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Existence of Generalized Heteroclinic Solutions of the
Coupled Schrödinger System under a

Small Perturbation∗

Shengfu DENG1 Boling GUO2 Tingchun WANG3

Abstract The following coupled Schrödinger system with a small perturbation

uxx + u − u3 + βuv2 + εf(ε, u, ux, v, vx) = 0 in R,

vxx − v + v3 + βu2v + εg(ε, u, ux, v, vx) = 0 in R

is considered, where β and ε are small parameters. The whole system has a periodic
solution with the aid of a Fourier series expansion technique, and its dominant system has
a heteroclinic solution. Then adjusting some appropriate constants and applying the fixed
point theorem and the perturbation method yield that this heteroclinic solution deforms
to a heteroclinic solution exponentially approaching the obtained periodic solution (called
the generalized heteroclinic solution thereafter).
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1 Introduction

The coupled nonlinear Schrödinger system was first derived by Benney and Newell [4] for
two interacting nonlinear wave packets in a dispersive and conservative system, which can be
written as

i∂tφ+ Δφ+ μ1|φ|2φ+ β|ψ|2φ = 0,

i∂tψ + Δψ + μ2|ψ|2ψ + β|φ|2ψ = 0,
(1.1)

where μj (j = 1, 2) are constants and β is a coupling constant. In general, the sign of the
parameter μj discriminates between the focusing and defocusing behavior of a single component,
and the sign of β determines the type of interplay between the two states. The system (1.1) has
applications in many physical problems such as semiconductor electronics (see [6]), optics in
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nonlinear media (see [22]), photonics (see [20]), plasmas (see [16]), fundamentation of quantum
mechanics (see [33]), dynamics of accelerators (see [17]) or mean-field theory of Bose-Einstein
condensates (see [14]). In some of these fields and many others, the system (1.1) appears as
an asymptotic limit for a slowly varying dispersive wave envelope propagating in a nonlinear
medium (see [34]). In recent years the system (1.1) has been broadly investigated in many
aspects like concentration and the multi-bump phenomena for semiclassical states (see [1–2, 19,
28]), bounded solutions (see [26–27]), blow-up (see [10, 18]) and positive periodic solutions with
variable coefficients and more general nonlinear terms (see [3]).

It is very important to stress that, in the particular case of standing wave solutions of (1.1),
namely special solutions of (1.1) of the form

φ(x, t) = eiλ1tu(x), ψ(x, t) = eiλ2tv(x), (1.2)

where u and v are real functions on R, there is also an enormous literature regarding the
corresponding system

uxx − λ1u+ μ1u
3 + βuv2 = 0,

vxx − λ2v + μ2v
3 + βu2v = 0.

(1.3)

For instance, Yang [39] discussed the classification of the solitary waves. Pelinovsky and Yang
[30] analytically and numerically studied internal modes of vector solitons. The stability of
solitary waves can be found in [24, 31]. The existence of generalized homoclinic solutions (ho-
moclinic solutions exponentially approaching the periodic solutions) under a small perturbation
was proved by Deng and Guo [15] when λ1 = −λ2 = μ1 = −μ2 = 1.

In this paper, we take λ2 = μ2 = −μ1 = −λ1 = 1 and investigate the following system:

uxx + u− u3 + βuv2 + εf(ε, u, ux, v, vx) = 0, (1.4)

vxx − v + v3 + βu2v + εg(ε, u, ux, v, vx) = 0, (1.5)

where β and ε are small parameters and the general nonlinear terms f and g satisfy the con-
ditions given in (2.2) so that this system is reversible. For β = ε = 0, this system has three
saddle-center equilibriums (u, ux, v, vx) = (0, 0, 0, 0), (1, 0, 1, 0) and (−1, 0,−1, 0) (a positive
eigenvalue, a negative eigenvalue and a pair of purely imaginary eigenvalues). It is easy to
check that (1.4) has two heteroclinic solutions exponentially approaching (1, 0) and (−1, 0)
while (1.5) has a family of periodic solutions around (1, 0) and (−1, 0), respectively. This im-
plies that (1.4)–(1.5) may have a heteroclinic solution exponentially approaching a periodic
solution at infinity (i.e., a generalized heteroclinic solution). In this paper, we will rigorously
prove this. Our result is new.

There are a lot of results about the saddle-center problems if the system is conservative and
Hamiltonian in particular. We mention the work: Homoclinic solutions (see [7–9, 23, 25, 29,
32, 36, 39]), generalized homoclinic solutions (see [5, 12, 32, 36–39]) and heteroclinic orbits to
invariant tori (see [38]).

Our system might not be conservative. We will use a dynamic approach given in [15], which
is more general and can be applied to a number of systems like the Schrödinger-KdV system
since it does not require that the system have a Hamiltonian structure.
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This paper is organized as follows. In Section 2, we derive the properties of heteroclinic
solutions of (1.4)–(1.5) for β = ε = 0. In Section 3, we use the Fourier series expansion technique
to prove that the system of (1.4)–(1.5) has a periodic solution. In Section 4, we apply the fixed
point theorem and the perturbation method to demonstrate that this heteroclinic solution
deforms to a heteroclinic solution exponentially approaching the periodic solution obtained in
Section 3 when small perturbation terms are added. This gives the existence of a generalized
heteroclinic solution of (1.4)–(1.5). Section 5 is an appendix which solves an equation left in
Section 4.

Throughout this paper, M denotes a positive constant and B = O(C) means that |B| ≤
M |C|.

2 Preliminary

Let u1 = ux and v1 = vx which change (1.4)–(1.5) into

ux = u1,

u1x = −u+ u3 − βuv2 − εf(ε, u, u1, v, v1),

vx = v1,

v1x = v − v3 − βu2v − εg(ε, u, u1, v, v1).

(2.1)

In this paper, we assume that f and g satisfy

f(ε, u,−u1, v,−v1) = f(ε, u, u1, v, v1), g(ε, u,−u1, v,−v1) = g(ε, u, u1, v, v1),

f(ε,−u, u1, v,−v1) = −f(ε, u, u1, v, v1), g(ε,−u, u1, v,−v1) = g(ε, u, u1, v, v1),
(2.2)

and define two operators S1 and S2 by

S1(u, u1, v, v1) = (u,−u1, v,−v1), S2(u, u1, v, v1) = (−u, u1, v,−v1), (2.3)

respectively. From (2.2), the system (2.1) is reversible with the reverser Si, that is, SiU(−x) is
also a solution whenever U(x) = (u(x), u1(x), v(x), v1(x))T is a solution for i = 1, 2. A solution
U(x) is reversible if SiU(−x) = U(x) for i = 1, 2. We will use the first reversibility to look for
periodic solutions and the second one to construct the generalized heteroclinic solutions of the
system (2.1), respectively.

When β = ε = 0, the first two equations of the system (2.1) have three equilibriums (−1, 0),
(0, 0) and (1, 0). It is easy to check that (−1, 0) and (1, 0) are saddle points and (0, 0) is a
center. There exist two heteroclinic solutions

H1(x) =
(

tanh
( x√

2

)
,

1√
2
sech2

( x√
2

))T

(2.4)

and

H2(x) =
(
− tanh

( x√
2

)
,− 1√

2
sech2

( x√
2

))T

(2.5)

connecting two saddle points (−1, 0) and (1, 0). The last two equations of the system (2.1)
also have three equilibriums (−1, 0), (0, 0) and (1, 0). Clearly, (−1, 0) and (1, 0) are centers
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and (0, 0) is a saddle point. In the following we will prove that the heteroclinic solution (2.4)
will deform to a generalized heteroclinic solution. By the same method, the deformation of the
other heteroclinic solution (2.5) can be obtained.

Let

u = ũ+ 1, u1 = ũ1, v = ṽ + 1, v1 = ṽ1,

f̃(ε, ũ, ũ1, ṽ, ṽ1) = f(ε, ũ+ 1, ũ1, ṽ + 1, ṽ1),

g̃(ε, ũ, ũ1, ṽ, ṽ1) = g(ε, ũ+ 1, ũ1, ṽ + 1, ṽ1),

(2.6)

and we have from (2.2)

f̃(ε, ũ,−ũ1, ṽ,−ṽ1) = f̃(ε, ũ, ũ1, ṽ, ṽ1), g̃(ε̃, ũ,−ũ1, ṽ,−ṽ1) = g̃(ε, ũ, ũ1, ṽ, ṽ1). (2.7)

Note that (2.6) changes the system (2.1) into

ũx = ũ1,

ũ1x = 2ũ+ 3ũ2 + ũ3 − β(ũ + 1)(ṽ + 1)2 − εf̃(ε, ũ, ũ1, ṽ, ṽ1),

ṽx = ṽ1,

ṽ1x = −2ṽ − 3ṽ2 − ṽ3 − β(ũ + 1)2(ṽ + 1) − εg̃(ε, ũ, ũ1, ṽ, ṽ1).

(2.8)

Symbolically, it can be written as

dŨ
dx

= LŨ +N(Ũ) + Ñ(β, Ũ) + εR(ε, Ũ), (2.9)

where Ũ = (ũ, ũ1, ṽ, ṽ1)T,

L =

⎛⎜⎜⎝
0 1 0 0
2 0 0 0
0 0 0 1
0 0 −2 0

⎞⎟⎟⎠ , N(Ũ) =

⎛⎜⎜⎝
0

3ũ2 + ũ3

0
−3ṽ2 − ṽ3

⎞⎟⎟⎠ ,

Ñ(β, Ũ ) =

⎛⎜⎜⎝
0

−β(ũ + 1)(ṽ + 1)2

0
−β(ũ + 1)2(ṽ + 1)

⎞⎟⎟⎠ , R(ε, Ũ) =

⎛⎜⎜⎝
0

−f̃(ε, ũ, ũ1, ṽ, ṽ1)
0

−g̃(ε, ũ, ũ1, ṽ, ṽ1)

⎞⎟⎟⎠ .

(2.10)

Note that from (2.7) the system (2.9) is still reversible with the reverser S1 if

S1(ũ, ũ1, ṽ, ṽ1) = (ũ,−ũ1, ṽ,−ṽ1), (2.11)

where we avoid the introduction of a new notation. We write the dominant system of (2.9) as

dŨ
dx

= LŨ +N(Ũ), (2.12)

which has a heteroclinic solution H(x) given by

H(x) =
(

tanh
( x√

2

)
− 1,

1√
2
sech2

( x√
2

)
, 0, 0

)T

(2.13)
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approaching (0, 0, 0, 0)T as x→ ∞ and (−2, 0, 0, 0)T as x→ −∞. Moreover,

H(0) =
(
− 1,

1√
2
, 0, 0

)T

(2.14)

and H(x) satisfies the following inequality:

|H(x)| ≤Me−
√

2x for x ∈ [0,+∞). (2.15)

In Section 4, we will prove the deformation of this heteroclinic solution H(x) for the whole
system (2.9). This demonstrates that the original system (2.1) has a generalized heteroclinic
solution.

3 Periodic Solutions

Using the Fourier series expansion technique, we will show that (2.9) has periodic solutions
which determine the forms of the generalized heteroclinic solutions at infinity. The general
theory for reversible systems can be found in [21].

Let

C =
√

2ṽ − iṽ1, τ =
√

2(1 + r1)x, (3.1)

where r1 is a small real constant to be determined later. Using the fact

ṽ =
C + C

2
√

2
, ṽ1 = i

C − C

2
, (3.2)

we can write (2.9) as

ũτ =
1√

2(1 + r1)
ũ1,

ũ1τ =
√

2
1 + r1

ũ+ h1(β, ε, ũ, ũ1, C, C),

Cτ =
i

1 + r1
C + h2(β, ε, ũ, ũ1, C, C),

Cτ =
−i

1 + r1
C − h2(β, ε, ũ, ũ1, C, C),

(3.3)

where h1 is a real function, h2 is a purely imaginary function and

h1(β, ε, ũ, ũ1, C, C) =
1√

2(1 + r1)

(
3ũ2 + ũ3 − β(ũ+ 1)

(C + C

2
√

2
+ 1

)2

− εf̃
(
ε, ũ, ũ1,

C + C

2
√

2
, i
C − C

2

))
,

h2(β, ε, ũ, ũ1, C, C) =
−i√

2(1 + r1)

(
− 3

(C + C

2
√

2

)2

−
(C + C

2
√

2

)3

− β(ũ + 1)2
(C + C

2
√

2
+ 1

)
− εg̃

(
ε, ũ, ũ1,

C + C

2
√

2
, i
C − C

2

))
.

(3.4)
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From (2.7) and (2.11), we may define

S1(ũ, ũ1, C, C) = (ũ,−ũ1, C, C) (3.5)

such that the system (3.3) is reversible, where we avoid again the introduction of a new notation.
Assume

(ũ(τ), ũ1(τ), C(τ), C(τ)) =
( ∑

n

ũneinτ ,
∑

n

ũ1,neinτ ,
∑

n

Cneinτ ,
∑

n

Cne−inτ
)
. (3.6)

Plugging (3.6) into (3.3) and making the coefficient of each term in the Fourier series equal
yield

ũn =
−(1 + r1)√

2(1 + r1)2n2 +
√

2
[h1(β, ε, ũ, ũ1, C, C)]n,

ũ1,n =
−i(1 + r1)2n

(1 + r1)2n2 + 1
[h1(β, ε, ũ, ũ1, C, C)]n,

Cn =
−i(1 + r1)
n(1 + r1) − 1

[h2(β, ε, ũ, ũ1, C, C)]n for n �= 1,

Cn =
−i(1 + r1)
n(1 + r1) − 1

[h2(β, ε, ũ, ũ1, C, C)]−n for n �= 1,

(3.7)

and for n = 1,

r1C1 = −i(1 + r1)[h2(β, ε, ũ, ũ1, C, C)]1, (3.8)

r1C1 = −i(1 + r1)[h2(β, ε, ũ, ũ1, C, C)]−1, (3.9)

where [f ]k denotes the kth Fourier coefficient of f .
Now we activate C1, that is, we consider C1 as a free constant to be chosen later. We first

solve (3.7) for ũn, ũ1,n, Cn and Cn (n �= 1), and then solve (3.8) for r1.
Fix C1 and define two spaces

H1
1 (0, 2π) =

{
f(τ) =

∑
n

fneinτ ∈ H1(0, 2π) | f1 = 0
}
,

H1
−1(0, 2π) =

{
f(τ) =

∑
n

fneinτ ∈ H1(0, 2π) | f−1 = 0
}
.

For A,B ∈ H1(0, 2π) × H1(0, 2π) and D ∈ H1
1 (0, 2π), use (3.7) and we define a mapping

Θ(A,B,D,D;
) from H1(0, 2π) ×H1(0, 2π) ×H1
1 (0, 2π) ×H1

−1(0, 2π) to itself by

Θ(A,B,D,D;
) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
n

−(1 + r1)√
2(1 + r1)2n2 +

√
2
[h1(β, ε, ũ, ũ1, C, C)]neinτ

∑
n

−i(1 + r1)2n
(1 + r1)2n2 + 1

[h1(β, ε, ũ, ũ1, C, C)]neinτ

∑
n�=1

−i(1 + r1)
n(1 + r1) − 1

[h2(β, ε, ũ, ũ1, C, C)]neinτ

∑
n�=1

−i(1 + r1)
n(1 + r1) − 1

[h2(β, ε, ũ, ũ1, C, C)]−ne−inτ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.10)
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where
 = (β, ε, r1, C1, C1). Assume that Br(0) is a ball with a radius r in the spaceH1(0, 2π)×
H1(0, 2π) ×H1

1 (0, 2π) ×H1
−1(0, 2π). It is easy to check the following lemma.

Lemma 3.1 For (A,B,D,D), (A1, B1, D1, D1), (A2, B2, D2, D2) ∈ Br(0) and any small
bounded 
 and r, Θ is smooth in its arguments and satisfies

‖Θ(A,B,D,D;
)‖1 ≤M(|β| + |ε| + ‖A‖2
1 + ‖B‖2

1 + ‖D‖2
1 + |C1|2),

‖Θ(A1, B1, D1, D1;
) − Θ(A2, B2, D2, D2;
)‖1

≤M(|β| + |ε| + |C1| + ‖A1‖1 + ‖A2‖1 + ‖B1‖1 + ‖B2‖1 + ‖D1‖1 + ‖D2‖1)

· (‖A1 −A2‖1 + ‖B1 −B2‖1 + ‖D1 −D2‖1).

Take r = |C1| and

β = β1|C1|α1 , ε = ε1|C1|α2 , α1 > 1, α2 > 1, (3.11)

where β1, ε1, α1 and α2 are fixed constants. Lemma 3.1 yields that Θ is a contraction mapping
on Br(0) for small C1. Thus, Θ has a unique fixed point which is a smooth function of 
.
Write this fixed point as

(u0
p, u

0
1p, C

0
p , C

0

p)(β, ε, r1, C1, C1)(τ), (3.12)

which satisfies

‖u0
p‖1 + ‖u0

1p‖1 + ‖C0
p‖1 + ‖C0

p‖1 ≤M(|β| + |ε| + |C1|2). (3.13)

Using the same argument we can show that (3.12) is in Hm(0, 2π) and satisfies (3.13) with
Hm(0, 2π)-norm for any integer m > 0. We use (ũp, ũ1p, Cp, Cp)(τ) to denote

(u0
p(τ), u

0
1p(τ), C

0
p (τ) + C1eiτ , C

0

p(τ) + C1e−iτ ).

Now we solve (3.8) for r1. Substitute (3.12) into (3.8) and obtain

−r1C1 + g1(β, ε, r1, C1, C1) = 0, (3.14)

where

g1(β, ε, r1, C1, C1) = −i(1 + r1)[h1(β, ε, ũ, ũ1, C, C)]1

is smooth when β, ε, r1, C1, C1 are near 0.
If (ũ, ũ1, C, C)(τ) is a solution of (3.3), then

S1(ũ, ũ1, C, C)(−τ), (ũ, ũ1, C, C)(τ + θ)

are also solutions of (3.3) for any real number θ since (3.3) has the reversibility property by
(3.5) and the translation invariance. Using these, we may take

C1 = I > 0, (3.15)
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so that (3.11) becomes

β = β1I
α1 , ε = ε1I

α2 , α1 > 1, α2 > 1, (3.16)

and (3.14) is equivalent to the following equation:

r1 = g̃1(β, ε, r1, I),

where g̃1 is real and smooth in its arguments and is a contraction mapping satisfying |g̃1| ≤
M(|β| + |ε| + I) under the condition (3.16) (more details can be found in [15]). By the fixed
point theorem, g̃1 has a unique fixed point

r1 = r1(β, ε, I) (3.17)

as a smooth real function for small (β, ε, I) satisfying

|r1| ≤M(|β| + |ε| + I). (3.18)

Therefore, (3.3) has a periodic solution

(ũp(β, ε, I)(τ), ũ1p(β, ε, I)(τ), Cp(β, ε, I)(τ), Cp(β, ε, I)(τ))

in Hm(0, 2π) if I ∈ (0, I1] and (3.16) holds, where I1 is a fixed small positive constant.
By the relation

τ =
√

2(1 + r1)x,

we write the periodic solution (ũp, ũ1p, Cp, Cp)(τ) as

(ũp(β, ε, I)(x), ũ1p(β, ε, I)(x), Cp(β, ε, I)(x), Cp(β, ε, I))(x)

with the frequency

ω1(β, ε, I) =
√

2(1 + r1(β, ε, I)) (3.19)

for I ∈ (0, I1]. Moreover, this solution is reversible since C1 = I is real, i.e.,

S1(ũp(β, ε, I), ũ1p(β, ε, I), Cp(β, ε, I), Cp(β, ε, I))(−x)
= (ũp(β, ε, I),−ũ1p(β, ε, I), Cp(β, ε, I), Cp(β, ε, I))(−x)
= (ũp(β, ε, I), ũ1p(β, ε, I), Cp(β, ε, I), Cp(β, ε, I))(x).

Letting
Cp =

√
2ṽp − iṽ1p,

we have

ṽp(−x) = ṽp(x), ṽ1p(−x) = −ṽ1p(x). (3.20)

Define

Xβ,ε,I(x) = (ũp, ũ1p, ṽp, ṽ1p)T(x) =
(
ũp, ũ1p,

Cp + Cp

2
√

2
, i
Cp − Cp

2

)T

(x), (3.21)
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which is smooth for x and small (β, ε, I) with the condition (3.16). Then, Xβ,ε,I(x) is a reversible
periodic solution of (2.9) under the reversor S1 with frequency ω1(β, ε, I), which from (3.13)
satisfies that for any integer m > 0,

‖Xβ,ε,I(x)‖Hm(0,2π) ≤M(|β| + |ε| + I). (3.22)

The Sobolev embedding theorem gives that (3.22) holds also in Cm
B (R)-norm, which is a space

of continuously differentiable functions up to order m with a supreme norm.

4 Generalized Heteroclinic Solutions

In this section we demonstrate that (2.9) has a generalized heteroclinic solution exponentially
approaching the periodic solution Xβ,ε,I obtained in Section 3.

Theorem 4.1 Suppose that the assumption (2.2) holds. There exist constants I0 > 0, β1

and ε1 such that for I ∈ (0, I0], if the small parameters β = β1I
3
2 and ε = ε1I

3
2 , then (2.1) has a

generalized heteroclinic solution, i.e., (2.1) has a solution which is reversible and exponentially
approaches the periodic solution (1, 0, 1, 0)T +Xβ,ε,I(x+ θ) as x→ ∞ and the periodic solution
(−1, 0, 1, 0)T +S2(Xβ,ε,I(−x+θ)) as x→ −∞, where the phase shift θ is a continuous function
in I, and the operator S2 is defined in (2.3).

We divide the proof into two steps. Using the relationship between (2.1) and (2.9), we
will first prove that (2.9) has a solution for x ∈ [0,∞), which exponentially approaches the
periodic solution Xβ,ε,I(x + θ) for some phase shift θ as x → ∞. Then we solve (2.9) for θ,
and its solution is a function of β, ε and I. This yields that this solution can be extended to
x ∈ (−∞, 0] by using the reversibility.

Step 1 Solution of (2.9) for x ∈ [0,∞).

Assume that the solution U(x) of (2.9) has the following form:

U(x) = H(x) + Z(x) + ζ(x)Xβ,ε,I(x+ θ), (4.1)

where H(x) and Xβ,ε,I(x) are defined in (2.13) and (3.21) respectively, the phase shift θ ∈ S1 =
[0, 2π] is a constant, the cut-off function ζ(x) is in C∞(R,R) satisfying 0 ≤ ζ(x) ≤ 1 and

ζ(x) =

{
1, |x| ≥ 2,
0, |x| ≤ 1,

(4.2)

and Z(x) is a perturbation term to be determined, which exponentially tends to 0 as x→ ∞ so
that U(x) is a solution of (2.9) that approaches the periodic solution Xβ,ε,I(x+ θ) as x→ ∞.

Since H(x) is a solution of (2.12) and Xβ,ε,I(x) is a solution of (2.9), plugging (4.1) into
(2.9) yields

dZ
dx

= L(x)Z + N (x, Z) + εR(x, ε, Z), (4.3)
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where

L(x) = L+ dN [H(x)] =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 0

3 tanh2
( x√

2

)
− 1 0 0 0

0 0 0 1

0 0 −2 0

⎞⎟⎟⎟⎟⎟⎠ ,

N (x, Z) = N(H(x) + Z(x) + ζ(x)Xβ,ε,I(x+ θ)) −N(H(x))

− ζ(x)N(Xβ,ε,I(x + θ)) − dN [H(x)]Z(x) + Ñ(β,H(x)

+ Z(x) + ζ(x)Xβ,ε,I(x+ θ)) − ζ(x)Ñ (β,Xβ,ε,I(x + θ)),

R(x, ε, Z) = R(ε,H(x) + Z(x) + ζ(x)Xβ,ε,I(x+ θ))

− ζ(x)R(ε,Xβ,ε,I(x+ θ)) − 1
ε
ζ′(x)Xβ,ε,I(x + θ),

(4.4)

and d means taking the Fréchet derivative.

Now we first consider x ∈ [0,∞) and have the following lemma by using (2.15) and (3.22).

Lemma 4.1 If β, ε and I are small and |Z|+ |Z1|+ |Z2| ≤M0 for some positive constant
M0, then N and R satisfy that for x ≥ 0

|N (x, Z)| ≤M [(e−
√

2x + |Z|)(|β| + |ε| + I) + |Z|2],
|N (x, Z1) −N (x, Z2)| ≤M(|β| + |ε| + I + |Z1| + |Z2|)|Z1 − Z2|,

|R(x, ε, Z)| ≤M
(
e−

√
2x + |Z| + |β| + |ε| + I

|ε| e−
√

2x
)
,

|R(x, ε, Z1) −R(x, ε, Z2)| ≤M |Z1 − Z2|.

(4.5)

Note that

dZ(x)
dx

= L(x)Z(x) (4.6)

has four linearly independent solutions:

s1(x) =
1√
2

(
sech2

( x√
2

)
,−√

2sech2
( x√

2

)
tanh

( x√
2

)
, 0, 0

)T

,

s2(x) =
1
16

(
sech2

( x√
2

)
(6
√

2x+ 8 sinh(
√

2x) + sinh(2
√

2x))

· 4
(√

2 cosh(
√

2x) + 3sech2
( x√

2

)(√
2 − x tanh

( x√
2

)))
, 0, 0

)T

,

s3(x) = (0, 0, cos(
√

2x),−√
2 sin(

√
2x))T,

s4(x) = (0, 0, sin(
√

2x),
√

2 cos(
√

2x))T,

(4.7)

which satisfy

|s1(x)| ≤Me−
√

2x, |s2(x)| ≤Me
√

2x, |s3(x)| + |s4(x)| ≤M (4.8)
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for x ∈ [0,∞). Moreover,

s1(0) =
( 1√

2
, 0, 0, 0

)T

, s2(0) = (0,
√

2, 0, 0)T,

s3(0) = (0, 0, 1, 0)T, s4(0) = (0, 0, 0,
√

2)T.
(4.9)

The adjoint equation of (4.6) has four linearly independent solutions given by

s∗1(x) =
1
16

(
4
(√

2 cosh(
√

2x) + 3sech2
( x√

2

)(√
2 − x tanh

( x√
2

)))
− sech2

( x√
2

)
(6
√

2x+ 8 sinh(
√

2x) + sinh(2
√

2x)), 0, 0
)T

,

s∗2(x) =
1√
2

(√
2sech2

( x√
2

)
tanh

( x√
2

)
, sech2

( x√
2

)
, 0, 0

)T

,

s∗3(x) =
1√
2
(0, 0,

√
2 cos(

√
2x),− sin(

√
2x))T,

s∗4(x) =
1√
2
(0, 0,

√
2 sin(

√
2x), cos(

√
2x))T,

(4.10)

which satisfy

|s∗1(x)| ≤Me
√

2x, |s∗2(x)| ≤Me−
√

2x, |s∗3(x)| + |s∗4(x)| ≤M (4.11)

for x ∈ [0,∞) and

〈si(x), s∗j (x)〉 = 0 for i �= j, 〈si(x), s∗i (x)〉 = 1, i, j = 1, 2, 3, 4 (4.12)

for each x ∈ [0,∞), where 〈 · , · 〉 denotes the Euclidean inner product on R
4.

The solution of (4.3) that decays to zero at infinity can be found as

Z = F(Z) �
∫ x

0

〈N (t, Z) + εR(t, ε, Z), s∗1(t)〉dt s1(x)

−
4∑

j=2

∫ ∞

x

〈N (t, Z) + εR(t, ε, Z), s∗j (t)〉dt sj(x). (4.13)

Fix ν ∈ (0,
√

2) and consider (4.13) as a fixed point problem in a Banach space

Eν =
{
Z ∈ C([0,∞) × S1)

∣∣∣ sup
x∈[0,∞)

{|Z(x, θ)|eνx} <∞
}

with the norm
‖Z‖ν = sup{|Z(x, θ)| eνx | x ∈ [0,∞), θ ∈ S1}.

It is easy to check the following lemma by using (2.15), (3.22), (4.8), (4.11) and Lemma 4.1.

Lemma 4.2 The function F satisfies

‖F(Z)‖ν ≤M [(1 + ‖Z‖ν)(|β| + |ε| + I) + ‖Z‖2
ν],

‖F(Z1) −F(Z2)‖ν ≤M(|β| + |ε| + I + ‖Z1‖ν + ‖Z2‖ν)‖Z1 − Z2‖ν

for Z,Z1, Z2 ∈ Ev.
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For any fixed constant

γ ∈ (0, 1), (4.14)

we let r = MIγ and

β = β1I
α1 , ε = ε1I

α2 , αi = γ + α̃i > 1, (4.15)

where α̃i are positive constants for i = 1, 2. Thus, (3.16) is satisfied. We can show from Lemma
4.2 that F is a contraction on Br(0) ⊂ Eν for small I. Therefore, (4.13) has a unique solution
Z(x; θ, β, ε, I) satisfying

|Z(x; θ, β, ε, I)| ≤MIγ , x ∈ [0,∞). (4.16)

Using the same argument as for (4.16) and an extension of a contraction mapping principle
(see [37]), we can show that Z is smooth in its arguments. Obviously, the solution Z of (4.3)
exists if x is in a finite interval and an initial condition is given. Thus, we have showed that
U(x; θ, β, ε, I) defined in (4.1) exists for x ≥ x̃0 with any fixed x̃0 ∈ (−∞,∞).

Step 2 Solution of (2.9) for x ∈ (−∞,∞).
Using (2.3), (4.1) and the relationship between u and ũ in (2.6), we may define

Ũ(x) =
{U(x; θ, β, ε, I) + U1 for x ≥ 0,
S2U1 + S2(U(−x; θ, β, ε, I)) for x ≤ 0, (4.17)

where U1 = (1, 0, 1, 0)T. If the following equation

(I − S2)(U(0; θ, β, ε, I) + U1) = 0 (4.18)

is true (The basic idea is to solve this equation for θ, which is given in Section 5), the uniqueness
of the solution for an initial value problem implies that Ũ is a generalized heteroclinic solution
of (2.1) and S2Ũ(−x) = Ũ(x), which exponentially approaches the periodic solution

U1 +Xβ,ε,I(x+ θ) = (1, 0, 1, 0)T +Xβ,ε,I(x+ θ)

as x→ ∞ and the periodic solution

S2(U1 +Xβ,ε,I(−x+ θ)) = (−1, 0, 1, 0)T + S2(Xβ,ε,I(−x+ θ))

as x→ −∞. This completes the proof of Theorem 4.1.

5 Appendix

In this section, we will solve (4.18) for θ. It is easy to check that by (2.14), the definition of
ζ(x) in (4.2) and Z = (ũ, ũ1, ṽ, ṽ1)T, (4.18) is equivalent to

ũ(0) = 0, (5.1)

ṽ1(0) = 0. (5.2)
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Using (4.9) and (4.13), we know that (5.1) holds automatically. Thus, we only have to study
(5.2) which can be transformed into∫ ∞

0

〈N (t, Z) + εR(t, ε, Z), s∗4(t)〉dt = 0. (5.3)

Lemma 5.1 Under the assumption in Theorem 4.1, (5.3) can be transformed into

θ = I
1
2 Θ(θ, β, ε, I), (5.4)

where Θ is differentiable with respect to its arguments, and Θ and its derivative with respect to
θ are uniformly bounded for small bounded β, ε and I.

Using the fixed point theorem, we can solve (5.4) for θ, and its solution is a smooth function
of β, ε and I, so the equation (5.3) is true.

Proof Let

Cp =
√

2ṽp − iṽ1p, τ =
√

2(1 + r1)x, (5.5)

where r1, ṽp and ṽ1p are given in (3.17) and (3.21) respectively, which yields

ṽp =
Cp + Cp

2
√

2
, ṽ1p = i

Cp − Cp

2
. (5.6)

Thus, (ũp, ũ1p, Cp, Cp)T(τ) is a 2π-periodic solution of the following system:

ũpτ =
1√

2(1 + r1)
ũ1p,

ũ1pτ =
√

2
1 + r1

ũp + h1(β, ε, ũp, ũ1p, Cp, Cp),

Cpτ =
i

1 + r1
Cp + h2(β, ε, ũp, ũ1p, Cp, Cp),

Cpτ =
−i

1 + r1
Cp − h2(β, ε, ũp, ũ1p, Cp, Cp),

(5.7)

where h1 and h2 are given in (3.4). We can express Cp(τ) as

Cp(τ) = ei τ
1+r1Cp(0) + w(τ), (5.8)

where

w(τ) =
∫ τ

0

ei τ−s
1+r1 h2(β, ε, ũp, ũ1p, Cp, Cp)ds. (5.9)

Note that the coefficient of eiτ in Cp(τ) is C1 = I (see (3.15)). Thus,

I =
1
2π

∫ 2π

0

Cp(s)e−isds

=
1
2π

∫ 2π

0

e−is(ei s
1+r1 Cp(0) + w(s))ds

= (1 + κ(r1))Cp(0) +
1
2π

∫ 2π

0

e−isw(s)ds, (5.10)
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where κ(r1) = 1+r1
i2πr1

(1 − e−i
2πr1
1+r1 ) − 1 = O(r1) and κ(0) = 0, which yields

Cp(0) =
1

1 + κ(r1)

(
I − 1

2π

∫ 2π

0

e−isw(s)ds
)
. (5.11)

Thus,

Cp(τ) =
ei τ

1+r1

1 + κ(r1)

(
I − 1

2π

∫ 2π

0

e−isw(s)ds
)

+ w(τ) (5.12)

or

Cp(x) =
ei
√

2x

1 + κ(r1)

(
I − 1

2π

∫ 2π

0

e−isw(s)ds
)

+ w(
√

2(1 + r1)x). (5.13)

(3.18), (3.22), (4.15) and the expression of h2 in (3.4) show w(x) = O(|β| + |ε| + I2) so that
Cp(x) = O(I). Therefore, we obtain by (5.6) that

ṽp(x) =
1√
2
ReCp(x) =

1√
2

cos(
√

2x)I + V1(x, β, ε, I), (5.14)

ṽ1p(x) = −ImCp(x) = − sin(
√

2x)I + V2(x, β, ε, I), (5.15)

where V1(x) = O(|β| + |ε| + I2) and V2(x) = O(|β| + |ε| + I2).
From (2.13), (3.21), (4.4) and Z = (ũ, ũ1, ṽ, ṽ1)T, we know that the equation (5.3) becomes

0 =
∫ ∞

0

1√
2

(
− 3(ṽ(s) + ζ(s)ṽp(s+ θ))2 − (ṽ(s) + ζ(s)ṽp(s+ θ))3

+ ζ(s)(3ṽ2
p(s+ θ) + ṽ3

p(s+ θ))

− β
(

tanh
( s√

2

)
+ ũ(s) + ζ(s)ũp(s+ θ)

)2

(ṽ(s) + ζ(s)ṽp(s+ θ) + 1)

+ βζ(s)(ũp(s+ θ) + 1)2(ṽp(s+ θ) + 1)
)

cos(
√

2x)

− ζ′(s)ṽp(s+ θ) sin(
√

2s) − 1√
2
ζ′(s)ṽ1p(s+ θ) cos(

√
2s)

− 1√
2
ε
(
g̃
(
ε, tanh

( s√
2

)
− 1 + ũ(s) + ζ(s)ũp(s+ θ),

1
2
sech2

( s√
2

)
+ ũ1(s) + ζ(s)ũ1p(s+ θ),

ṽ(s) + ζ(s)ṽp(s+ θ), ṽ1(s) + ζ(s)ṽ1p(s+ θ)
)

− ζ(s)g̃(ε, ũp(s+ θ), ũ1p(s+ θ), ṽp(s+ θ), ṽ1p(s+ θ))
)

cos(
√

2s)ds. (5.16)

For computational simplicity, we take γ = α̃k = 3
4 for k = 1, 2 such that (4.14)–(4.15) are

satisfied. Thus, (5.16) is changed into

0 = I

∫ ∞

0

− 1√
2
ζ′(s)

(
cos(

√
2(s+ θ)) sin(

√
2s) − sin(

√
2(s+ θ)) cos(

√
2s)

)
ds

+ P(θ, β, ε, I)

=
1√
2

sin(
√

2θ)I + P(θ, β, ε, I), (5.17)
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where P(θ, β, ε, I) = O(I
3
2 ), which is equivalent to

θ = I
1
2 Ψ(θ, β, ε, I), (5.18)

where Ψ(θ, β, ε, I) = − 1√
2I

arcsin
(√

2P(θ,β,ε,I)
I

)
is uniformly bounded for small β, ε and I. We

can also check that Ψ(θ, β, ε, I) is differentiable with respect to its arguments, and Ψ and its
derivative with respect to θ are uniformly bounded for small bounded β, ε and I. This completes
the proof of Lemma 5.1.
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