1

2πi
df

dz
− 1

2πi
d
dz

(log η4) · kf, (1.3)
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and introduced two series of elements by induction as follows:

fr+1 = Xfr + r(r + 2k − 1)Φfr−1, gs+1 = Xgs + s(s + 2l − 1)Φgs−1, (1.4)

where Φ = 1
144E4 ∈ M4, and E4 is the Eisenstein series of weight 4. He showed that

n∑
r=0

(−1)r

(
n + 2k − 1

n − r

)(
n + 2l − 1

r

)
frgn−r = [f, g]n, (1.5)

which made the modularity of [f, g]n obvious as all the fr and gn−r are modular.
Moreover, he showed that for all associative Z (or N)-graded algebra having a derivation

which increases the degree by 2, and for all elements Φ of degree 4, the formula (1.5) defines a
canonical Rankin-Cohen algebra structure (cf. [31] for the definition and properties).

Remark 1.1 When Φ = 0, the situation is simplified to what Zagier called a standard
Rankin-Cohen algebra (cf. [31] for the definition and properties).

Remark 1.2 We remind the readers that in the above definitions only the modularity is
used, so we can do the same for nonholomorphic functions.

At about the same time, Paula Cohen, Yuri Manin and Don Zagier established a bijective
correspondence between modular forms and invariant formal pseudodifferential operators (cf.
[32–33]). They showed that the following formula (plus linear extension) defines an associative
product over M(Γ)[[�]]: For two modular forms f ∈ M2k, g ∈ M2l,

μκ(f, g) :=
∞∑

n=0

tκn(k, l)[f, g]n, (1.6)

where the coefficients are given by

tκn(k, l) =
(
− 1

4

)n ∑
j≥0

(
n

2j

) (− 1
2

j

)(
κ − 3

2

j

)(1
2 − κ

j

)
(−k − 1

2

j

)(−l − 1
2

j

)(
n + k + l − 3

2

j

) . (1.7)

A special case is when κ = 1
2 or 3

2 , and the product is reduced to what Eholzer claimed to
be an associative product

f � g :=
∞∑

n=0

[f, g]n. (1.8)

Remark 1.3 In this formulation, only the modularity of f is used, and we do not need
either holomorphicity, or the growth condition near the boundary.

In 2003, Connes and Moscovici related the Hopf algebra H1 introduced in their study of
the transversal index theory (cf. [6–10]), which governs the local symmetry in calculating the
index of a transversal elliptic operator, to the Rankin-Cohen brackets (cf. [11]). By taking into
account the work of Cohen-Manin-Zagier and Eholzer, especially (1.8), Connes and Moscovici
proved a theorem stating that for every action of H1 on an algebra A with a certain extra
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structure, there exists a familly of formal deformations of A where the general terms of the
deformed products are defined by some generalized Rankin-Cohen brackets (cf. [12]).

In a joint work with Bieliavsky and Tang [2], we have studied the deformation question
from a quite different point of view. We used the deformation quantization theory of Fedosov
to construct a realization of Rankin-Cohen deformations. More precisely, we found a specific
symplectic connection on the upper half plane (cf. [2] and also [1, 21]):

∇ ∂
∂x1

∂

∂x1
= μ(x1, x2)

∂

∂x2
,

∇ ∂
∂x2

∂

∂x1
=

1
2x2

∂

∂x1
,

∇ ∂
∂x1

∂

∂x2
=

1
2x2

∂

∂x1
,

∇ ∂
∂x2

∂

∂x2
= − 1

2x2

∂

∂x2
.

(1.9)

Here μ is a suitable function. And on the corresponding Weyl algebra we found the same
induction relation as that of Connes-Moscovici while calculating the deformed product. Then
by an analogous argument, we re-obtained the above theorem of Connes-Moscovici (cf. [24]
also).

In this paper, we study the brackets via the unitary representation theory of SL2(R), and
then apply the results thus obtained to the deformation questions.

The rest of this paper is organized as follows: First a (relatively) explicit interpretation of
the Rankin-Cohen brackets is given via the representation theory of SL2(R). The main result
is the following theorem.1

Theorem 1.1 Let f ∈ M2k, g ∈ M2l be two non-zero modular forms. Let πf
∼= πdeg f , πg

∼=
πdeg g be the corresponding discrete series representations of SL2(R). The tensor product of
these two representations can be decomposed into a direct sum of discrete series representations,
i.e.,

πf ⊗ πg =
⊕
n=0

πdeg f+deg g+2n. (1.10)

The Rankin-Cohen bracket [f, g]n gives (up to scale) the vectors of the minimal K-weight in the
representation space of the component πdeg f+deg g+2n

∼= π[f,g]n .

These representations are constructed in the following way: Let f ∈ M2k(Γ) be a modular
form. We associate to it a function on Γ\SL2(R) by using the following map: For g =

(
a b
c d

) ∈
SL2(R),

(σ2kf)(g) = f |k g(i) = (ci + d)−2kf
(ai + b

ci + d

)
. (1.11)

This function belongs to

C∞(Γ\SL2(R), 2k) = {F ∈ C∞(Γ\SL2(R)), F (grθ) = exp(i2kθ)F (g)}.

By taking into account the natural right action of SL2(R) on C∞(Γ\SL2(R)):

(π(h)F )(g) = F (gh), (1.12)

1The experts certainly had known this long before, as was showed by a remark of Deligne in 1973 (cf. Remark
3.1), but before finishing my Ph.D. thesis (November 2006), I had not found any detailed presentation of this
result.
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we obtain a representation of SL2(R) and so of the complexified Lie algebra sl2(C) by taking the
smallest invariant subspace which contains the orbit of σ2kf . We show that this representation
is a discrete series representation of weight 2k. In the end, we pull all the vectors in a basis
of the representation space back to a subspace of C∞(H) by using the inverse of the σ2(k+n)’s,
n ≥ 0.

Then we use this representation theoretical interpretation to study certain properties of the
deformed products, and mainly we can get the next two results.

Theorem 1.2 The only formal deformed associative products ∗ : M̃[[�]]×M̃[[�]] → M̃[[�]]
defined by C[[�]]-linear extension and the formula

f ∗ g =
∑ An(deg f, deg g)

(deg f)n(deg g)n
[f, g]n�

n, (1.13)

where M̃ is the space of functions which satisfy the modularity condition, (α)n := α(α +
1) · · · (α + n − 1), A0 = 1 and A1(x, y) = xy, are those found by Cohen-Manin-Zagier.

Proposition 1.1 Let Γ be a congruence subgroup of SL2(Z) such that M(Γ) admits the
unique factorization property (for example SL2(Z) itself ), and let F1, F2, G1, G2 ∈ M(Γ), such
that

RC(F1, G1) = RC(F2, G2) (1.14)

is the formal series in M(Γ)[[�]]. Then there exists a constant C, such that

F1 = CF2, G2 = CG1. (1.15)

This result implies that to some extent the set of Rankin-Cohen brackets of two modular
forms f and g contains all the information of the pair (f, g).

2 From Modular Forms to Discrete Series

In this part, we will describe in detail the way of understanding these Rankin-Cohen brackets
from a theoretical point of view on representation. We will partially follow the argument that
Jean-Pierre Labesse indicated (cf. [20]):

Let f ∈ M2k(Γ) be a modular form of weight 2k with respect to a congruence subgroup Γ
of SL2(Z). We will associate a Γ-invariant function over Γ\SL2(R) to it.

We define
(σ2kf)(g) = f |kg(i) = (ci + d)−2kf

(ai + b

ci + d

)
(2.1)

for g =
(

a b
c d

) ∈ SL2(R). This function is invariant under the left translation of the group Γ:
Let γ ∈ Γ, f |kγg = (f |kγ)|kg = f |kg.

We also verify that for

rθ =
(

cos θ sin θ
− sin θ cos θ

)
∈ SL2(R), (2.2)

we have

(σ2kf)(grθ) = exp(i2kθ)(σ2kf)(g). (2.3)
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As one can observe easily, σ2k gives a bijection between

C∞(Γ\H, 2k) =
{

F ∈ C∞(H), f(γ.z) = (cz + d)2kf(z), γ =
(

a b
c d

)
∈ Γ

}
(2.4)

and
C∞(Γ\SL2(R), 2k) = {F ∈ C∞(Γ\SL2(R)), F (grθ) = exp(i2kθ)F (g)}. (2.5)

Taking the space of smooth functions C∞(Γ\SL2(R)), we have a natural right action of
SL2(R) on Γ\SL2(R): For F ∈ C∞(Γ\SL2(R)),

(π(h)F )(g) = F (gh). (2.6)

We take the smallest invariant subspace under the action of SL2(R) which contains the orbit
of σ2kf for a form f ∈ M2k, and we are interested in the action of the Lie algebra sl2(R) on
this space. We adopt the notation that Lang used in his book [19] (cf. [3, 17–18, 26–28] also).
A basis of this Lie algebra is

V =
(

0 1
1 0

)
, H =

(
1 0
0 −1

)
, W =

(
0 1
−1 0

)
, (2.7)

while a basis for the complexified Lie algebra sl2(C) is

E+ =
(

1 i
i −1

)
, E− =

(
1 −i
−i −1

)
, W =

(
0 1
−1 0

)
(2.8)

with

exp(tV ) =
(

cosh t sinh t
sinh t cosh t

)
, exp(tH) =

(
exp t 0

0 exp(−t)

)
,

exp(tE+) =
(

1 + t it
it 1 − t

)
, exp(tE−) =

(
1 + t −it
−it 1 − t

)
, (2.9)

exp(tW ) =
(

cos t sin t
− sin t cos t

)
.

Now we take an arbitrary holomorphic function ξ over the upper half plane H, and for all
k, we define

(Fkξ)(g) := (σ2kξ)(g).

We calculate first the action of the base vectors described above on Fkξ. We find

(LV Fkξ)(g) = (−2k)
di + c

ci + d
(Fkξ)(g) + 2

(
Fk+1

dξ

dz

)
(g),

(LHFkξ)(g) = (−2k)
ci − d

ci + d
(Fkξ)(g) + 2i

(
Fk+1

dξ

dz

)
(g),

(2.10)

which implies

LE+(Fkξ)(g) = 2
[
(−2k)

ci − d

ci + d
(Fkξ)(g) + 2i

(
Fk+1

dξ

dz

)
(g)

]
,

LE−(Fkξ)(g) = (LH − iLV )(Fkξ)(g) = 0.

(2.11)

As W is the generator of the maximal compact subgroup, we also have

(LW Fkξ)(g) = 2ki(σ2kξ)(g) = 2ki(Fkξ)(g). (2.12)

So by induction, we have the following result.
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Lemma 2.1 For n ∈ N,

(1) (LE+)n(Fkξ) = 2n
n∑

t=0

(−1)n−t n!
t!

(
2k + n − 1

n − t

)(ci − d

ci + d

)n−t

(2i)t
(
Fk+t

dtξ

dzt

)
(g);

(2) LW (LE+)n(Fkξ)(g) = (2k + 2n)i(LE+)n(Fkξ)(g);
(3) LE−(LE+)n(Fkξ)(g) = −4n(2k + n − 1)(LE+)n−1(Fkξ)(g).

Next we calculate the action of the Casimir operator defined by

ω = V 2 + H2 − W 2 =
1
2
(E+E− + E−E+) − W 2. (2.13)

The above calculation shows that for each vector (LE+)nFkξ,

ω(LE+)nFkξ =
1
2
[−4n(2k + n − 1) − 4(n + 1)(2k + n)](LE+)nFkξ

+ (2k + 2n)2(LE+)nFkξ

= 4k(k − 1)(LE+)nFkξ. (2.14)

Thus the Casimir acts on the space generated by the (LE+)nFkξ’s as a constant.

If we start by a modular form f (so a holomorphic function) of weight 2k and form a vector
space generated by the functions (LE+)nFkf , the above argument shows then sl2(C) also acts
on that space and the Casimir acts as the multiplication by the constant 4k2 − 4k. So we have
a representation of sl2(C).

Now we prove its irreducibility: For all operators T which commute with the representation,
[T, E−] = 0 implies that for the vector of the minimal weight Fkf , TFkf is still a vector of the
minimal weight (for it is sent to zero by E−), so there is a constant λ such that TFkf = λFkf .
By the same argument, by E−T (E+Fkf) = TE−(E+Fkf) = T (8kFkf) = 8kλTkf , we have
T (E+Fkf) = λE+Fkf . So by induction we show that T acts by constant, and the representation
is therefore irreducible. From the representation theory of SL2(R) we know the following
proposition (cf. [19, 29]).

Proposition 2.1 What we have constructed is an irreducible representation of the Lie
algebra sl2(C) which is the infinitesimale version of the discrete series representation of the
group SL2(R) of weight 2k.

When we take all these functions of C∞(SL2(R)) back to the space C∞(H) by using the
bijectivity of the maps σ2k+2n, we get a representation of sl2(C), denoted by πf . Its representa-
tion space consists of some functions defined on the upper half plane. We denote by E+, E−, W

the operators which correspond to LE+ , LE− , LW , respectively.

First, by

(σ2k+2E+f)(g) = LE+(σ2kf)(g)

= 2
[
(−2k)

ci − d

ci + d
(σ2kf)(g) + 2i

(
σ2k+2

df

dz

)
(g)

]
= 2

[
2k

1
Im ai+b

ci+d

σ2k+2f + 2iσ2k+2
df

dz

]
(g), (2.15)
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we can define
X̃f := − 1

8π
(E+)f =

1
2πi

df

dz
− 2kf

4πImz
, (2.16)

which is called the Shimura operator by some authors and played an important role in Henri
Cohen’s paper [4].

In fact, we can verify directly the following result.

Lemma 2.2 Let f be a differentiable function, such that

f
(az + b

cz + d

)
= (cz + d)2kf(z).

We have
X̃f

(az + b

cz + d

)
= (cz + d)2k+2X̃f(z).

Proof It is sufficient to use

Im
(az + b

cz + d

)
= Im

(az + b

cz + d
· cz + d

cz + d

)
=

Im z

|cz + d|2 . (2.17)

The claim can be obtained by the following calculation:

X̃f
(az + b

cz + d

)
=

1
2πi

∂
∂z

(
f
(

az+b
cz+d

))
∂
∂z

(
az+b
cz+d

) − 2k

4π Im
(

az+b
cz+d

)f
(az + b

cz + d

)

=
1

2πi

[
(cz + d)2k df

dz
+ 2k(cz + d)2k−1f(z)

]
(cz + d)2

− 2k

4π

(cz + d)(cz + d)
Im z

(cz + d)2kf(z)

= (cz + d)2k+2 1
2πi

df

dz
+ (cz + d)2k+1 2k

4π Im z
(cz + d)f(z)

= (cz + d)2k+2X̃f(z).

By reiterating this operation, we get the following correspondence:(
− 1

8π

)n 1
2k · · · (2k + n − 1)

(E+)nf ↔ 1
2k · · · (2k + n − 1)

( 1
2πi

∂

∂z
− Y

2π Im z

)n

f,

where Y f = kf is the Euler operator. Using the representation theory of SL2(R), we can
choose the vectors on the right-hand side to form a basis, i.e.,

ϕn =
1

2k · · · (2k + n − 1)

( 1
2πi

∂

∂z
− Y

2π Im z

)n

f (2.18)

for n ∈ N. The action of the Lie algebra sl2(C) is given by

E+ϕn = (−8π)(2k + n)ϕn+1, (2.19)

E−ϕn =
n

2π
ϕn−1, (2.20)

Wϕn = 2niϕn. (2.21)

We introduce an operator ∂̃, such that ∂̃ϕn = ϕn+1. Then

ϕn = ∂̃nϕ0 = ∂̃nf. (2.22)

Moreover, by induction we have the following result.
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Lemma 2.3 Let f be a smooth function which satisfies the modularity condition of weight
2k. Then,

f (m) :=
( 1

2πi
∂

∂z

)m

f = m!
m∑

r=0

1
(4πy)r

X̃m−r

(m − r)!

(
2k + m − 1

r

)
f. (2.23)

Remark 2.1 This implies exactly

[f, g]n =
n∑

r=0

(−1)rX̃r

(
2k + n − 1

n − r

)
fX̃n−r

(
2l + n − 1

r

)
g (2.24)

for f ∈ M2k, g ∈ M2l.

In fact, we have

[f, g]n =
n∑

r=0

(−1)r

(
n + 2k − 1

n − r

)(
n + 2l − 1

r

)
f (r)g(n−r)

=
n∑

r=0

(−1)r

(
n + 2k − 1

n − r

)(
n + 2l − 1

r

)

·
(
r!

r∑
s=0

1
(4πy)s

(
2k + r − 1

s

)
X̃r−s

(r − s)!
f
)

·
(
(n − r)!

n−r∑
t=0

1
(4πy)t

(
2l + n − r − 1

t

)
X̃n−r−t

(n − r − t)!
g
)

=
∑
s,t

1
(4πy)s+t

( n−t∑
r=s

(−1)r

(
n + 2k − 1

n − r

)(
n + 2l − 1

r

)
r!

(r − s)!
(n − r)!

(n − r − t)!

·
(

2k + r − 1
s

)(
2l + n − r − 1

t

)
X̃r−sfX̃n−r−tg

)
.

It is clear that when u = s + t, v = r − s (and so n − r − t = n − u − v) are all fixed, the
coefficient of X̃vfX̃n−u−vg is

∑
s

(−1)s+v

(
n + 2k − 1
n − v − s

)(
n + 2l − 1

v + s

)

· (v + s)!
v!

(n − v − s)!
(n − v − u)!

(
2k + v + s − 1

s

)(
2l + n − v − s − 1

u − s

)

= (−1)v
∑

s

(−1)s (n + 2k − 1)!
(2k + v + s − 1)!(n − v − s)!

(n + 2l − 1)!
(2l + n − v − s − 1)!(v + s)!

· (v + s)!
v!

(n − v − s)!
(n − v − u)!

(2k + v + s − 1)!
s!(2k + v − 1)!

(2l + n − v − s − 1)!
(u − s)!(2l + n − u − v − 1)!

= (−1)v
∑

s

(−1)s (n + 2k − 1)!(n + 2l − 1)!
(2k + v − 1)!v!(n − v − u)!(2l + n − u − v − 1)!

1
s!(u − s)!

= (−1)v (n + 2k − 1)!(n + 2l − 1)!
(2k + v − 1)!v!(n − v − u)!(2l + n − u − v − 1)!u!

∑
s

(−1)s u!
s!(u − s)!

,

which is non-zero if and only if u = 0, i.e., s = t = 0. We thus get the claim of the remark.

We will see immediately a more conceptual explanation of this identity.
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3 Construction of the Brackets

Given two representations of SL2(R) (and the corresponding derived representation of sl2(R)
or sl2(C)), we are interested in their tensor product. In fact, we have the following theorem of
J. Repka (cf. [23]).

Theorem 3.1 For two discrete series representations of SL2(R), their tensor product has
the following decomposition (for m, n ≥ 1):

πm ⊗ πn
∼= πm+n ⊕ πm+n+2 ⊕ πm+n+4 ⊕ · · · ∼=

∞⊕
k=0

πn+m+2k. (3.1)

To adapt (Lie algebra version of) this theorem to our situation, we give a special consider-
ation to the representation space. More precisely, we have the following result.

Proposition 3.1 Given two modular forms f ∈ M2k, g ∈ M2l, then in the decomposition

πf ⊗ πg =
⊕
n=0

πdeg f+deg g+2n, (3.2)

a vector of the minimal K-weight of πdeg f+deg g+2n has the form

1
n!

∑
r=0

(−1)r

(
n

r

)
∂̃rf ⊗ ∂̃n−rg

=
1

(2k)n(2l)n

n∑
r=0

(−1)rX̃r

(
2k + n − 1

n − r

)
f ⊗ X̃n−r

(
2l + n − 1

r

)
g. (3.3)

When composed the bilinear map defined by the product

m : f ⊗ g �→ fg, (3.4)

this corresponds to a modular form of weight 2k + 2l + 2n which can be expressed as

1
2k(2k + 1) · · · (2k + n − 1)2l(2l + 1) · · · (2l + n − 1)

[f, g]n =
1

(2k)n(2l)n
[f, g]n. (3.5)

Proof The first part is a consequence of the fact that the space of the minimal K-weight
vectors is exactly the kernel of the operator ΔE− = E− ⊗ 1 + 1 ⊗ E−, so we have

ΔE−
(∑

r=0

(−1)r

(
n

r

)
∂̃rf ⊗ ∂̃n−rg

)

=
∑
r=0

(−1)r

(
n

r

)
(E−(∂̃rf) ⊗ ∂̃n−rg + ∂̃rf ⊗ E−(∂̃n−rg))

=
1
2π

∑
r=0

(−1)r

(
n

r

)
(r∂̃r−1f ⊗ ∂̃n−rg + (n − r)∂̃rf ⊗ ∂̃n−r−1g)

=
1
2π

∑
r=0

(
(−1)r

(
n

r

)
(n − r) + (−1)r+1

(
n

r + 1

)
(r + 1)

)
∂̃rf ⊗ ∂̃n−r−1g

= 0.
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The second half is just (2.24). The operator m is an intertwining operator between the
subrepresentation in the tensor product and the representation constructed from [f, g]n.

N.B. In this construction, we can only determine the coefficients up to scale, as the vectors
of the minimal K-weight form a subspace.

Furthermore, the formulation of Rankin-Cohen brackets using the operator X̃ can be nat-
urally generalized to any pair of functions (f, g) ∈ M̃2, where

M̃(Γ) :=
⊕

k

M̃2k(Γ) :=
⊕

k

{f : H → C, f |2k γ = f, ∀γ ∈ Γ} (3.6)

is the space of smooth complex functions on the upper half plane which satisfy (only) the
modularity condition.

But in this case we do not have a general discrete series interpretation as above.

Remark 3.1 In fact, the relation between the tensor products of discrete series represen-
tations and Rankin-Cohen brackets was already observed some years ago as one can find the
following remark of Deligne [13] (there he talked about the discrete series of GL(2)):

“Remarque 2.1.4. L’espace F (G, GL(2, Z)) ci-dessus est stable par produit. D’autre part,
Dk−1 ⊗Dl−1 contient les Dk+l+2m(m ≥ 0). Pour m = 0, ceci correspond au fait que le produit
fg d’une forme modulaire holomorphe de poids k par une de poids l, en est une de poids
k + l. Pour m = 1, en coordonnées (1.5.2) (remark: this should be 1.1.5.2), on trouve que
l ∂f
∂z .g − kf.∂g

∂z est modulaire holomorphe de poids k + l + 2, et ainsi de suite. De même dans le
cadre adélique.”

In fact, here what we get is the modularity of 1
k

∂f
∂z .g − f.1l

∂g
∂z .

After the main part of the paper was written (as one chapter of my Ph.D. thesis in French),
Weissman [30] posted on ArXiv a paper which is along the line of Deligne’s remark.

Remark 3.2 We also notice that there is an interpretation of these Rankin-Cohen brackets
using the theory of transvectants. Especially in a recent paper (cf. [15]), El Gradechi treated
the Rankin-Cohen brackets in a very similar way as we did above.

4 Applications to Formal Deformations

In this part, we study the formal deformations constructed from the Rankin-Cohen brackets,
more precisely, we are interested in the products ∗ : M̃(Γ)[[�]]×M̃(Γ)[[�]] → M̃(Γ)[[�]] defined
by C[[�]]-linearity and the following formula:

f ∗ g =
∑ An(deg f, deg g)

(deg f)n(deg g)n

( n∑
r=0

(−1)rX̃r

(
2k + n − 1

n − r

)
fX̃n−r

(
2l + n − 1

r

)
g
)
�

n

=
∑ An(deg f, deg g)

(deg f)n(deg g)n
[f, g]n�

n, (4.1)

where f, g ∈ M̃, the space of smooth complex functions on the upper half plane which satisfy
(only) the modularity condition. And we assume furthermore that A0 = 1 and A1(x, y) = xy.
The main concern is to have an associative product. First, we have the following proposition.
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Proposition 4.1 If the An’s give rise to an associative product, then for any triple (f, g, h),
the coefficients of X̃rfX̃sgX̃th in the expansion of (f ∗ g) ∗ h and f ∗ (g ∗ h) are the same.

Proof In fact, we only need to show the equality of the coefficients for ∂rf
∂zr

∂sg
∂zs

∂th
∂zt , and we

prove this by contradiction. Assume that there are functions f0, g0, h0 ∈ M̃ and an index triple
(r0, s0, t0), such that the coefficient of ∂r0f

∂zr0
∂s0g
∂zs0

∂t0h
∂zt0 in (f0 ∗ g0) ∗ h0 − f0 ∗ (g0 ∗ h0) is non-zero.

So the associativity of the product ∗ gives rise to a differential equation which is satisfied by
all f ∈ Mdeg f0 , g ∈ Mdeg g0 , h ∈ Mdeg h0 .

Now the only constraint on these functions is their invariance under the action of Γ, which
implies that we have the freedom to modify the functions in the interior of a fundamental
domain. So in a small open set contained in the fundamental domain, we can have some
f1, g1, h1, such that ∂rf1

∂zr = ∂sg1
∂zs = ∂th1

∂zt = 0, 0 ≤ r, s, t ≤ n, r �= r0, s �= s0, t �= t0; and

∂r0f

∂zr0
�= 0,

∂s0g

∂zs0
�= 0,

∂t0h

∂zt0
�= 0.

But this gives us a contradiction. The proposition is then proved.

For three functions f, g and h in M̃, the objects (f ∗ g) ∗ h and f ∗ (g ∗ h) live in the vector
space

Hf,g,h :=
⊕

n

Hn;f,g,h :=
⊕

n

〈X̃rfX̃sgX̃th �
r+s+t, r + s + t = n〉. (4.2)

Generally, Hn;f,g,h is a vector space of dimension 1
2 (n + 1)(n + 2). So it is natural to check

the identification of the coefficients with respect to the canonical base X̃rfX̃sgX̃th �r+s+t

(r + s + t = n). The problem is that in this case, for Hn;f,g,h, we will have
n∑

r=0

n−r∑
s=0

n−r−s∑
t=0

1 =
1
2 (n + 1)(n + 2) equations, which is not very practical.

In order to reduce the number of equations to verify, we will try to determine a subspace
in which live (f ∗ g) ∗ h and f ∗ (g ∗ h). In fact, we have already seen that when f and g are
both holomorphic, f ∗ g is a series which can be written as a sum (with coefficients) of the
�n

∑
(−1)r

(
n
r

)
∂̃rf∂̃n−rg’s, and the latter forms a basis of the kernel of the operator �−1ΔE−,

we have the following lemma.

Lemma 4.1 For three holomorphic functions f, g, h ∈ M̃, the kernel of the operator
�−1E− : Hf,g,h → Hf,g,h is generated by the vectors (0 ≤ p ≤ n)

ξn,p = �
n

p∑
s=0

(−1)s

(
p

s

)
X̃s

(2k + 2l + 2n)s

( n−p∑
r=0

(
n − p

r

)
∂̃n−p−rf∂̃rg

)
∂̃p−sh.

(f ∗ g) ∗ h and f ∗ (g ∗ h) belong to this kernel.

Proof We know that Hn;f,g,h is a vector space of dimension 1
2 (n + 1)(n + 2). We establish

first the fact that the map E is surjective: For every vector �n−1∂̃rf∂̃sg∂̃th with r+s+t = n−1,
we have

�
−1E−

(
�

n
n−1−r∑

i=0

(−1)ii!
i∏

u=0
(r + 1 + u)

[ i∑
j=0

(
s

i − j

)(
t

j

)
∂̃r+1+if∂̃s−i+jg∂̃t−jh

])
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=
1
2π

�
n−1

n−1−r∑
i=0

(−1)ii!
i∏

u=0
(r + 1 + u)

[ i∑
j=0

(
s

i − j

)(
t

j

)
((r + 1 + i)∂̃r+if∂̃s−i+jg∂̃t−jh

+ (s − i + j)∂̃r+1+if∂̃s−i+j−1g∂̃t−jh + (t − j)∂̃r+1+if∂̃s−i+jg∂̃t−j−1h)
]

=
1
2π

�
n−1

∑
i,j

[ (−1)ii!
i−1∏
u=0

(r + 1 + u)

(
s

i − j

)(
t

j

)

+
(−1)i−1(i − 1)!
i−1∏
u=0

(r + 1 + u)

(
s

i − j

)(
t

j

)
i
]
∂̃r+if∂̃s−i+jg∂̃t−jh

=
1
2π

�
n−1∂̃rf∂̃sg∂̃th.

The dimension at degree n− 1 is 1
2n(n + 1), which implies that the dimension of the kernel

at degree n is n + 1.
The vectors ξn,p are in the kernel of �−1E−: We verify first that for two functions f and g

in the kernel of E−, we have

E−X̃(fg) = 4 deg(fg)fg.

So by simple induction, we can get

E−
X̃s

(2k + 2l + 2n)s

( n−p∑
r=0

(
n − p

r

)
∂̃n−p−rf∂̃rg

)

=
X̃s−1

(2k + 2l + 2n)(s−1)

( n−p∑
r=0

(
n − p

r

)
∂̃n−p−rf∂̃rg

)
, (4.3)

which implies

�
−1E−ξn,p =

1
2π

�
n−1

[ p∑
s=0

(−1)s

(
p

s

)
s∂̃s−1

( n−p∑
r=0

(
n − p

r

)
∂̃n−p−rf∂̃rg

)
∂̃p−sh

+
p∑

s=0

(−1)s

(
p

s

)
E−∂̃s

( n−p∑
r=0

(
n − p

r

)
∂̃n−p−rf∂̃rg

)
(p − s)∂̃p−s−1h

]
= 0.

Moreover, we can project ξn,p onto the component whose second factor is g, and we get

∂̃n−pfg∂̃ph. (4.4)

These functions are generally linearly independent. This proves that the (n+1) ξn,p’s constitute
a basis of the kernel of �−1E− at degree n.

In general, for any element f ∈ M̃, we can define an operator ∂̃ by the formulae ∂̃ϕn = ϕn+1

in the vector space generated by the basis
{
ϕn = 1

(deg f)n
X̃nf, n ∈ N

}
, so then (3.3) is still

valid. We can then define an operator �−1E− : Hf,g,h → Hf,g,h by the following formula:

�
−1E−(∂̃rf∂̃sg∂̃th �

r+s+t)
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= (r∂̃r−1f∂̃sg∂̃th + s∂̃rf∂̃s−1g∂̃th + t∂̃rf∂̃sg∂̃t−1h)�r+s+t−1. (4.5)

Then the above argument works without any modification.
So it is sufficient now to identify the coefficients of �n∂̃pfg∂̃n−ph to obtain the associativity.

In (f ∗ g) ∗ h, it is the sum of the terms (for n − r ≥ p)

(−1)rAr(2k, 2l)
(2k)r

(
n − r

p

)
(−1)p−rAn−r(2k + 2l + 2r, 2m)

(2k + 2l + 2r)n−p(2m)p
.

For f ∗ (g ∗ h), it is the sum of the terms (for s ≤ p)

(−1)pAn−s(2k, 2l + 2m + 2s)
(2k)n−p(2l + 2m + 2s)p

(
n − s

n − p

)
As(2l, 2m)

(2m)s
.

Hence finally what we should verify are the following identities (for p = 0, 1, · · · , n):

∑
r=0

(
n − r

p

)
An−r(2k + 2l + 2r, 2m)Ar(2k, 2l)
(2k + 2l + 2r)n−p−r(2m)p(2k)r

=
∑
s=0

(
n − s

n − p

)
An−s(2k, 2l + 2m + 2s)As(2l, 2m)
(2k)n−p(2l + 2m + 2s)p−s(2m)s

. (4.6)

We first look at the simplest case, the identification of the coefficient of �. We need to verify

A1(2k + 2l, 2m)
( 1

2k + 2l
(f2k+2g2lh2m + f2kg2l+2h2m) − f2kg2l

1
2m

h2m+2

)
+ A1(2k, 2l)

( 1
2k

f2k+2g2lh2m − f2k
1
2l

g2l+2h2m

)
= A1(2k, 2l + 2m)

( 1
2k

f2k+2g2lh2m − 1
2l + 2m

(f2kg2l+2h2m + f2kg2lh2m+2)
)

+ A1(2l, 2m)
(
f2k

1
2l

g2l+2h2m − f2kg2l
1

2m
h2m+2

)
.

In other words,

1
2k + 2l

A1(2k + 2l, 2m) +
1
2k

A1(2k, 2l) =
1
2k

A1(2k, 2l + 2m),

1
2k + 2l

A1(2k + 2l, 2m)− 1
2l

A1(2k, 2l) =
1
2l

A1(2l, 2m)− 1
2l + 2m

A1(2k, 2l + 2m),

− 1
2m

A1(2k + 2l, 2m) = − 1
2l + 2m

A1(2k, 2l + 2m) − 1
2m

A1(2l, 2m).

It is obvious that A1(2k, 2l) = 2k · 2l verify these equations.
Then we pass to the next step, the identification of the coefficients of �2:

A2(2k + 2l, 2m)
2m(2m + 1)

=
A2(2k, 2l + 2m)

(2l + 2m)(2l + 2m + 1)
+ 4kl +

A2(2l, 2m)
2m(2m + 1)

,

A2(2k + 2l, 2m)
(2k + 2l)2m

+ (2k + 2l + 2)2l =
A2(2k, 2l + 2m)

2k(2l + 2m)
+ (2l + 2m + 2)2l,

A2(2k + 2l, 2m)
(2k + 2l)(2k + 2l + 1)

+ 4lm +
A2(2k, 2l)
2k(2k + 1)

=
A2(2k, 2l + 2m)

2k(2k + 1)
.

(4.7)
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This system has a special solution

A2(2k, 2l) =
1
2
2k(2k + 1)2l(2l + 1), (4.8)

so we need to solve the homogeneous system

A2(2k + 2l, 2m)
2m(2m + 1)

=
A2(2k, 2l + 2m)

(2l + 2m)(2l + 2m + 1)
+

A2(2l, 2m)
2m(2m + 1)

,

A2(2k + 2l, 2m)
(2k + 2l)2m

=
A2(2k, 2l + 2m)

2k(2l + 2m)
,

A2(2k + 2l, 2m)
(2k + 2l)(2k + 2l + 1)

+
A2(2k, 2l)
2k(2k + 1)

=
A2(2k, 2l + 2m)

2k(2k + 1)
.

(4.9)

We denote by Ã(2k, 2l) the function 2k+2l+1
4kl A(2k, 2l). The equations that Ã(2k, 2l) satisfy

are

Ã2(2k + 2l, 2m)
( 1

2m + 1
− 1

2k + 2l + 2m + 1

)
= Ã2(2k, 2l + 2m)

( 1
2l + 2m + 1

− 1
2k + 2l + 2m + 1

)
+ Ã2(2l, 2m)

( 1
2m + 1

− 1
2l + 2m + 1

)
,

Ã2(2k + 2l, 2m) = Ã2(2k, 2l + 2m),

Ã2(2k + 2l, 2m)
( 1

2k + 2l + 1
− 1

2k + 2l + 2m + 1

)
+ Ã2(2k, 2l)

( 1
2k + 1

− 1
2k + 2l + 1

v
)

= Ã2(2k, 2l + 2m)
( 1

2k + 1
− 1

2k + 2l + 2m + 1

)
. (4.10)

The first two equations indicate Ã2(2l, 2m) = Ã2(2k + 2l, 2m) for any (2k, 2l, 2m), and by
using once more the second equation, we get Ã2(2l, 2m) = Ã2(2k + 2l, 2m) = Ã2(2k, 2l + 2m),
i.e., Ã is a constant function. We then conclude that in our situation the degree of freedom is
one, i.e., in the general formula of A2 we can introduce a parameter c as follows:

A2(2k, 2l) =
1
2
2k(2k + 1)2l(2l + 1) + c

2k2l

2k + 2l + 1
. (4.11)

Now we study some properties of a sequence An which defines an associative product. We
assume their existence (as in the examples provided by Cohen-Manin-Zagier) and we have the
following lemma.

Lemma 4.2 Assuming their existence, the An’s (n ≥ 3) are determined by A0, A1, · · · ,

An−1 and the associativity.

Proof Our aim is to determine the value of An(2x, 2y) for every pair (x, y) ∈ N2 \ {(0, 0)}
((0, 0) is not included because in this case for all n ≥ 1, [f, g]n = 0). The idea is very simple,
in order to do the identification of the coefficients of �n, we have n + 1 equations, indexed by
p, by considering 2k, 2l, 2m as constants and assuming that Ai (i < n) are already known.

If l > 0, there is, in these equations, (at most) four unknowns: An(2k, 2l), An(2l, 2m),
An(2k+2l, 2m) and An(2k, 2l+2m). The first two appear only once each: p = 0 for An(2k, 2l),
and p = n for An(2l, 2m). When n ≥ 3, we take the two equations with p = 1 and 2. The
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determinant of the linear equation system with An(2k+2l, 2m) and An(2k, 2l+2m) as unknown
is

det

⎛
⎜⎜⎜⎜⎝

(
n

1

)
1

(2k + 2l)n−1(2m)1

(
n

n − 1

)
1

(2k)n−1(2l + 2m)1(
n

2

)
1

(2k + 2l)n−2(2m)2

(
n

n − 2

)
1

(2k)n−2(2l + 2m)2

⎞
⎟⎟⎟⎟⎠

=
(

n

n − 1

)(
n

n − 2

)
1

(2k + 2l)n−2(2m)1(2k)n−2(2l + 2m)1

·
( 1

(2k + 2l + n − 2)(2l + 2m + 1)
− 1

(2m + 1)(2k + n − 2)

)

=
(

n

n − 1

)(
n

n − 2

)
1

(2k + 2l)n−2(2m)1(2k)n−2(2l + 2m)1

· −(2l)2 − (2l)(2k + 2m + n − 1)
(2k + 2l + n − 2)(2l + 2m + 1)(2m + 1)(2k + n − 2)

�= 0, (4.12)

following the fact that l > 0, n > 2, and that k, m are all positive integers.

We can therefore obtain the value of An(2x, 2y) for a pair (2x, 2y) which can be expressed
as (2k + 2l, 2m) or (2k, 2l + 2m) for a certain l > 0 without any ambiguity. This lemma is
proved.

Next, we have the following lemma by induction.

Lemma 4.3 We have An(2k, 2l) = An(2l, 2k) and An(2k, 0) = 0.

Proof We have already obtained An(2k, 2l) = An(2l, 2k) and An(2k, 0) = 0 for n = 0, 1, 2.
Assume now that this is valid for 0, 1, · · · , n − 1. When we consider the associativity identity
for three functions f ∈ M̃2m, g ∈ M̃2l, h ∈ M̃2k, (4.6) becomes, for all fixed n and p,

∑
r=0

(
n − r

p

)
An−r(2m + 2l + 2r, 2k)Ar(2m, 2l)
(2m + 2l + 2r)n−p−r(2k)p(2m)r

=
∑
s=0

(
n − s

n − p

)
An−s(2m, 2l + 2k + 2s)As(2l, 2k)
(2m)n−p(2l + 2k + 2s)p−s(2k)s

.

If we exchange the indices r and s, and replace p by n − p, we obtain

∑
s=0

(
n − s

n − p

)
An−s(2m + 2l + 2s, 2k)As(2m, 2l)
(2m + 2l + 2s)p−s(2k)n−p(2m)s

=
∑
r=0

(
n − r

p

)
An−r(2m, 2l + 2k + 2r)Ar(2l, 2k)
(2m)p(2l + 2k + 2r)n−p−r(2k)r

.

For 0 < p < n, the only difference with respect to (4.6), by using the induction hypothesis,
is that we have replaced An(2k, 2l + 2m) (resp. An(2k + 2l, 2m)) by An(2l + 2m, 2k) (resp.
An(2m, 2k + 2l)). This implies that An(2l + 2m, 2k) and An(2m, 2k + 2l) satisfy the same
linear equation system as An(2k, 2l + 2m) and An(2k + 2l, 2m), and the previous lemma gives
An(2x, 2y) = An(2y, 2x).
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When we take l = 0, k, m �= 0 in (4.6), the identity for p = 0 is simplified as

∑
r=0

An−r(2k + 2r, 2m)Ar(2k, 0)
(2k + 2r)n−p−r(2m)p(2k)r

=
An(2k, 2m + 2s)

(2k)n
,

i.e.,
An(2k, 2m)

(2k)n
+

An(2k, 0)
(2k)n

=
An(2k, 2m)

(2k)n
,

so then we have An(2k, 0), and the lemma is established.

When we write An as a polynomial of 2k, 2l and c, then because A0, A1 are both of degree
0 in c, we conclude by the above argument as follows.

Lemma 4.4 An is a polynomial of degree
[

n
2

]
in c.

In [5], the authors use only the modularity to construct what they called the invariant
formal pseudodifferential operators. Therefore their results depend only on the modularity
of the functions involved, which need not be holomorphic. Thus we can conclude with the
following theorem.

Theorem 4.1 Cohen-Manin-Zagier have in fact found all associative formal products of
the form (4.1).

Remark 4.1 We would like to emphasize two facts as follows:
(1) Numerically, the parameter c introduced in (4.11) equals −3+4κ−κ2 for the κ in (1.7).
(2) When we consider the restriction on classical modular forms, for every degree the space

M2k is of finite dimension. Our argument above does not work any more, so it is not ruled out
that other formal products defined by using Rankin-Cohen brackets exist in that case.

We give next a proposition, which shows that the multiplication structure defined by the
Eholzer product (or the Rankin-Cohen product for Connes-Moscovici) is somewhat “finer” than
that defined by the usual product, and in fact, we have the following result.

Proposition 4.2 Let Γ be a congruence subgroup of SL2(Z), such that M(Γ) admits the
unique factorization property (for example SL2(Z) itself ), and let F1, F2, G1, G2 ∈ M(Γ), such
that

RC(F1, G1) = RC(F2, G2) (4.13)

as formal series in M(Γ)[[�]], so then there exists a constant C, such that

F1 = CF2, G2 = CG1. (4.14)

We prove first the following lemma.

Lemma 4.5 Let f ∈ M2k, g ∈ M2l, h ∈ M2m be three modular forms such that [fg, h]n =
[f, gh]n for all n. Then l = 0, i.e., g is a constant function.

Proof Our data satisfy automatically [fg, h]0 = [f, gh]0. As to the case n = 1, we have

(2k + 2l)fg
dh

dz
− 2m

d(fg)
dz

h = 2kf
d(gh)

dz
− (2l + 2m)

df

dz
,
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which implies that

(2k + 2m)
1
g

dg

dz
= 2l

( 1
f

df

dz
+

1
h

dh

dz

)
,

or in other words,

gk+m = Cste(fh)l (4.15)

for a non-zero constant. Now we write the Fourier expansions of the following three modular
forms:

f = α0 + α1q + α2q
2 + · · · ,

g = β0 + β1q + β2q
2 + · · · ,

h = γ0 + γ1q + γ2q
2 + · · · ,

(4.16)

where q = exp(2πiz). As q d
dq = 1

2πi
∂
∂z , we have

( 1
2πi

∂

∂z

)n

f = 0nα0 + 1nα1q + 2nα2q
2 + · · · ,( 1

2πi
∂

∂z

)n

g = 0nβ0 + 1nβ1q + 2nβ2q
2 + · · · ,( 1

2πi
∂

∂z

)n

h = 0nγ0 + 1nγ1q + 2nγ2q
2 + · · · .

(4.17)

This implies that in the calculation of [fg, h]n and [f, gh]n (n ≥ 1), there are only two terms
(among the n + 1 to sum up), which contain the term of degree 1 in q: The first and the last
in the definition formula. We have then for all n,(

2k + 2l + n − 1
n

)
α0β0γ1 + (−1)n

(
2m + n − 1

n

)
(α0β1 + α1β0)γ0

=
(

2k + n − 1
n

)
α0(β0γ1 + β1γ0) + (−1)n

(
2l + 2m + n − 1

n

)
α1β0γ0. (4.18)

We have to distinguish several different cases as follows:

(1) l = 0, i.e., g = β0. (4.18) is automatically valid, and it is exactly the claim of the lemma.

(2) l > 0, there are two possibilities.

(a) β0 �= 0, then following (4.15), we have α0 �= 0, γ0 �= 0 (because the constant term
of (fh)k+m is non-zero). By using the bilinearity of the brackets, it is possible to assume
α0 = β0 = γ0 = 1. Then (4.18) becomes, for all n,(

2k + 2l + n − 1
n

)
γ1 + (−1)n

(
2m + n − 1

n

)
(β1 + α1)

=
(

2k + n − 1
n

)
(γ1 + β1) + (−1)n

(
2l + 2m + n − 1

n

)
α1. (4.19)

Without loss of generality, we can assume that m ≥ k (otherwise, we consider [hg, f ]n =
[h, gf ]n), and now the variables α1, β1, γ1 satisfy the equations (for all n)

An1α1 + An2β1 + An3γ1 = 0, (4.20)
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where

An1 = (−1)n(2m)n − (−1)n(2l + 2m)n,

An2 = (−1)n(2m)n − (2k)n,

An3 = (2k + 2l)n − (2k)n,

(4.21)

and especially,

A11 = 2l,

A12 = −2k − 2m,

A13 = 2l,

A21 = −(2m + 2m + 1)2l − (2l)2 = −(4m + 2l + 1)(2l),

A22 = 2m(2m + 1) − 2k(2k + 1) = (2m − 2k)(2m + 2k + 1),

A23 = (4k + 2l + 1)(2l),

A31 = (2l)3 + 3(2m + 1)(2l)2 + (3(2m)2 + 6(2m) + 2)(2l),

A32 = −2m(2m + 1)(2m + 2) − 2k(2k + 1)(2k + 2),

A33 = (2l)3 + 3(2k + 1)(2l)2 + (3(2k)2 + 6(2k) + 2)(2l).

(4.22)

The determinant of this system of linear equations is then

detA1≤i,j≤3

= det

⎛
⎝ 2l −2k − 2m 2l

−(4m + 2l + 1)(2l) (2m − 2k)(2m + 2k + 1) (4k + 2l + 1)(2l)
A31 A32 A33

⎞
⎠

= (2l)2{−6(k + l + m + 1)(2m − 2k)2

+ (2k + 2l + 2m + 1)[−(2k + 2m)(6k + 6l + 2m) − 12k](2m− 2k)

− (4k + 4l + 4m + 2)(2k + 2m)(2k + 2l)(4k + 2l + 3)}
< 0. (4.23)

We have taken the hypothesis m ≥ k and that the weights of modular forms k, l, m are all
positive integers and l ≥ 1, so the last inequality is obtained because all the three terms to be
summed up are nonnegative.

We can conclude that α1 = β1 = γ1 = 0. The same argument can be applied when we
compare the coefficients of q2, and we obtain a system of linear equations for α2, β2, γ2 with
the same coefficient matrix, so α2 = β2 = γ2 = 0, so on and so forth. We get a contradiction.

(b) β0 = 0, the argument in (4.15) gives α0 = 0 or γ0 = 0.

So we can then assume that the first nonzero terms are αrq
r, βsq

s, γtq
t (r, s, t ≥ 0). We

consider now the term of the lowest degree in q, say r + s+ t, in the identity [fg, h]n = [f, gh]n,
and we obtain, for all n,

n∑
p=0

(−1)p

(
n

p

)
(2k + 2l + p)n−p(2m + n − p)p(r + s)ptn−pαrβsγt
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=
n∑

q=0

(−1)q

(
n

q

)
(2k + q)n−1(2l + 2m + n − q)qr

q(s + t)n−qαrβsγt. (4.24)

As the αr, βs, γt are nonzero, dividing both sides by αrβsγt, this becomes

n∑
p=0

(−1)p

(
n

p

)
(2k + 2l + p)n−p(2m + n − p)p(r + s)ptn−p

=
n∑

q=0

(−1)q

(
n

q

)
(2k + q)n−q(2l + 2m + n − q)qr

q(s + t)n−q. (4.25)

For n = 1, we have
(k + m)s = l(r + t).

By taking into account this relation, we obtain, by replacing s by l(r+t)
k+m (if k and m are all zero,

then according to (4.15), l = 0, too, a contradiction) for every n ≥ 2, a homogeneous equation
of degree n in r, t. For n = 2, this equation is

0 = [(2m)2 − (2l + 2m)2]r2 − 2[(2k + 2l + 1)(2m + 1) − (2k + 1)(2l + 2m + 1)]rt

+ [(2k + 2l)2 − (2k)2]t2 + 2[(2m)2 + (2k + 1)(2l + 2m + 1)]rs

− 2[(2k + 2l + 1)(2m + 1) + (2k)2]st + [(2m)2 − (2k)2]s2

=
2l

(k + m)2
{[(k + 3m)(k + l + m) + (k + m)]r2

+ (2m − 2k)(k + l + m)rt − [(3k + m)(k + l + m) + (k + m)]t2}.

We see first that r and t are either all zero or all non-zero, because that the coefficients of
r2 and t2 are all strictly non-zero. The case where r = t = 0 has already been treated above,
and we assume from now on r, s, t > 0. The last expression has a factor r + t, i.e.,

0 =
2l

(k + m)2
{[(k + 3m)(k + l + m) + (k + m)]r2

+ (2m − 2k)(k + l + m)rt − [(3k + m)(k + l + m) + (k + m)]t2}
=

2l

(k + m)2
(r + t){[(k + 3m)(k + l + m) + (k + m)]r

− [(3k + m)(k + l + m) + (k + m)]t}. (4.26)

This implies that there exists a positive constant μ, such that

t = μ[(k + 3m)(k + l + m) + (k + m)],

r = μ[(3k + m)(k + l + m) + (k + m)],

s = μl[4(k + l + m) + 2].

(4.27)

We calculate the equation for n = 3, and the difference of the two sides is, by using (4.15),

1
(k + m)3

{(2k + 2l)(2k + 2l + 1)(2k + 2l + 2)t3(k + m)3

− 3(2k + 2l + 1)(2k + 2l + 2)(2m + 2)[(k + m)r + l(r + t)]t2(k + m)2
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+ 3(2k + 2l + 2)(2m + 1)(2m + 2)[(k + m)r + l(r + t)]2t(k + m)

− 2m(2m + 1)(2m + 2)[(k + m)r + l(r + t)]3

− 2k(2k + 1)(2k + 2)[l(r + t) + t(k + m)]3

+ 3(2k + 1)(2k + 2)(2l + 2m + 2)[l(r + t) + t(k + m)]2r(k + m)

− 3(2k + 2)(2l + 2m + 1)(2l + 2m + 2)[l(r + t) + t(k + m)]r2(k + m)2

+ (2l + 2m)(2l + 2m + 1)(2l + 2m + 2)r3(k + m)3}. (4.28)

We denote by P3 the braced quantity, as an integer coefficient polynomial of k, l, m, r, t.
Taking the values of r and t as in (4.27), we obtain a polynomial in k, l, m whose coefficients
are all positive (cf. Section 5 for the explicit expressions), which implies that it could not have
positive integer roots in k, l, m. So this possibility is excluded.

Proof of Proposition 4.2 We do first a simplification: Let

F1 = f1,2k + f1,2k+2 + f1,2k+4 + · · · ,

F2 = f2,2k′ + f2,2k′+2 + f2,2k′+4 + · · · ,

G1 = g1,2l + g1,2l+2 + g1,2l+4 + · · · ,

G2 = g2,2l′ + g2,2l′+2 + g2,2l′+4 + · · ·
be the natural grading of these modular forms. Then when we look at, for each degree in
�, the term whose coefficient is a modular form of the smallest weight, we find the terms
[f1,2k, g1,2l]n�

n and [f1,2k′ , g1,2l′ ]n�
n. So we have

RC(f1,2k, g1,2l) = RC(f2,2k′ , g2,2l′).

In other words, [f1,2k, g1,2l]n = [f2,2k′ , g2,2l′ ]n for all n. Using the unique factorization
hypothesis, we can speak of the biggest common divisor of f1,2k and f2,2k′ (resp. g1,2l and
g2,2l′), denoted by f0 (resp. g0). We see first that by adjusting constants, it is possible to have

f1,2k

f0
=

g2,2l′

g0
= A,

f2,2k′

f0
=

g1,2l

g0
= B.

(4.29)

We have then [f0A, Bg0]i = [f0B, Ag0]i for all i. Moreover, A, B are relatively prime as
polynomials of the generators. We then use the following result.

Lemma 4.6 Let f ∈ M2k, A ∈ M2l, B ∈ M2m, g ∈ M2n be four modular forms such
that

[fA, Bg]i = [fB, Ag]i

for all i, and that A, B are relatively prime as polynomials of the generators. Then either A = 1,
or B = 1.

Proof For i = 1, by definition,

(k + l)fA
d(Bg)

dz
− d(fA)

dz
(m + n)Bg = (k + m)fB

d(Ag)
dz

− d(fB)
dz

(l + n)Ag, (4.30)

i.e.,

(k + l)fA
(dB

dz
g + B

dg

dz

)
−

(df

dz
A + f

dA

dz

)
(m + n)Bg
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= (k + m)fB
(dA

dz
g + A

dg

dz

)
−

(
f

dB

dz
+

df

dz
B

)
(l + n)Ag. (4.31)

We divide the terms by fABg to obtain

(l − m)
( 1

f

df

dz
+

1
g

dg

dz

)
= (k + 2m + n)

1
A

dA

dz
− (k + 2l + n)

1
B

dB

dz
, (4.32)

i.e.,

(fg)l−m =
Ak+2m+n

Bk+2l+n
. (4.33)

If l ≥ m, then the left-hand side is a polynomial in the generators. As A, B are relatively
prime, we get B = 1. If l ≤ m we get A = 1. The lemma is proved.

We can summarize the two lemmas above as follows:

Lemma 4.7 For four non-zero modular forms, f1 ∈ M2l, g1 ∈ M2k, f2 ∈ M2l′ , g2 ∈ M2k′ ,
if we have

[f1, g1]n = [f2, g2]n (4.34)

for all n, then k = k′, l = l′, and there exists a non-zero constant C, such that

f1 = Cf2, Cg1 = g2. (4.35)

Proof of Proposition 4.2 (Continued) Following the Lemma 4.7, we have k = k′, l = l′

and the existence of a constant C, such that

f1,2k = Cf2,2k, g2,2l = Cg1,2l.

Then we pass to the next step. We now compare the coefficient of every �n in the expansion
of RC(F1, G1) = RC(F2, G2). And we look at the term with the second lowest weight coefficient
(which is an element in M(Γ)). Besides f1,2k = Cf2,2k and Cg1,2l = g2,2l, the relevant terms
in the expansion of F1, G1, F2, G2 are f1,2k+2, f2,2k+2, g1,2l+2 and g2,2l+2. We have, for all n,

[f1,2k, g1,2l+2]n + [f1,2k+2, g1,2l]n = [f2,2k, g2,2l+2]n + [f2,2k+2, g2,2l]n,

i.e.,
[f1,2k, Cg1,2l+2 − g2,2l+2]n = [f1,2k+2 − Cf2,2k+2, g1,2l]n

for all n and the same constant C. If f1,2k+2−Cf2,2k+2 ∈ M2k+2 and Cg1,2l+2−g2,2l+2 ∈ M2l+2

are non-zero, we can apply once more the Lemma 4.7 to get a contradiction. So the only
possibility left is

f1,2k+2 = Cf2,2k+2, g2,2l+2 = Cg1,2l+2.

The rest is an induction procedure. If we already have f1,2k+2i = Cf2,2k+2i and g2,2l+2i =
Cg1,2l+2i for 0 ≤ i ≤ p− 1, then when we consider in RC(F1, G1) = RC(F2, G2) the term that
belongs to M2k+2l+2n+2p�n, we get an equality∑

i

[f1,2k+2i, g1,2l+2p−2i]n =
∑

i

[f2,2k+2i, g2,2l+2p−2i]n. (4.36)
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Using the induction hypothesis, it can be simplified to

[f1,2k, g1,2l+2p]n + [f1,2k+2p, g1,2l]n = [f2,2k, g2,2l+2p]n + [f2,2k+2p, g2,2l]n, (4.37)

or, in an equivalent way,

[f1,2k, Cg1,2l+2p − g2,2l+2p]n = [f1,2k+2p − Cf2,2k+2p, g1,2l]n

for all n and the same constant C. If f1,2k+2p −Cf2,2k+2p ∈ M2k+2p and Cg1,2l+2p − g2,2l+2p ∈
M2l+2p are both non-zero, the Lemma 4.7 gives rise to a contradiction. So we conclude that

f1,2k+2p = Cf2,2k+2p, g2,2l+2p = Cg1,2l+2p.

The proposition is established.

5 Appendix: The Value of P3

The following are results of calculus of Mathematica.

P3(k, l, m, r, t)

= 4l(r + t)(−3k2r2 − 2k3r2 + 3klr2 + 2kl2r2 − 6kmr2 − 15k2mr2 − 3k3mr2 + 3lmr2

− 9klmr2 − 6k2lmr23kl2mr2 − 3m2r2 − 24km2r2 − 15k2m2r2 − 9lm2r2

− 24klm2r2 − 9l2m2r2 − 11m3r2 − 21km3r2 − 18lm3r2 − 9m4r2 + 12k2rt + 17k3rt

+ 3k4rt + 6klrt + 21k2lrt + 6k3lrt + 4kl2rt + 3k2l2rt + 24kmrt + 51k2mrt + 24k3mrt

+ 6lmrt + 42klmrt + 42k2lmrt + 4l2mrt + 18kl2mrt + 12m2rt + 51km2rt + 42k2m2rt

+ 21lm2rt + 42klm2rt + 3l2m2rt + 17m3rt + 24km3rt + 6lm3rt + 3m4rt − 3k2t2

− 11k3t2 − 9k4t2 + 3klt2 − 9k2lt2 − 18k3lt2 + 2kl2t2 − 9k2l2t2 − 6kmt2 − 24k2mt2

− 21k3mt2 + 3lmt2 − 9klmt2 − 24k2lmt2 + 2l2mt2 − 3kl2mt2 − 3m2t2 − 15km2t2

− 15k2m2t2 − 6klm2t2 − 2m3t2 − 3km3t2 + 2l2mr2).

By taking the values t = μ[(k+3m)(k+l+m)+(k+m)] and r = μ[(3k+m)(k+l+m)+(k+m)],
one gets

P3(k, l, m, μ[(3k + m)(k + l + m) + (k + m)], μ[(3k + m)(k + l + m) + (k + m)])

= μ3(48k5l + 320k6l + 720k7l + 672k8l + 256k9l + 96k4l2 + 960k5l2 + 2976k6l2 + 3552k7l2

+ 1536k8l2 + 640k4l3 + 3792k5l3 + 6624k6l3 + 3584k7l3 + 1536k4l4 + 5280k5l4

+ 4096k6l4 + 1536k4l5 + 2304k5l5 + 512k4l6 + 240k4lm + 1920k5lm + 5232k6lm

+ 5760k7lm + 2304k8lm + 384k3l2m + 4800k4l2m + 18240k5l2m + 26016k6l2m

+ 12288k7l2m + 2560k3l3m + 19152k4l3m + 40896k5l3m + 25088k6l3m + 6144k3l4m

+ 26784k4l4m + 24576k5l4m + 6144k3l5m + 11520k4l5m + 2048k3l6m + 480k3lm2

+ 4800k4lm2 + 16080k5lm2 + 21120k6lm2 + 9216k7lm2 + 576k2l2m2 + 9600k3l2m2

+ 46176k4l2m2 + 80352k5l2m2 + 43008k6l2m2 + 3840k2l3m2 + 38496k3l3m2
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+ 103968k4l3m2 + 75264k5l3m2 + 9216k2l4m2 + 53952k3l4m2 + 61440k4l4m2

+ 9216k2l5m2 + 23040k3l5m2 + 3072k2l6m2 + 480k2lm3 + 6400k3lm3 + 27120k4lm3

+ 43392k5lm3 + 21504k6lm3 + 384kl2m3 + 9600k2l2m3 + 61824k3l2m3 + 135840k4l2m3

+ 86016k5l2m3 + 2560kl3m3 + 38496k2l3m3 + 139392k3l3m3 + 125440k4l3m3

+ 6144kl4m3 + 53952k2l4m3 + 81920k3l4m3 + 6144kl5m3 + 23040k2l5m3

+ 2048kl6m3 + 240klm4 + 4800k2lm4 + 27120k3lm4 + 54720k4lm4 + 256lm9

+ 32256k5lm4 + 96l2m4 + 4800kl2m4 + 46176k2l2m4 + 135840k3l2m4

+ 107520k4l2m4 + 640l3m4 + 19152kl3m4 + 103968k2l3m4 + 125440k3l3m4

+ 1536l4m4 + 26784kl4m4 + 61440k2l4m4 + 1536l5m4 + 11520kl5m4 + 512l6m4

+ 48lm5 + 1920klm5 + 16080k2lm5 + 43392k3lm5 + 32256k4lm5 + 960l2m5

+ 18240kl2m5 + 80352k2l2m5 + 86016k3l2m5 + 3792l3m5 + 40896kl3m5

+ 75264k2l3m5 + 5280l4m5 + 24576kl4m5 + 2304l5m5 + 320lm6 + 5232klm6

+ 21120k2lm6 + 21504k3lm6 + 2976l2m6 + 26016kl2m6 + 43008k2l2m6

+ 6624l3m6 + 25088kl3m6 + 4096l4m6 + 720lm7 + 5760klm7 + 9216k2lm7

+ 3552l2m7 + 12288kl2m7 + 3584l3m7 + 672lm8 + 2304klm8 + 1536l2m8).
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