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Abstract The nonlocal symmetry of the Boussinesq equation is obtained from the known
Lax pair. The explicit analytic interaction solutions between solitary waves and cnoidal
waves are obtained through the localization procedure of nonlocal symmetry. Some other
types of solutions, such as rational solutions and error function solutions, are given by using
the fourth Painlevé equation with special values of the parameters. For some interesting
solutions, the figures are given out to show their properties.
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1 Introduction

Since Sophus Lie [1] set up the theory of the Lie point symmetry group, the standard method
has been widely used to find Lie point symmetry (see [2–10]) for the differential equations (DEs,
for short). During the past forty years, the study of symmetries (local and nonlocal) has been
connected with the development of soliton theory and in fact, it constitutes an indispensable
part of soliton theory.

Because the nonlocal symmetries enlarge the class of symmetries and they are connected with
integrable models, therefore, to search for nonlocal symmetries (see [11–16]) of the nonlinear
systems is an interesting work. In a number of cases, the nonlocal symmetries may be easily
obtained with the help of a recursion operator (see [17]), but sometimes the recursion operators
are difficult to obtain. In [18], Akhatov and Gazizov provided a method for constructing
nonlocal symmetries of DEs based on the Lie-Bäcklund theory. Bluman introduced the concept
of potential symmetry (see [11]) for a differential system by writing the given system in a
conserved form. Galas [14] obtained the nonlocal Lie-Bäcklund symmetries by introducing the
pseudo-potentials as an auxiliary system. Recently, Lou et al. [19–20] have made some efforts to
obtain infinite many nonlocal symmetries by inverse recursion operators, the conformal invariant
form (Schwartz form) and Darboux transformation.

As being known, a basic problem for the construction of nonlocal symmetries is the proper
choice of nonlocal variables. They are defined by integrable systems of differential equations
which relate the nonlocal variables to the original differential variables. The choice of these
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differential equations is made on the basis of some additional considerations. In this paper,
we intend to give a method (see [21]) to seek the nonlocal symmetries with the auxiliary
systems. Different from other methods, we assume that the infinitesimal coefficients of the
symmetries have integral terms or high-order derivative terms of nonlocal variables. The fact
proved that this method can get nonlocal symmetries quickly and efficiently (see [21]), and the
most important thing is that it can realize mechanization on program design.

Moreover, the finite symmetry transformation and similar reduction can not be directly
applied to nonlocal symmetries. It is necessary to inquire whether one can transform nonlocal
symmetries into local symmetries by extending the original system. The introduction of poten-
tial and pseudopotential-type symmetries (see [22–23]) which possess close prolongation extends
the applicability of symmetry methods to obtain solutions of differential equations (DEs, for
short). In that context, the original given equation(s) can be embedded in some prolonged
systems. Hence, these nonlocal symmetries with close prolongation are anticipated (see [14,
24]).

In this paper, we consider the following Boussinesq equation:

utt + αuxx + β(u2)xx + γuxxxx = 0, (1.1)

where α, β and γ are constants. This equation was introduced by Boussinesq in 1871 to describe
the propagation of long waves in shallow water. The Boussinesq equation also arises in several
other physical applications including one-dimensional nonlinear lattice waves, vibrations in a
nonlinear string, and ion sound waves in a plasma.

Our renewed interest in the Boussinesq equation is explained mostly by the unusual behavior
of the soliton solutions which were discovered in the 1970s. Multiple travelling wave solutions
of this equation were obtained (see [25–26]). In [27] Clarkson and Kruskal obtained some
new similarity reductions of the Boussinesq equation, including some first, second, and fourth
Painlevé equations which can not be obtained using the standard Lie group method. The
Wronskian formulation of solutions to the Boussinesq equation was presented by using its
bilinear form (see [28]).

Clearly, the solitary waves must interact with other waves, say, the cnoidal waves which are
periodic and may be described by Jacobi elliptic functions. However, there are few works in the
literature that study the interactions between the periodic cnoidal waves and solitary waves.
An application of the Darboux transformation on a cnoidal wave background in the coupled
nonlinear Schrödinger equation (see [29]) gives a new solution which describes a soliton moving
on a cnoidal wave. In this paper, the explicit expression of cnoidal-solitary wave interaction
solutions for the Boussinesq equation is shown by the nonlocal symmetry method.

This paper is arranged as follows: In Section 2, The nonlocal symmetries of the Boussinesq
equation are obtained by using both the Darboux transformation and symmetry assumption
methods with the Lax pair. In Section 3, the nonlocal symmetries transform into Lie point
symmetries by extending the original system. The finite symmetry transformation can be
obtained in Section 4. In Section 5, some symmetry reductions and explicit solutions of the
Boussinesq can be obtained by using the Lie point symmetry of the extending system. Finally,
some conclusions and discussions are given in Section 6.

2 Nonlocal Symmetries of Boussinesq Equation

Without loss of generality, we assume that α = 0, β = 1 and γ = 1
3 in the Boussinesq

equation (1.1)

utt + (u2)xx +
1
3
uxxxx = 0, (2.1)
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and (2.1) is equivalent to (1.1) after suitable rescaling and translation of the variables (see [27]).
The corresponding Lax pair is

ψxxx +
3
2
uψx +

(3
4
ux − 3

4
∂−1
x ut

)
ψ = λψ, (2.2)

ψt = −ψxx − uψ. (2.3)

Here we give two methods to search for the nonlocal symmetry of the Boussinesq equation.
First, we use the invariant properties of differential equations exhibited by Darboux transfor-
mation. Starting from the DT theorem, we have the following proposition.

Proposition 2.1 Let u be a solution of the Boussinesq equation (2.1) with ψ satisfying
(2.2)–(2.3). Then u = u+ 2 ln(ψ)xx is also a solution of (2.1).

Now using the DT above, one can obtain the following result:

Proposition 2.2 σ =
(
ϕ̃
ϕ

)
xx

is a symmetry of the Boussinesq equation (2.1), where ϕ(x, t)
and ϕ̃(x, t) satisfy the following equations:

ϕxxx +
3
2
(u− 2 ln(ϕ)xx)ϕx +

(3
4
(ux − 2 ln(ϕ)xxx) − 3

4
∂−1
x ut + 2 ln(ϕ)xt

)
ϕ = 0, (2.4)

ϕt + ϕxx + (u− 2 ln(ϕ)xx)ϕ = 0, (2.5)

ϕ̃xxx +
3
2
(u− 2 ln(ϕ)xx)ϕ̃x +

(3
4
(ux − 2 ln(ϕ)xxx) − 3

4
∂−1
x ut + 2 ln(ϕ)xt

)
ϕ̃ = ϕ, (2.6)

ϕ̃t + ϕ̃xx + (u− 2 ln(ϕ)xx)ϕ̃ = 0. (2.7)

Proof Set U = u + 2 ln(ψ(x, t, 0))xx. From Proposition 2.1, we know that U is a solution
of the Boussinesq equation (2.1). Now we formally expand u in powers of λ,

u = U + λ
[(

2
∂

∂x2
lnψ

)
λ

∣∣∣λ=0

]
+ O(λ2).

Thus (2 ∂
∂x2 lnψ)λ|λ=0 is a symmetry of (2.1), with respect to U . Finally, we can prove this

proposition by substituting u = U − 2 ln(ψ(x, t, 0))xx in (2.2)–(2.3) which leads to (2.4)–(2.7),
with U replaced by u, ψ(x, t, 0) by ϕ(x, t) and ψλ(x, t, 0) by ϕ̃(x, t). Thus we have completed
the proof of Proposition 2.2.

A direct calculation shows that if ϕ satisfies (2.4)–(2.5) and ϕ∗ satisfies

ϕ∗
xxx +

3
2
(u − 2 ln(ϕ∗)xx)ϕ∗

x +
(3

4
(ux − 2 ln(ϕ∗)xxx) +

3
4
∂−1
x ut − 2 ln(ϕ∗)xt

)
ϕ∗ = 0, (2.8)

ϕ∗
t + ϕ∗

xx + (u− 2 ln(ϕ∗)xx)ϕ∗ = 0, (2.9)

then

ϕ̃ = ϕ

x∫
x0

1
ϕϕ∗ dx+ h(t)ϕ, (2.10)

where h(t) is a polynomial of t. Moreover, it can be easily verified that if ϕ is a solution of
(2.4)–(2.5) and ϕ∗ is a solution of (2.8)–(2.9), then ϕ = 1

ϕ∗ satisfies (2.2)–(2.3) with λ = 0 and
ϕ∗ = 1

ϕ satisfies

ϕ∗
xxx +

3
2
uϕ∗

x +
(3

4
uxu− 3

4
∂−1
x ut

)
ϕ∗ = 0, (2.11)

ϕ∗
t = ϕ∗

xx + uϕ∗. (2.12)
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To sum up, we have that σ = (ϕϕ∗)x is a nonlocal symmetry of the Boussinesq equation
(2.1), where ϕ satisfies (2.2)–(2.3) with λ = 0 and ϕ∗ satisfies (2.11)–(2.12).

Next, we use the Boussinesq equation (2.1) and the Lax pair to seek the nonlocal symmetry
directly. For the sake of convenience, one can use φ instead of ϕ∗. Then the corresponding Lax
pair of (2.1) with λ = 0 has the form

ψxxx = −3
2
uψx −

(3
4
ux +

3
4
∂−1
x ut

)
ψ, (2.13)

ψt = −ψxx − uψ, (2.14)

and its adjoint version is

φxxx = −3
2
uφx −

(3
4
ux − 3

4
∂−1
x ut

)
φ, (2.15)

φt = φxx + uφ. (2.16)

That is to say, the integrable conditions of (2.13)–(2.16), φxxxt = φtxxx and ψxxxt = ψtxxx,
are just the Boussinesq equation (2.1).

A symmetry σu of the Boussinesq equation is defined as a solution of its linearized equation

∂2

∂t2
σu + 4

∂

∂x
u
∂

∂x
σu + 2u

∂2

∂x2
σu + 2σu

∂2

∂x2
u+

1
3
∂4

∂x4
σu = 0, (2.17)

which means that (2.1) is form invariant under the transformation

u→ u+ εσu, (2.18)

with the infinitesimal parameter ε.
The symmetry can be written in the form

σu = Xux + Tut − U, (2.19)

and here, we give an assumption that let X,T, U be the functions of the variables (x, t, u, φ, ψ,
φx, ψx, φxx, ψxx). The assumption shows that this kind of symmetries is neither classical Lie
point symmetries nor Lie-Bäcklund symmetries because it is dependent on the auxiliary vari-
ables and their high-order partial derivatives. Substituting (2.19) into (2.17) and eliminating
utt, φxxx, φt, ψxxx and ψt in terms of the closed system, we get the determining equations for
the functions X,T, U . Calculated by computer algebra, the general solutions of them take the
form

X =
1
2
c1x+ c3, T = c1t+ c2, U = c4ψxφ+ c4ψφx − c1u.

Then the symmetry of (2.1) satisfies

σ =
(1

2
c1x+ c3

)
ux + (c1t+ c2)ut + c1u− c4ψxφ− c4ψφx, (2.20)

where ci (i = 1, 2, 3, 4) are arbitrary constants.

Proposition 2.3 If we set c1 = c2 = c3 = 0, c4 = −1 in (2.20), i.e., (2.1) has a simple
nonlocal symmetry

σ = (φψ)x, (2.21)

which is the same result as in [30] with ψ and φ being the solutions of (2.13)–(2.16).
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Remark 2.1 We found that the highest derivative terms in the Lax pair are ψxxx and φxxx,
so the orders of ψ and φ in σu must be less than 3. If we assume X,T, U to be the functions
of the variables {x, t, u, ∫ ψdx,

∫
ϕdx, φ, ψ, φx, ψx, φxx, ψxx}, then a more general solution may

be obtained.

By comparison, the second method is more simple and effective, and this method can be
applied to other kinds of integrable systems.

3 Localization of the Nonlocal Symmetry

We know that nonlocal symmetries can not be directly employed to construct explicit solu-
tions for differential equations. Hence, nonlocal symmetries need to be transformed into local
ones. One may extend the original system to a closed prolonged system by introducing some
additional dependable variables.

From (2.21), it can be apparently seen that the nonlocal symmetry contains the space
derivative of functions φ and ψ. Then, to localize the nonlocal symmetry (2.21), we introduce
the following transformations:

ψ1 = ψx (3.1)

and

φ1 = φx, (3.2)

whence the field u has the symmetry transformation u→ u+ εσu. In other words, we have to
solve the linearized equations of (2.14), (2.16) and (3.1)–(3.2),

σψt + σψxx + uσψ + ψσu = 0,

σφt − σφxx − uσφ + φσu = 0,

σψ1 = σψx ,

σφ1 = σφx ,

(3.3)

whence σu is given by (2.21).
It is not difficult to verify that the solution of (3.3) with (2.21) has the form

σψ =
1
2
ψp,

σφ =
1
2
φp,

σψ1 =
1
2
(ψ1p+ ψ2φ),

σφ1 =
1
2
(φ1p+ φ2ψ),

(3.4)

where the new quantity p is defined as

px = −φψ. (3.5)

The compatibility condition of (3.5) is worth to be mentioned here

pt = φψx − ψφx, (3.6)
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which means the condition pxt = ptx.
Due to the appearance of the quantity p in the symmetry solution (3.4), we have to further

solve the linearized equation of (3.5)

σpx = −(σψφ+ σφψ) (3.7)

with the condition (3.4).
It is easy to solve (3.7) with (3.5), and the σp has the simple form

σp =
1
2
p2. (3.8)

The result (3.8) gives us a hint that p is a solution of the Schwarzian Boussinesq equation

{p;x}x + 3
( pt
px

)
t
+ 3

( pt
px

)( pt
px

)
x

= 0, (3.9)

where the Schwarzian derivative {p;x} ≡ pxxx

px
− 3

2
p2xx

p2x
, and the quantity pt

px
is invariant under

the Möbious transformation invariant with the infinitesimal transformation (3.8)

p→ a+ bp

c+ dp
(ad �= cb).

The results (3.4) and (3.8) show us that the nonlocal symmetry (2.21) in the original
space x, t, u has been successfully localized to a Lie point symmetry in the enlarged space
{x, t, u, φ, ψ, φ1, ψ1, p} with the vector form

V = (ψφ1 + φψ1)∂u+
1
2
ψp∂ψ +

1
2
φp∂φ

+
1
2
(ψ1p+ ψ2φ)∂ψ1 +

1
2
(φ1p+ φ2ψ)∂φ1 +

1
2
p2∂p. (3.10)

4 Finite Symmetry Transformation

After we succeed in making the nonlocal symmetry (2.21) equivalent to Lie point symmetry
(3.10) of the related prolonged system, the explicit solutions can be constructed naturally by
Lie group theory in two aspects. With the Lie point symmetry (3.10), by solving the following
initial value problem:

du′(ε)
dε

= ψφ1 + ψ1φ, u′(0) = u,

dψ′(ε)
dε

=
1
2
ψ′(ε)p′(ε), ψ′(0) = ψ,

dφ′(ε)
dε

=
1
2
φ′(ε)p′(ε), φ′(0) = φ,

dψ′
1(ε)
dε

=
1
2
(ψ′

1(ε)p
′(ε) + ψ′(ε)2φ′(ε)), ψ′

1(0) = ψ1,

dφ′1(ε)
dε

=
1
2
(φ′1(ε)p

′(ε) + φ′(ε)2ψ′(ε)), φ′1(0) = φ1,

dp′(ε)
dε

=
1
2
p′(ε)2, p′(0) = p,

(4.1)
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the finite symmetry transformation can be calculated as

u′(ε) = u+
2ε(ψφ1 + ψ1φ)

2 − εp
+

2ε2φ2ψ2

(2 − εp)2
,

ψ′
1(ε) =

2ψ1

2 − εp
+

2εφψ2

(2 − εp)2
, φ′1(ε) =

2φ
2 − εp

+
2εφ2ψ

(2 − εp)2
,

ψ′(ε) =
2ψ

2 − εp
, φ′(ε) =

2φ
2 − εp

, p′(ε) =
2p

2 − εp
.

(4.2)

Remark 4.1 For a given solution u of (2.1), the above finite symmetry transformation will
arrive at another solution u′.

5 New Symmetry Reductions of the Boussinesq Equation

To search for more similarity reductions (see [31–32]) of (2.1), we study Lie point symmetries
of the whole prolonged equation system instead of (2.1). In order to find the Lie point symmetry,
we may assume that the symmetries have the vector form

V = X
∂

∂x
+ T

∂

∂t
+ U

∂

∂u
+ Ψ

∂

∂ψ
+ Φ

∂

∂φ
+ Ψ1

∂

∂ψ1
+ Φ1

∂

∂φ1
+ P

∂

∂p
, (5.1)

where X, T, U, Ψ, Φ, Ψ1, Φ1 and P are the functions with respect to {x, t, u, ψ, φ, ψ1, φ1, p},
which means that the closed system is invariant under the transformations

{x, t, u, ψ, φ, ψ1, φ1, p} → (x+ εX, t+ εT, u+ εU, ψ + εΨ, φ+ εΦ, ψ1 + εΨ1, φ1 + εΦ1, p+ εP )

with a small parameter ε. Equivalently, the symmetries in the vector form (5.1) can be written
in a function form

σu = Xux + Tut − U, σψ = Xψx + Tψt − Ψ, σφ = Xφx + Tφt − Φ,

σψ1 = Xψ1,x + Tψ1,t − Ψ1, σφ1 = Xφ1,x + Tφ1,t − Φ1, σp = Xpx + Tpt − P.
(5.2)

In this notation, σu, σφ, σψ , σφ1 , σψ1 and σp are the solutions of the symmetry equations,
i.e., the linearized equations for the closed system

σu,tt + 4uxσu,x + 2uσu,xx + 2σuuxx +
1
3
σu,xxxx = 0,

σψ,xx + σψ,t + uσψ + σuψ = 0,

σφ,xx − σφ,t + uσφ + σuφ = 0,

σψ,x − σψ1 = 0,

σφ,x − σφ1 = 0,

σp,x + ψσφ + σψφ = 0.

(5.3)

Substituting (5.2) into (5.3) and eliminating utt, ψxx, ψt, φxx, φt and px in terms of the
closed system, we get the determining equations for the functions X, T, U, Φ, Ψ, Φ1, Ψ1 and
P . Calculated by computer algebra, the general solutions of them take the form

X =
c1
2
x+ c3, T = c1t+ c2, U = −c1u+ c4(ψφ1 + φψ1),

Ψ =
(c4p+ 2c6)ψ

2
, Φ =

(c4p+ 2c5)φ
2

, Ψ1 =
(c4p− c1 + c6)ψ1

2
− c4φψ

2

2
,

Φ1 =
(c4p− c1 + c5)ϕ1

2
− c4ψϕ

2

2
, P = f(t) +

c4
2
p2 +

(c1
2

+ c5 + c6

)
p,

(5.4)
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where f is an arbitrary function of t and ci (i = 1, 2, · · · , 6) are arbitrary constants. Conse-
quently, it is convenient to rewrite symmetries (5.3) as

σu =
(c1

2
x+ c3

)
ux + (c1t+ c2)ut + c1u− c4(ψφ1 + φψ1),

σψ =
(c1

2
x+ c3

)
ψx + (c1t+ c2)ψt − (c4p+ 2c6)ψ

2
,

σφ =
(c1

2
x+ c3

)
φx + (c1t+ c2)φt − (c4p+ 2c5)φ

2
,

σψ1 =
(c1

2
x+ c3

)
ψ1x + (c1t+ c2)ψ1t − (c4p− c1 + c6)ψ1

2
+
c4φψ

2

2
,

σϕ1 =
(c1

2
x+ c3

)
φ1x + (c1t+ c2)φ1t − (c4p− c1 + c5)φ1

2
+
c4ψφ

2

2
.

(5.5)

To give more group invariant solutions, we would like to solve the symmetry constraint
conditions, by setting σu, σφ, σψ, σφ1 , σψ1 and σp to be zeros in (5.5), which is equivalent to
solving the characteristic equations

dx
c1
2
x+ c3

=
dt

c1t+ c2
=

du
c4(ψφ1 + φψ1) − c1u

=
dψ

(c4p+ 2c6)ψ
2

=
dφ1

(c4p− c1 + c5)φ1

2
− c4ψφ

2

2

=
dp

f(t) +
c4
2
p2 +

(c1
2

+ c5 + c6

)
p

=
dφ

(c4p+ 2c5)φ
2

=
dψ1

(c4p− c1 + c6)ψ1

2
− c4φψ

2

2

. (5.6)

In the following part of the paper, two nontrivial cases under the consideration c4 �= 0 in
(5.6) are listed.

Case 1 c1 �= 0 and c2 = c3 = c5 = c6 = 0, f(t) = c7.

Firstly, we redefine the parameter c2 = c21−4c4c7
16c21

instead of facilitating the later computation.
Two situations with c �= 0 and c = 0 are given out respectively.

(i) When c �= 0, by solving (5.6), we have

p = −1
2
c1(1 + 4c tanh(Δ1))

c4
, ψ = t−

1
4R(z)e−

1
4P (z)sech(Δ1),

φ = t−
1
4Q(z)e−

1
4P (z)sech(Δ1),

ψ1 =
1

2cc1
t−

3
4 e−

3
4P (z)(2cc1R1(z)sech(Δ1) − c4Q(z)R2(z) tanh(Δ1)sech(Δ1)),

φ1 =
1

2cc1
t−

3
4 e−

3
4P (z)(2cc1Q1(z)sech(Δ1) − c4Q

2(z)R(z) tanh(Δ1)sech(Δ1)),

u =
1

2c2c21t
(2cc1c4e−P (z)R(z)Q1(z) tanh(Δ1) + 2cc1c4e−P (z)Q(z)R1(z) tanh(Δ1)

+ c24e
−P (z)Q2(z)R2(z)sech2(Δ1)) +

U(z)
t

,

(5.7)

where Δ1 = c(ln(t) + P (z)), z = x√
t
. U(z), Q(z), R(z), Q1(z), R1(z) and P (z) in (5.7)
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represent the group invariants, and substituting (5.7) into the prolonged system yields

Q(z) = exp
(1

4

∫
P 2
z (z) + 2Pzz(z) − zPz(z) + 2

Pz(z)
dz

)
, R(z) =

2c2c1e
1
2P (z)Pz(z)
c4Q(z)

,

Q1(z) =
1
4

(2 + 2Pzz(z) − zPz(z))Q(z)e
1
2P (z)

Pz(z)
,

R1(z) =
1
2
c2c1eP (z)(−2 + zPz(z) + 2Pzz(z))

c4Q(z)
,

U(z) =
1
16

−16c2P 4
z (z) + z2P 2

z (z) − 8Pz(z)Pzzz(z) + P 2
zz(z) − 4

P 2
z (z)

,

(5.8)

where P (z) satisfies a four-order ordinary differential equation

12P 2
z − 4P 2

z Pzzzz − 9zP 3
z + 16c2P 4

z Pzz + 16PzPzzPzzz
− 12zPzPzz − 12P 3

zz + 12Pzz = 0. (5.9)

First, one can simplify (5.9) by using w1(z) to replace Pz, and the reduction equation is

12w2
1 − 4w2

1w1zzz − 9zw3
1 − 12w3

1z + 12w1z + 16c2w4
1w1z

+ 16w1w1zw1zz − 12zw1w1z = 0. (5.10)

The equation (5.10) can be solved in terms of solutions of the equation

N1zz =
3N2

1z

2N1
+ 2c2N3

1 − 9N1z
2

8
−N1 + 3z − 3

2N1
. (5.11)

We introduce M1(z1) by

N1 = − 2
√

3
3M1(z1)

, z1 =
√

3z
2

(5.12)

which converts (5.11) into the fourth Painlevé equation (PIV, for short):

M1z1z1 =
1
2
M2

1z

M1
+

3
2
M3

1 + 4z1M2
1 + 2

(
z2
1 +

4
3
C1

)
M1 − 32c2

9M1
, (5.13)

where C1 is an arbitrary constant.
It follows naturally that when M1(z1) is solved from (5.13), the explicit solutions of (2.1)

would be immediately obtained through (5.7)–(5.8) with (5.12).

Remark 5.1 The fourth Painlevé equations, in common with other integrable equations
such as soliton equations, have a lot of good properties (see [33–35]). It can be written as
a Hamiltonian system that possesses Bäcklund transformations and many rational solutions,
algebraic solutions and solutions expressible in terms of the classical special functions for certain
values of the parameters. Since the solutions of the equations are transcendental, a study of
the asymptotic behavior of these solutions plays an important role in the application of the
equations.

Here we give one kind of rational solutions of the Boussinesq equation, and other forms of
solutions can be obtained using the seed solutions in [33].

For C1 = 0, c = 3
4 , PIV(5.13) has a simple solution

M1z1 = −2z1, (5.14)
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and then

Pz =
2
3

ln(z), (5.15)

which further results in a rational solution of (2.1) by (5.7)–(5.8):

u =
1
x2

(4
9
c2 − 8

9
c2 tanh2(Δ2) − 4

3
c tanh(Δ2) − 3

4

)
− t2

2x2
, (5.16)

where
Δ2 =

1
3
c
(
3 ln(t) + 2 ln

( x√
t

))
.

(ii) When c = 0 in (3.9), following the similar steps of the above case c �= 0 and omitting
the tedious calculations, the group invariant solutions read

u =
1
2t

(
2U(z) − c24Q

2(z)R2(z)
c21Δ2

3

− c4Q1(z)R(z)
c1(Δ3)

− c4Q(z)R1(z)
c1(Δ3)

)
, (5.17)

where U(z), Q(z), R(z), Q1(z), R1(z) and P (z) represent the group invariants with Δ3 =
ln(t) + P (z), z = x√

t
and satisfy the following forms:

Q(z) = exp
(
− 1

4

∫
zPz(z) − 2Pzz(z) − 2

Pz(z)
dz

)
, R(z) = −2c1Pz(z)

c4Q(z)
,

Q1(z) = −1
4

(zPz(z) − 2 − 2Pzz(z))Q(z)
Pz(z)

,

R1(z) = −1
2
c1(−2 + zPz(z) + 2Pzz(z))

c4Q(z)
,

U(z) =
1
16

4P 2
zz(z) + z2P 2

z (z) − 8Pz(z)Pzzz(z) − 4
P 2
z (z)

,

(5.18)

where P (z) satisfies a three-order ordinary differential equation

12P 3
zz − 16PzPzzPzzz + 4P 2

z Pzzzz + 12zPzPzz + 9zP 3
z − 12Pzz − 12P 2

z = 0.

Using w2(z) to replace Pz , the reduction equation is

12w3
2z − 16w2w2zw2zz + 4w2

2w2zzz + 12zw2w2z + 9zw3
2 − 12w2z − 12w2

2 = 0. (5.19)

The equation (5.19) can be solved in terms of solutions of the equation

N2zz =
3N2

2z

2N2
− 9z2N2

8
−N2 + 3z − 3

2N2
. (5.20)

To deal with the above equation, we introduce M2(z1) by

N = − 2
√

3
3M2(z1)

, z1 =
√

3z
2
, (5.21)

which converts (5.20) into the fourth Painlevé equation

M2z1z1 =
1
2
M2

2z1

M2
+

3
2
M3

2 + 4z1M2
2 + 2

(
z2
1 +

4
3
C1

)
M2, (5.22)
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where C1 is an arbitrary constant.
When C1 = − 3

4 , (5.22) has a solution (see [33]) which is written in terms of an erfc function,

M2 = − 2C2 exp(−z2
1)√

π(C3 + C2erfc(z1))
, (5.23)

where C2 and C3 are arbitrary constants.
When C1 = 3

4 , the solution of (5.22) has the form

M2 =
2iC4 exp(−z2

1)√
π(C5 + C4erfc(iz1))

, (5.24)

where C4 and C5 are arbitrary constants and the erfc function has the following form:

erfc(z1) =
2√
π

∫ ∞

z1

exp(−ξ2)dξ.

Using the seed solutions, (5.17)–(5.18), (5.21) and (5.23)–(5.24), one can easily obtain the
solutions of the Boussinesq equation (2.1). Here we omitted.

Case 2 c1 = 0
Without loss of generality, we let f(t) = c7, c2 ≡ 1 and c3 ≡ k. For simplicity, we redefine

the parameter d2 = c26+c
2
5+2c5c6−2c7c4

4 . Next, two cases d �= 0 and d = 0 are both taken into
account.

(iii) When d �= 0, by solving (5.6), we have

p = −c5 + c6 + 2d tanh(Δ4)
c4

, ψ =
R(z)e

−(c5−c6)t
2

cosh(Δ4)
, φ =

Q(z)e
(c5−c6)t

2

cosh(Δ4)
,

ψ1 =
−e

−(c5−c6)t
2 (c4Q(z)R2(z) sinh(Δ4) − 2dR1(z) cosh(Δ4)

2d cosh2(Δ4)
,

φ1 =
−e

(c5−c6)t
2 (c4Q2(z)R(z) sinh(Δ4) − 2dQ1(z) cosh(Δ4))

2d cosh2(Δ4)
,

u = U(z) +
c4
d
Q(z)R1(z) tanh(Δ4) +

c4
d
R(z)Q1(z) tanh(Δ4)

+
c24
d2
R(z)2Q2(z)sech2(Δ4),

(5.25)

where Δ4 = d(t+ P (z)), z = x− kt.
Substituting (5.25) into the prolonged system yields

Pz = M(z), Q(z) = exp
(
− 1

2

∫
kPz(z) − Pzz(z) − 1

Pz(z)
dz

)
, R(z) =

2d2Pz(z)
c4Q(z)

,

Q1(z) = −1
2

(kPz(z) − Pzz(z) − 1)Q(z)
Pz(z)

, R1(z) =
d2(kPz(z) + Pzz(z) − 1)

c4Q(z)
,

U(z) =
4d2P 4

z (z) + 2Pz(z)Pzzz(z) − k2P 2
z (z) + 2c6P 2

z (z) − 2c5P 2
z (z) − P 2

zz(z) + 1
−4P 2

z (z)
,

where M(z) satisfies

M2
z = 1 − 6kM + b2M

2 + b3M
3 + 4d2M4 (5.26)
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with arbitrary constants b2 and b3. The solution of the above ODE can be written in terms of
the Jacobi elliptic function. Hence, the solution expressed by (5.25) is just the explicit exact
interaction between the soliton and cnoidal periodic waves. Here we give two kinds of solutions.
The first kind is (5.26) that has an elliptic function in the form of

M(z) = a0 + a1sn(lz,m). (5.27)

Then by virtue of (5.27), we can obtain the following solution of (2.1) through (5.26), saying

u =
− 1

4 (l4sn4(lz,m) + l3sn3(lz,m) + l2sn2(lz,m) + l1sn(lz,m) + l0)
(a0 + a1sn(lz,m))2

+ 2lda1cn(lz,m)dn(lz,m) tanh(Θ) + 2d2(a0 + a1sn2(lz,m)sech2(Θ)) (5.28)

with

Θ = td+ d

∫ z

z0

(a0 + a1sn(lz′,m))dz′, z = x− a0(2m2a2
0 −m2a2

1 − a2
1)

3(a4
1 − a2

0a
2
1 −m2a2

0a
2
1 +m2a4

0)
t,

and

l0 = 1 − k2a2
0 + 2c6a2

0 − 2c5a2
0 + 4d2a4

0 − a2
1l

2,

l1 = 4c6a0a1 − 4c5a0a1 + 16d2a3
0a1 − 2a0a1l

2m2 − 2k2a0a1 − 2a0a1l
2,

l2 = 2c6a2
1 + 24d2a2

0a
2
1 − k2a2

1 − 2c5a2
1 − a2

1l
2 − a2

1l
2m2,

l3 = 16d2a0a
3
1 + 4a0a1l

2m2,

l4 = 4d2a4
1 + 3a2

1l
2m2,

d =
m

2
√
a4
1 − a2

0a
2
1 −m2a2

0a
2
1 +m2a4

0

, k =
a0(2m2a2

0 −m2a2
1 − a2

1)
3(a4

1 − a2
0a

2
1 −m2a2

0a
2
1 +m2a4

0)
,

l =
a1√

a4
1 − a2

0a
2
1 −m2a2

0a
2
1 +m2a4

0

,

where sn, cn, dn are usual Jacobian elliptic functions with modulus m while a0, a1 and z0 are
independent constants.

The solution given in (5.28) denotes the analytic interaction solution between the single-
soliton and the periodic solution, which have not been found in the Boussinesq equation before.
It can be easily applied to the analysis of physically interesting processes, which seems rather
rare in the literature of physics.

In the analytic solution of (5.28), the first term

− 1
4 (l4sn4(lz,m) + l3sn3(lz,m) + l2sn2(lz,m) + l1sn(lz,m) + l0)

(a0 + a1sn(lz,m))2

exhibits a pure periodic property while the second and third terms

2lda1cn(lz,m)dn(lz,m) tanh(Θ) + 2d2(a0 + a1sn2(lz,m)sech2(Θ))

are presenting the complicated interactions between the single-soliton and periodic waves. The
composition of the usual periodic wave and the solitary wave may be a possible explanation
for some strange phenomena in the ocean such as tsunami. Through the graphics, one can
understand the process clearly.

In the following figures, we plot the analytic solitary-period wave solution expressed by
(5.28) with a0 = 1, a1 = 0.08, m = 0.1, c5 = 0.5, c6 = 0.5.
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Figure 1 Interaction solution to the Boussinesq equation

An interaction wave to the Boussinesq equation with parameters: a0 = 1, a1 = 0.08, m =
0.1, c5 = 0.5, c6 = 0.5. This figure shows that the solitary-periodic wave is a spatially solitary
wave and a periodic wave in two directions. The first figure is the corresponding two-dimensional
image. The second figure is an overhead view of the wave with the contour plot shown. The
bright lines are crests and the dark lines are troughs. The third figure and the forth figure are
related to t = 0 and x = 0 of the solitary-period wave solution (5.28) with (5.27), respectively.

The second kind of solution M(z) of (5.26) has the form

M(z) = ã0 + ã1 tanh(l̃z), (5.29)

and one can think of this situation as degradation of the first case, i.e., to take m = 1 in (5.27).
The exact solution can be obtained by substituting m = 1 into the (5.28),

u = −
{
(8dl̃ã3

1 tanh(Θ) − 8d2sech2(Θ)ã4
1 + l̃4) tanh4(l̃z)

+ (16dl̃ã0ã
2
1 tanh(Θ) − 32d2ã0ã

3
1sech

2(Θ) + l̃3) tanh3(l̃z)

+ (8dl̃ã2
0ã1 tanh(Θ) − 48d2ã2

0ã
2
1sech

2(Θ) − 8l̃dã3
1 tanh(Θ) + l̃2) tanh2(l̃z)

+ (l̃1 − 16dl̃ã0ã
2
1 tanh(Θ) − 32d2ã2

0ã1sech2(Θ)) tanh(l̃z) − 8d2ã4
0sech

2(Θ)

− 8dl̃ã1ã
2
0 tanh(Θ) + l̃0

4(ã0 + ã1 tanh(l̃z))2

}
(5.30)

with

Θ = td+ d

∫ z

z0

(a0 + a1 tanh(lz′))dz′, z = x− a0(22a2
0 − a2

1 − a2
1)

3(a4
1 − a2

0a
2
1 − a2

0a
2
1 + a4

0)
t,

and

l̃0 = 1 − ã2
1 l̃

2 − k2ã2
0 + 2c6ã2

0 + 4d2ã4
0 − 2c5ã2

0,

l̃1 = 16d2ã3
0a1 − 4ã0ã1 l̃

2 + 4c6ã0ã1 − 2k2ã0ã1 − 4c5ã0ã1,

l̃2 = −2ã2
1l̃

2 + 2c6ã2
1 + 24d2ã2

0a
2
1 − 2c5ã2

1 − k2ã2
1

l̃3 = 4ã0ã1 l̃
2 + 16d2ã0ã

3
1, l̃4 = 4d2ã4

1 + 3ã2
1 l̃

2,

d =
1

2(ã0 − ã1)(ã0 + ã1)
, k =

2ã0

3(ã0 − ã1)(ã0 + ã1)
, l =

ã1

(ã0 + ã1)(ã0 − ã1)
,

where ã0, ã1 are independent constants. In order to study the structure of this solution, we give
some pictures as following:

Figure 2 Resonance soliton solution to the Boussinesq equation
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The above figures present a kind of minus resonance interactions of the two-soliton solution
possessing three arms, each of which is a one-soliton profile. The interaction soliton with the
highest amplitude is related to two other solitons and the amplitude of the newly produced soli-
ton at the resonance becomes four times the amplitude of the initial soliton. This phenomenon
can be observed on the sea surface, and has important applications in maritime security and
coastal engineering.

(iv) When d = 0 in (5.6), following the above line, we obtain that

u = U(ξ)

+
(−c2

4R
2(ξ)Q2(ξ) − 2c4tQ1(ξ)R(ξ) − 2c4Q1(ξ)R(ξ)P (ξ)− 2c4tR1(ξ)Q(ξ)− 2c4R1(ξ)Q(ξ)P (ξ))

2(t + P (ξ))2

(5.31)

and the related reduced equations are

Pz(z) = N(z), Q(z) = exp
(
− 1

2

∫
kPz(z) − Pzz(z) − 1

Pz(z)
dz

)
, R(z) = − 2Pz(z)

c4Q(z)
,

Q1(z) = −1
2

(kPz(z) − Pzz(z) − 1)Q(z)
Pz(z)

, R1(z) = −kPz(z) + Pzz(z) − 1
c4Q(z)

,

U(z) =
1
4
−2c6P 2

z (z) − 2Pz(z)Pzzz(z) + P 2
z (z) + k2P 2

z (z) + 2c5P 2
z (z) − 1

P 2
z (z)

,

where N is the solution of the elliptic equation

N2
z = 1 − 6kN + b2N

2 + b3N
3. (5.32)

Remark 5.2 From (5.32), we know that since N(z) can be expressed as an elliptic integra-
tion, (5.31) denotes the interactions among cnoidal periodic waves and rational waves for the
Boussinesq equation.

6 Summaries and Discussions

In this paper, the nonlocal symmetry of the Boussinesq equation is obtained by using both
the invariant properties of differential equations exhibited by DT and a symmetry assumption
method with the Lax pair. The nonlocal symmetry can be localized when the five potentials, the
spectral function ψ, the adjoint spectral function φ, the x-derivatives of the spectral functions
ψ1 = ψx and φ1 = φx, and the singularity manifold function p = − ∫

ψφdx are introduced. In
this case, the primary nonlocal symmetry is equivalent to a Lie point symmetry of a prolonged
system, on the basis of which one can find nonlocal groups as well as the explicit similarity
solutions.

Our next objective focused on using the closed prolonged system to obtain a diversity of
exact explicit solutions of the Boussinesq equation, which can not be obtained by the classical
Lie group method. For example, the soliton-cnoidal wave solution which describes solitons
moving on a cnoidal wave background instead of the plane continuous wave background can
be easily applied to the analysis of physically interesting processes. If the module degenerates
to 1, the soliton-cnoidal wave solution degenerates to a resonance soliton solution which the
amplification of the amplitude has been experimentally observed and has practical applications
in maritime security and coastal engineering. Some other types of solutions, such as rational
solutions, and error function solutions, are given by using the fourth Painlevé equation with
special values of the parameters.
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To search for nonlocal symmetries of integrable DEs and to apply the nonlocal symmetries to
construct explicit solutions are both of considerable interest and value. The method should and
can be applied to other kinds of integrable systems, especially for supersymmetric models and
discrete ones, to find interaction solutions among different kinds of nonlinear waves. However,
in general, the prolongation is not close, neither for the local nor for the nonlocal variables.
There is not a universal way to estimate what kind of nonlocal symmetries can be spread to
the Lie point symmetries of a related prolonged system. To calculate the moving direction of a
soliton on a cnoidal background and the shift of the crest of a cnoidal wave is also an interesting
topic. The above topics will be discussed in the future series of research works.

Acknowledgement The authors extend their gratitude to the referees for the comments
and suggestions and to Professors S. Y. Lou, E. G. Fan, and Z. Y. Yan for their helpful discus-
sions.

References
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