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Abstract Let H be a subgroup of a finite group G. H is nearly SS-embedded in G if
there exists an S-quasinormal subgroup K of G, such that HK is S-quasinormal in G and
H ∩ K ≤ HseG, where HseG is the subgroup of H , generated by all those subgroups of
H which are S-quasinormally embedded in G. In this paper, the authors investigate the
influence of nearly SS-embedded subgroups on the structure of finite groups.
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1 Introduction

Throughout this paper, all groups considered are finite and G denotes a finite group. Recall
that a subgroup H of G is said to be S-quasinormal in G if H permutes with every Sylow
subgroup of G. A subgroup H of G is said to be S-quasinormally embedded in G if every Sylow
subgroup of H is a Sylow subgroup of some S-quasinormal subgroup of G. A subgroup H of G

is called c-normal in G (see [21]) if there exists a normal subgroup K, such that G = HK and
H∩K ≤ HG, where HG is the maximal normal subgroup of G contained in H . In [9], Guo et al.
gave the concept of an s-embedded subgroup as follows: A subgroup H is said to be s-embedded
in G if G has an S-quasinormal subgroup T , such that T ∩ H ≤ HsG and HT = HsG, where
HsG is the subgroup generated by all those subgroups of H which are S-quasinormal in G and
HsG is the intersection of all such S-quasinormal subgroups of G which contain H . By using
the above ideas, a series of interesting results was obtained (see, e.g., [7–11, 14–16, 21–22]).
In this paper, we give some new applications of S-quasinormal subgroups and S-quasinormally
embedded subgroups in the theory of groups. Our main tool here is the following concept.

Definition 1.1 Let H be a subgroup of G. We say that H is nearly SS-embedded in G if
G has an S-quasinormal subgroup K such that HK is S-quasinormal in G and H ∩K ≤ HseG,
where HseG is the subgroup generated by all those subgroups of H which are S-quasinormally
embedded in G.
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It is easy to see that all S-quasinormal, S-quasinormally embedded, c-normal and s-
embedded subgroups are all nearly SS-embedded in G. However, the following examples show
that the converse is not true.

Example 1.1 Suppose that G is the symmetric group S4.
(1) Let H = 〈(12)〉. It is easy to see that G = A4H and H ∩ A4 = 1. Hence H is nearly

SS-embedded in G. However, H is clearly not S-quasinormally embedded in G.
(2) Let H = 〈(123)〉 and K4 = {(1), (12)(34), (13)(24), (14)(23)}. Then HK4 = A4 � G and

1 = H ∩K4 ≤ HseG. Hence H is a nearly SS-embedded subgroup of G. But it is easy to check
that H is not c-normal in G.

Example 1.2 Let G = S5 = A5B, where B = 〈(12)〉, and let K4 be the group as in Example
1.1(2). Clearly, K4 is a Sylow 2-subgroup of A5, K4A5 = A5 �G and K4 = K4∩A5 = (K4)seG.
Hence K4 is nearly SS-embedded in G, but it is not s-embedded in G.

In this paper, we investigate the influence of the nearly SS-embedded subgroups on the
structure of finite groups. Some new results are obtained and some recent results are generalized.

2 Preliminaries

The following known results will be used in this paper.

Lemma 2.1 Let G be a group and H ≤ K ≤ G.
(1) If H is S-quasinormal in G, then H is S-quasinormal in K (see [13]).
(2) If H is S-quasinormal in G, then H is subnormal in G (see [13]).
(3) If H and L are S-quasinormal in G, then 〈H, L〉 and H ∩L are S-quasinormal in G (see

[18]).
(4) If H is S-quasinormal in G and M ≤ G, then H ∩ M is S-quasinormal in M (see [3]).
(5) Suppose that H is normal in G. Then K/H is S-quasinormal in G/H if and only if K

is S-quasinormal in G (see [13]).
(6) If H is S-quasinormal in G, then H/HG is nilpotent (see [3]).

Lemma 2.2 Let A ≤ K ≤ G and B ≤ G.
(1) If A is subnormal in G and B is a minimal normal subgroup of G, then B ≤ NG(A) (see

[4]).
(2) If A is subnormal in G and A is a π-subgroup of G, then A ≤ Oπ(G). In particular, if

A is a subnormal Hall subgroup of G, then A is normal in G (see [23]).

Lemma 2.3 (see [10]) Suppose that N is a normal subgroup of G and H ≤ K ≤ G. Then
HseG ≤ HseK and HseGN/N ≤ (HN/N)se(G/N).

Lemma 2.4 Let H ≤ K ≤ G. Then
(1) If H is nearly SS-embedded in G, then H is nearly SS-embedded in K.
(2) Suppose that H �G. If K is nearly SS-embedded in G, then K/H is nearly SS-embedded

in G/H.
(3) If H�G, then for every nearly SS-embedded subgroup E of G with (|H |, |E|) = 1, HE/H

is nearly SS-embedded in G/H.
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Proof (1) Assume that there exists an S-quasinormal subgroup T of G, such that HT is
S-quasinormal in G and H∩T ≤ HseG. Then by Lemma 2.1(4), T ∩K and H(T ∩K) = HT ∩K

are S-quasinormal in K. By Lemma 2.3, H ∩ (T ∩ K) ≤ HseG ≤ HseK . Hence H is nearly
SS-embedded in K.

(2) Assume that there exists an S-quasinormal subgroup T of G, such that KT is S-
quasinormal in G and T ∩ K ≤ KseG. Since HTK is S-quasinormal in G by Lemma 2.1(3),
HTK/H = (HT/H)(K/H) is S-quasinormal in G/H by Lemma 2.1(5). On the other hand, by
Lemma 2.3, (HT/H)∩(K/H) = (HT ∩K)/H = H(T ∩K)/H ≤ HKseG/H ≤ (HK/H)se(G/H)

= (K/H)se(G/H). Hence K/H is nearly SS-embedded in G/H .
(3) Assume that E is nearly SS-embedded in G. Then there exists an S-quasinormal

subgroup T of G such that ET is S-quasinormal in G and E ∩ T ≤ EseG. By Lemma 2.1(5),
(HE/H)(TH/H) = (ET )H/H is S-quasinormal in G/H . Since (|H |, |E|) = 1, (|HE ∩ T :
T ∩ H |, |HE ∩ T : T ∩ E|) = 1. Hence HE ∩ T = (T ∩ H)(T ∩ E) (see [6, (3.8.1)]). It follows
that (HE/H) ∩ (TH/H) = (HE ∩ TH)/H = (HE ∩ T )H/H = (E ∩ T )H/H ≤ EseGH/H ≤
(HE/H)se(G/H) by Lemma 2.3. This shows that HE/H is nearly SS-embedded in G/H .

Lemma 2.5 (see [18]) Let H be a p-subgroup of G for some prime p. Then H is S-
quasinormal in G if and only if Op(G) ≤ NG(H).

Lemma 2.6 (see [1, Lemma 2.4]) Let H be a subgroup of G. Then the following two state-
ments are equivalent:

(1) H is an S-quasinormal nilpotent subgroup of G.
(2) The Sylow subgroups of H are S-quasinormal in G.

Lemma 2.7 (see [6, (1.8.17)]) Let N be a nontrivial solvable normal subgroup of G. If
N ∩ Φ(G) = 1, then the Fitting subgroup F(N ) of N is the direct product of minimal normal
subgroups of G contained in N.

Lemma 2.8 Let P be a Sylow p-subgroup of G, where p is the smallest prime dividing |G|.
If every maximal subgroup of P is nearly SS-embedded in G, then G is solvable.

Proof Suppose that the assertion is false and let G be a counterexample of the minimal
order. Then p = 2 by Feit-Thompson’s theorem. We now proceed the proof via the following
steps.

(1) O2(G) = 1.
Assume that O2(G) �= 1. Clearly, P/O2(G) is a Sylow 2-subgroup of G/O2(G). Let

M/O2(G) be a maximal subgroup of P/O2(G). Then M is a maximal subgroup of P . By the
hypothesis and Lemma 2.4(2), M/O2(G) is nearly SS-embedded in G/O2(G). The minimal
choice of G implies that G/O2(G) is solvable. It follows that G is solvable. This contradiction
shows that (1) holds.

(2) O2′(G) = 1.
Suppose that O2′(G) �= 1. Then PO2′(G)/O2′(G) is a Sylow 2-subgroup of G/O2′(G).

Assume that M/O2′(G) is a maximal subgroup of PO2′(G)/O2′(G). Then there exists a max-
imal subgroup T of P , such that M = TO2′(G). By the hypothesis and Lemma 2.4(3),
M/O2′(G) = TO2′(G)/O2′(G) is nearly SS-embedded in G/O2′(G). The minimal choice of
G implies that G/O2′(G) is solvable. By Feit-Thompson’s theorem, we know that O2′(G) is
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solvable and so is G, a contradiction.
(3) P is not cyclic.
If P is cyclic, then G is 2-nilpotent by [17, (10.1.9)]. This implies that G is solvable, a

contradiction.
(4) If 1 �= N � G, then N is not solvable and G = PN .
Suppose that N is solvable. Then O2(N) �= 1 or O2′(N) �= 1. Since O2(N) char N � G,

we get O2(N) ≤ O2(G). Similarly, O2′(N) ≤ O2′(G). Hence, O2(G) �= 1 or O2′(G) �= 1, which
contradicts (1) or (2). Therefore, N is not solvable. Assume that PN < G. Then by Lemma
2.4(1), every maximal subgroup of P is nearly SS-embedded in PN . Thus, PN satisfies the
hypothesis. By the choice of G, we have that PN is solvable and so is N , a contradiction. Thus
(4) holds.

(5) G has a unique minimal normal subgroup, and we still denote it by N .
By (4), we see that G = PN for every non-identity normal subgroup N of G. It is easy to

see that G/N is solvable. Since the class of all solvable groups is closed under the subdirect
product, G has a unique minimal normal subgroup.

(6) Final contradiction.
If N ∩ P ≤ Φ(P ), then N is 2-nilpotent by [12, IV, Theorem 4.7]. Let N2′ be the normal

2-complement of N . Since N2′ char N � G, we have N2′ ≤ O2′(G). Thus N is a 2-subgroup
by (2), so N is solvable. This contradiction shows that N ∩ P � Φ(P ). It follows that there
exists a maximal subgroup P1 of P , such that P = P1(P ∩N). By the hypothesis, there exists
an S-quasinormal subgroup K, such that P1K is S-quasinormal in G and P1 ∩ K ≤ (P1)seG.
Suppose that (P1)seG �= 1. Let (P1)seG = 〈H1, H2, · · · , Ht〉, where H1, · · · , Ht are all the
nontrivial S-quasinormal embedded subgroups of G contained in P1. Then there exist S-
quasinormal subgroups K1, K2, · · · , Kt of G, such that Hi ∈ Syl2(Ki) for i = 1, 2, · · · , t. If
(Ki)G �= 1 for some i ∈ {1, 2, · · · , t}, then N ≤ (Ki)G ≤ Ki by (5). It is easy to see that
Hi ∩N ∈ Syl2(N) and Hi ∩N ≤ P1 ∩N ≤ P ∩N ∈ Syl2(N). Hence Hi ∩N = P1 ∩N = P ∩N .
Consequently, P = (P ∩ N)P1 = (P1 ∩ N)P1 = P1, a contradiction. Therefore (Ki)G = 1.
It follows from Lemma 2.1(6) that Ki = Ki/(Ki)G is nilpotent and S-quasinormal in G. By
Lemma 2.6, Hi is S-quasinormal in G. Hence, by Lemma 2.1(3), (P1)seG is S-quasinormal in
G, so (P1)seG ≤ O2(G) = 1 by Lemma 2.1(2) and 2.2(2), which implies that P1 ∩ K = 1. If
K = 1, then P1 is S-quasinormal in G, so P1 is subnormal in G by Lemma 2.1(2). It follows
that P1 ≤ O2(G) = 1, so P is cyclic, which contradicts (3). We may, therefore, assume that
K �= 1. Clearly, |K|2 ≤ 2. Then K is a 2-nilpotent group by [17, (10.1.9)]. Let K2′ be a normal
Hall 2′-subgroup of K. Since K is an S-quasinormal subgroup of G, K is subnormal in G, so
K2′ is subnormal in G. Then by Lemma 2.2(2), K2′ ≤ O2′(G) = 1. This means that K is a
group of order 2 and P1K is a Sylow 2-subgroup of G. Since P1K is subnormal in G, P1K � G

by Lemma 2.2(2), and consequently, N ≤ P1K = P . This implies that G = PN = P . The
final contradiction completes the proof.

3 Main Results

Theorem 3.1 Let P be a Sylow p-subgroup of G, where p is a prime divisor of |G| with
(|G|, p − 1) = 1. If every maximal subgroup of P is nearly SS-embedded in G, then G is p-
nilpotent.
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Proof Suppose that the theorem is false and let G be a counterexample of the minimal
order. Then

(1) Op′(G) = 1.

Suppose that D = Op′(G) �= 1. Clearly, PD/D is a Sylow p-subgroup of G/D and every
maximal subgroup of PD/D may be written as P1D/D, where P1 is a maximal subgroup of
P . Since P1 is nearly SS-embedded in G, we have that P1D/D is also nearly SS-embedded in
G/D by Lemma 2.4(3). Therefore G/D satisfies the condition of the theorem. The minimal
choice of G implies that G/D is p-nilpotent and consequently G is p-nilpotent, a contradiction.

(2) G is solvable.

This can be obtained by Lemma 2.8 and the Feit-Thompson theorem.

(3) G has a unique minimal normal subgroup N , such that G = N � M , where M is a
nilpotent maximal subgroup of G, and N = Op(G) = F (G) = CG(N).

Let N be a minimal normal subgroup of G. By (1)–(2), N is an elementary abelian p-group.
If N �= P , then the hypothesis still holds for G/N by Lemma 2.4(2). The choice of G implies
that G/N is p-nilpotent. If N = P , then G/N is a p′-group and thus G/N is also p-nilpotent.
Since the class of all p-nilpotent groups is a saturated formation, N is a unique minimal normal
subgroup of G and N � Φ(G). Therefore, there exists a maximal subgroup M of G, such that
N � M . It is easy to see that G = N �M and N ⊆ Op(G) ⊆ F (G) ⊆ CG(N). Let C = CG(N).
Then C = C ∩ NM = N(C ∩ M). Clearly, C ∩ M � NM = G, which implies that C ∩ M = 1
and thereby C = N . Hence (3) holds.

(4) The final contradiction.

Obviously, P = P ∩ NM = N � (P ∩ M), where P ∩ M = Mp is a Sylow p-subgroup of
M . Let P1 be a maximal subgroup of P containing Mp. Clearly, N � P1. If P1 = 1, then
|N | = |P | = p. By (3), G/N ∼= G/CG(N) is isomorphic with some subgroup of Aut(N), so
|G/N | | |Aut(N)|. Since |Aut(N)| = p − 1 and (|G|, p − 1) = 1, we have that G/N = 1.
Therefore, G = N is an elementary abelian p-group, a contradiction.

Now suppose that P1 �= 1. By the hypothesis, there exists an S-quasinormal subgroup K

of G, such that P1K is S-quasinormal in G and P1 ∩ K ≤ (P1)seG. Suppose that (P1)seG �= 1.
Let H1, H2, · · · , Ht be all the nontrivial subgroups of P1 which are S-quasinormal embedded in
G. Then there exist S-quasinormal subgroups K1, K2, · · · , Kt in G, such that Hi is a Sylow p-
subgroup of Ki for i = 1, 2, · · · , t. If (Ki)G �= 1 for some i ∈ {1, 2, · · · , t}, then N ≤ (Ki)G ≤ Ki,
and thus N ≤ Hi ≤ P1, a contradiction. Thus (Ki)G = 1 for all i = 1, 2, · · · , t. By Lemma
2.1(6), Ki = Ki/(Ki)G is an S-quasinormal nilpotent subgroup of G. It follows from Lemma
2.6 that Hi is S-quasinormal in G. Hence (P1)seG is S-quasinormal in G by Lemma 2.1(3).
It follows from Lemma 2.2 that (P1)seG ≤ P1 ∩ Op(G) = P1 ∩ N . Then by Lemma 2.5,
(P1)seG ≤ (P1)

G
seG = (P1)

Op(G)P
seG = (P1)

P
seG ≤ (P1 ∩ N)P = P1 ∩ N ≤ N . This implies that

(P1)
G
seG = N = P1∩N . Consequently, N ≤ P1, a contradiction. Hence, (P1)seG = P1∩K = 1. If

K = 1, then P1 is S-quasinormal in G. By Lemma 2.5, N ≤ (P1)
G = (P1)

Op(G)P = P1
P = P1,

a contradiction. Hence, we may assume that K �= 1. Obviously, |Kp| ≤ p, where Kp is
a Sylow p-subgroup of K. If Kp = 1, then, clearly, K is p-nilpotent. If |Kp| = p, then
|Aut(Kp)| = p − 1. Since NK(Kp)/CK(Kp) is isomorphic with some subgroup of Aut(Kp)
and (|G|, p − 1) = 1, we have that |NK(Kp)/CK(Kp)| = 1. Hence by Burnside’s Theorem,
K is p-nilpotent. Let Kp′ be the normal p-complement of K. Then Kp′ is subnormal in G,
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so Kp′ ≤ Op′(G) = 1. It follows that K is a cyclic group of order p and P1K is a Sylow
p-subgroup of G. Since P1K is S-quasinormal in G, P1K � G by Lemma 2.2(2). Therefore,
P1K = P = Op(G) = N is an elementary abelian p-group of G. By Lemma 2.5 and 2.2(1),
N ≤ KG = KOp(G)P = KP = KN = K. It follows that P1 ≤ K and P1 = 1. The final
contradiction completes the proof.

Corollary 3.1 Let p be a prime dividing the order of G with (|G|, p − 1) = 1 and H be a
normal subgroup of G, such that G/H is p-nilpotent. If there exists a Sylow p-subgroup P of H,
such that every maximal subgroup of P is nearly SS-embedded in G, then G is p-nilpotent.

Proof By Lemma 2.4(1), every maximal subgroup of P is SS-embedded in H . By Theorem
3.1, H is p-nilpotent. Now, let Hp′ be the normal p-complement of H . Then Hp′ � G. Assume
that Hp′ �= 1, and applying Lemma 2.4 again, we see that G/Hp′ satisfies the hypothesis by
induction on |G|. Hence G/Hp′ is p-nilpotent. It follows that G is p-nilpotent. We may,
therefore, assume Hp′ = 1. Then H = P is a p-group. Since G/H is p-nilpotent, we may let
K/H be the normal p-complement of G/H . By Schur-Zassenhaus’s theorem, there exists a Hall
p′-subgroup Kp′ of K such that K = HKp′ . Now by using Lemma 2.4(1) and Theorem 3.1, we
see that K is p-nilpotent, so K = H × Kp′ . In this case, Kp′ is a normal p-complement of G,
and thus G is p-nilpotent.

Corollary 3.2 Suppose that every maximal subgroup of any Sylow subgroup of G is nearly
SS-embedded in G. Then G is a Sylow tower group of the supersolvable type.

Proof It follows from Theorem 3.1 and Lemma 2.4.

Theorem 3.2 Let p be an odd prime dividing the order of a group G and P be a Sylow p-
subgroup of G. If NG(P ) is p-nilpotent and every maximal subgroup of P is nearly SS-embedded
in G, then G is p-nilpotent.

Proof Suppose that the theorem is false and let G be a counterexample of the minimal
order. We proceed via the following steps.

(1) Op′(G) = 1.
Suppose that Op′ (G) �= 1. Obviously, POp′(G)/Op′ (G) is a Sylow p-subgroup of G/Op′(G).

Let T/Op′(G) be a maximal subgroup of POp′(G)/Op′(G). Then T = P1Op′(G) for some
maximal subgroup P1 of P . By Lemma 2.4(3) and the hypothesis, P1Op′(G)/Op′ (G) is nearly
SS-embedded in G/Op′(G). On the other hand, since N(G/Op′(G))(POp′ (G)/Op′(G)) = NG(P )
Op′(G)/Op′ (G) (see [6, (3.6.10)]), we see that N(G/Op′(G))(POp′(G)/Op′(G)) is p-nilpotent. This
shows that G/Op′(G) satisfies the hypothesis of the theorem. Thus G/Op′(G) is p-nilpotent. It
follows that G is p-nilpotent, a contradiction.

(2) If M is a proper subgroup of G containing P , then M is p-nilpotent.
Firstly, clearly, NM (P ) is p-nilpotent. By Lemma 2.4(1), we see that M satisfies the hy-

pothesis. The minimal choice of G implies that M is p-nilpotent.
(3) G = PQ and Op(G) �= 1, where Q is a Sylow q-subgroup of G with q �= p.
Since G is not p-nilpotent, by Thompson’s theorem (see [20]), there exists a nonidentity

characteristic subgroup H of P such that NG(H) is not p-nilpotent. Since NG(P ) is p-nilpotent,
we may choose a characteristic subgroup H of P such that NG(H) is not p-nilpotent, but
NG(K) is p-nilpotent for every characteristic subgroup K of P with H < K ≤ P . Since H char
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P �NG(P ), we have H �NG(P ), so NG(P ) < NG(H). Then by (2), we have G = NG(H). This
shows that H ≤ Op(G) �= 1 and NG(K) is p-nilpotent for any characteristic subgroup K of P

with Op(G) < K ≤ P (if it exists). In this case, using Thompson’s theorem again, we see that
G/Op(G) is p-nilpotent and then G is p-solvable. Thus for any q ∈ π(G) with q �= p, there exists
a Sylow q-subgroup Q of G, such that PQ is a subgroup of G (see [5, (6.3.5)]). If PQ < G, then
PQ is p-nilpotent by (2). It follows from (1) and [17, (9.3.1)] that Q ≤ CG(Op(G)) ≤ Op(G),
a contradiction. Thus (3) holds.

(4) G has a unique minimal normal subgroup N , such that G = N � M , where M is a
maximal subgroup of G, and N = Op(G) = CG(N).

Let N be a minimal normal subgroup of G. Then by (1) and (3), N is an elementary abelian
p-group, and N ⊆ Op(G) < P . It is easy to see that G/N satisfies the hypothesis. Hence G/N is
p-nilpotent by the choice of G. Since the class of all p-nilpotent groups is a saturated formation,
N is a unique minimal normal subgroup of G and N � Φ(G). Consequently, G = N � M for
some maximal subgroup M of G. As G is solvable by (3), we see that CG(N) = Op(G) = N .
Hence, (4) holds.

(5) Conclusion.
By (4), P = P ∩NM = N(P ∩M) = NMp, where Mp = P ∩M is a Sylow p-subgroup of M .

If Mp = 1, then P = N , so G = NG(N) = NG(P ) is p-nilpotent, a contradiction. Hence, we
may assume that Mp �= 1. Let P1 be a maximal subgroup of P containing Mp. Then P = NP1

and P1 is nearly SS-embedded in G. Therefore, there exists an S-quasinormal subgroup K of
G such that P1K is S-quasinormal in G and P1 ∩K ≤ (P1)seG. By using the same argument as
in the proof of Theorem 3.1, we get that P1 ∩ K = 1 and K �= 1. Hence |Kp| ≤ p, where Kp is
a Sylow p-subgroup of K. If |Kp| = 1, then K is a q-subgroup. By Lemma 2.1(2) and Lemma
2.2(2), K ≤ Oq(G), which contradicts (1). Hence |Kp| = p. Suppose that N ∩ K = 1. Since
G is solvable by (3), the minimal normal subgroup K1 of K is an elementary abelian p-group
or a q-group. If K1 is a p-group, then K1 ≤ Op(G) = N by Lemma 2.2(2), which contradicts
N ∩ K = 1. If K1 is a q-group, then K1 ≤ Oq(G), which contradicts (1). Hence |N ∩ K| = p.
Suppose that KG �= 1. Then N ≤ KG ≤ K by (4). Therefore, |N | = |N ∩ K| = p. If q > p,
then NQ is p-nilpotent by [17, (10.1.9)], so Q ≤ CG(N) = N , a contradiction. If q < p, then
M ∼= G/N = NG(N)/CG(N) is isomorphic with some subgroup of Aut(N). Since Aut(N) is
a cyclic group of order p − 1, we have that Q is cyclic. Then G is q-nilpotent by [17, (10.1.9)]
again and thus P is normal in G. Hence NG(P ) = G is p-nilpotent, a contradiction. We may,
therefore, assume that KG = 1. Then by Lemma 2.1(6), K is nilpotent. Hence by (1), K is
a p-subgroup and |K| = p. This means that P1K is a Sylow p-subgroup of G. Since P1K is
S-quasinormal in G, P = P1K � G by Lemma 2.2(2). The final contradiction completes the
proof.

Corollary 3.3 Let p be a prime dividing the order of G and H be a normal subgroup of G,
such that G/H is p-nilpotent. If there exists a Sylow p-subgroup P of H, such that NG(P ) is
p-nilpotent and every maximal subgroup of P is nearly SS-embedded in G, then G is p-nilpotent.

Proof By Lemma 2.4(1) and Theorem 3.2, H is p-nilpotent. Let Hp′ be a normal Hall
p′-subgroup of H . Then Hp′ is normal in G. By using the same argument as that in the proof of
Corollary 3.1, we may assume Hp′ = 1 and thus H = P . In this case, G = NG(P ) is p-nilpotent.
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Theorem 3.3 Let G be a p-solvable group and P be a Sylow p-subgroup of G. If every
maximal subgroup of P is nearly SS-embedded in G, then G is p-supersolvable.

Proof Assume that the assertion is false and choose G to be a counterexample of the
minimal order. Then

(1) Op′(G) = 1.

See the proof of Theorem 3.1.
(2) Op(G) �= 1.

Since G is p-solvable, (2) holds by (1).
(3) G has a unique minimal normal subgroup N , such that G/N is p-supersolvable, G =

N � M , where M is a maximal subgroup of G, N = Op(G) = F (G) � Φ(G), and |N | > p.
Let N be a minimal normal subgroup of G contained in Op(G). Then by Lemma 2.4,

G/N satisfies the condition of the theorem, and the minimal choice of G implies that G/N is
p-supersolvable. If |N | = p, then G is p-supersolvable, a contradiction. Hence |N | > p. On
the other hand, since the class of all p-supersolvable groups is a saturated formation, N is the
unique minimal normal subgroup of G contained in Op(G) and Op(G) = N = F (G) � Φ(G) by
Lemma 2.7. Thus (3) holds.

(4) Final contradiction.
Let P = NMp, where Mp is a Sylow p-subgroup of M , and P1 is a maximal subgroup of P

containing Mp. By the hypothesis, there exists an S-quasinormal subgroup K of G, such that
P1K is S-quasinormal in G and P1 ∩ K ≤ (P1)seG. It is easy to verify that (P1)seG = 1 as the
proof of Theorem 3.1. Therefore, P1 ∩ K = 1 and |Kp| ≤ p. If Kp = 1, then K is a p′-group
and K ≤ Op′(G) = 1 by Lemma 2.2(2). It follows that P1 is S-quasinormal in G. By Lemma
2.5, N ≤ P1

G = P1
Op(G)P = P1

P = P1, a contradiction. Hence we may assume that |Kp| = p.

Suppose that N ∩ K = 1. Since G is p-solvable, the minimal normal subgroup K1 of K is
an elementary abelian p-group by (1). Clearly, K is subnormal in G by Lemma 2.1(2). Hence
K1 ≤ Op(G) = N by Lemma 2.2(2). This contradiction shows that |N ∩K| = p. Suppose that
KG �= 1. Then N ≤ KG ≤ K, so |N | = |N ∩K| = p, which contradicts (3). We may, therefore,
assume that KG = 1. Then K/KG = K is nilpotent by Lemma 2.1(6). Hence, the Sylow
subgroups of K are S-quasinormal in G by Lemma 2.6. If K is not a p-group and p �= q ∈ π(K),
then Kq ≤ Op′(G) by Lemma 2.2(2), which contradicts (1). Thus Kq = 1 and so K is a group
of order p. Since P1K is S-quasinormal in G, we have that P1K = P � G, and consequently
N = P . Hence by Lemma 2.5 and Lemma 2.2(1), N ≤ KG = KOp(G)P = KOp(G)N = KN = K.
It follows that |N | = p. The final contradiction completes the proof.

Corollary 3.4 If every maximal subgroup of every Sylow subgroup of G is nearly SS-
embedded in G, then G is supersolvable.

Proof It follows directly from Lemma 2.8 and Theorem 3.3.

4 Some Applications

In the literature, one can find the following special cases of Theorems 3.1–3.3.

Corollary 4.1 (see [21]) Let G be a finite group. Then G is solvable if every maximal
subgroup of G is c-normal in G.
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Corollary 4.2 (see [11]) Let p be the smallest prime dividing the order of G and P be a
Sylow p-subgroup of G. If every maximal subgroup of P is c-normal in G, then G is p-nilpotent.

Corollary 4.3 (see [22]) Let G be a group and p be the prime divisor of |G| with (|G|, p−1) =
1. If G has a Sylow p-subgroup P such that every maximal subgroup of P not having a p-nilpotent
supplement in G is nearly s-normal in G, then G is p-nilpotent.

Corollary 4.4 (see [15]) Let P be a Sylow p-subgroup of G, where p is a prime divisor
of |G| with (|G|, p − 1) = 1. If every maximal subgroup of P is c-normal or s-quasinormally
embedded in G, then G is p-nilpotent.

Corollary 4.5 (see [7]) Let p be the smallest prime divisor of |G| and P be a Sylow p-
subgroup of G. If every maximal subgroup of P is S-embedded in G, then G is p-nilpotent.

Corollary 4.6 (see [1]) Let G be a group and p be the smallest prime dividing |G|. Then G
is p-nilpotent if every maximal subgroup of Sylow p-subgroups of G is S-quasinormally embedded
in G.

Corollary 4.7 (see [11]) Let p be an odd prime dividing the order of a group G and P be a
Sylow p-subgroup of G. If NG(P ) is p-nilpotent and every maximal subgroup of P is c-normal
in G, then G is p-nilpotent.

Corollary 4.8 (see [21]) If every maximal subgroup of every Sylow subgroup of G is c-
normal in G, then G is supersolvable.

Corollary 4.9 (see [19]) Let G be a finite group with the property that the maximal sub-
groups of Sylow subgroups are S-quasinormal in G. Then G is supersolvable.

Corollary 4.10 (see [2]) Let G be a finite group. If each maximal subgroup of Sylow
subgroups of G is S-quasinormally embedded in G, then G is supersolvable.
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