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1 Introduction

The Monge-Ampère equation is one of the most important fully nonlinear partial differential

equations. It has the general form

detD2u = f(x, u,Du).

Here detD2u denotes the determinant of the Hessian matrix D2u, u is a function in the

Euclicean space R
n, and f is a given function. It is elliptic when the Hessian matrix D2u

is positive definite, namely, u is strictly convex. There is an extensive literature on the research

of the Monge-Ampère equation (see [5, 13] and the references therein).

In 2011, Hong, Huang, Wang [7] studied a class of degenerate elliptic Monge-Ampère equa-

tions in a smooth, bounded and strictly convex domain Ω of dimension 2. When they proved

the existence of global smooth solutions to the homogeneous Dirichlet problem, they introduced

the key auxiliary function H, which is the product of curvature κ of the level line of u and the

cubic of |Du|, and got the uniformly lower bound of H on Ω. These imply an estimate for the
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lower bound of the curvature of the level line in some sense, which inspires us to study the

following simplest homogeneous Dirichlet problem for the elliptic Monge-Ampère equation:
{

detD2u = 1 in Ω,
u = 0 on ∂Ω. (1.1)

We find appropriate functions called P functions, prove that the P functions attain their maxima

on the boundary and get the upper bounded estimates for the Gauss curvature and the mean

curvature of the level sets.

In order to state our results, we need the standard curvature formula of the level sets of a

function (see [12]). Firstly, we recall the definition of elementary symmetric functions. For any

k = 1, 2, · · · , n, we set

σk(λ) =
∑

1≤i1<i2<···<ik≤n

λi1λi2 · · ·λik
for any λ = (λ1, λ2, · · · , λn) ∈ R

n.

Let W = (wij) be a symmetric n× n matrix, and we set

σk(W ) = σk(λ(W )),

where λ(W ) = (λ1(W ), · · · , λn(W )) are the eigenvalues of W . We also set σ0 = 1 and σk = 0

for any k > n.

Since the level sets of the strictly convex solution to the problems (1.1) are convex with

respect to the normal direction −Du, we have the following formula on the m-th curvature of

the level sets of the solution u, m = 1, 2, · · · , n− 1,

n∑
k,l=1

∂σm+1(D2u)
∂ukl

ukul|Du|−m−2.

When m = 1,

H =
n∑

k,l=1

∂σ2(D2u)
∂ukl

ukul|Du|−3

is the mean curvature of the level sets; When m = n− 1,

K =
n∑

k,l=1

∂σn(D2u)
∂ukl

ukul|Du|−n−1

is the Gauss curvature of the level sets.

Theorem 1.1 Let Ω ⊂ R
n be a bounded convex domain, n ≥ 2, and u be the strictly convex

solution to (1.1). Then the function

ϕ =
n∑

k,l=1

∂σn(D2u)
∂ukl

ukul − 2u

attains its maximum on the boundary ∂Ω.
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Theorem 1.2 Under the same assumptions as in the above theorem, we have that the

function

ψ =
n∑

k,l=1

∂σ2(D2u)
∂ukl

ukul − 2(n− 1)u

also attains its maximum on the boundary ∂Ω. Moreover, ψ attains its maximum in Ω if and

only if Ω is an ellipse for n = 2 or a ball for n ≥ 3.

Naturally, we have the following corollary.

Corollary 1.1 Let Ω be a smooth, bounded and strictly convex domain in R
n, n ≥ 2. If

u is the solution to the problem (1.1), then the functions K|Du|n+1 and H |Du|3 attain their

maxima only on the boundary ∂Ω. Thus, for x ∈ Ω \ Ω′, we have the following estimates:

K(x) <
max
∂Ω

K max
∂Ω′

κn+1
M

min
∂Ω

κn+1
m

and

H(x) <
max
∂Ω

Hmax
∂Ω′

κn+1
M

min
∂Ω

κn+1
m

,

where

Ω′ = {x ∈ Ω | u(x) < c, c ∈ (min
Ω
u, 0) is a constant},

and κm, κM are the minimal and maximal principal curvatures of the level sets at a point

respectively.

It should be mentioned that for the case n = 2, Ma [10] and Anedda, Porru [1] considered

the problem (1.1) and arrived at the conclusion of Theorem 1.1. When n = 2, there is only one

curvature κ for the level sets at a point, so κ = K = H and ϕ = ψ in Theorems 1.1–1.2. And

H = κ|Du|3 =
2∑

k,l=1

∂σ2(D2u)
∂ukl

ukul

is the auxiliary function introduced by Hong, Huang and Wang [7].

There are also many papers that study curvature estimates for the level sets of solutions to

partial differential equations (see [2–4, 8–9, 11] etc).

This paper is organized as follows. In Section 2, we prove Theorem 1.1 by establishing a

differential inequality for the given function. In Section 3, through the same process as the

proof of Theorem 1.1, we prove the first result in Theorem 1.2. Through the computation of

the third derivatives for the solution u, we prove the relation between ψ attaining its maximum

in the interior and the shape of the domain Ω. Finally, we prove the corollary and give some

remarks.
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2 Proof of Theorem 1.1

Let D2u = (uij), (uij) = (uij)−1. Because u is the strictly convex solution to the equation

σn(D2u) = detD2u = 1, (uij) is positive definite and ∂σn(D2u)
∂ukl

= ukl. Therefore,

ϕ =
n∑

k,l=1

∂σn(D2u)
∂ukl

ukul − 2u =
n∑

k,l=1

uklukul − 2u. (2.1)

We will prove the following differential inequality:
n∑

i,j=1

uijϕij ≥ 0 in Ω. (2.2)

From the differential inequality and by the maximum principle, ϕ attains its maximum on the

boundary ∂Ω.

In the following, we will prove (2.2). For any xo ∈ Ω, we choose coordinates such that

(uij(xo)) is diagonal. All the following calculations are done at xo.

Let uij
k = ∂uij

∂xk
and uij

kk = ∂2uij

∂x2
k

. From direct computations, we have

ϕi =
( n∑

k,l=1

uklukul

)
i
− 2ui

=
n∑

k,l=1

(ukl
iukul + 2uklukiul) − 2ui

=
n∑

k,l=1

ukl
iukul (2.3)

and

ϕii =
n∑

k,l=1

(ukl
iiukul + 2ukl

iukiul)

=
n∑

k,l=1

ukl
iiukul + 2

n∑
l=1

uil
iuiiul. (2.4)

Thus
n∑

i,j=1

uijϕij =
n∑

i=1

uiiϕii

=
n∑

i,k,l=1

uiiukl
iiukul + 2

n∑
i,l=1

uil
iul

=
n∑

i,k,l=1

uiiukl
iiukul, (2.5)

where we have used
n∑

i=1

uil
i = 0 in the last equality above. Since

ukl
ii =

(
−

n∑
p,q=1

ukquplupqi

)
i
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=
n∑

p,q,r,s=1

(uksurqupl + ukqupsurl)upqiursi −
n∑

p,q=1

ukquplupqii

= 2
n∑

j=1

ukkullujjujkiujli − ukkulluklii, (2.6)

substituting (2.6) into (2.5), we obtain

n∑
i,j=1

uijϕij =
n∑

i=1

uiiϕii

= 2
n∑

i,j,k,l=1

uiiujjukkulluijkuijlukul −
n∑

i,k,l=1

ukkulluiiuiiklukul. (2.7)

Because of the equation det(uij) = 1, differentiating it once, we can get

n∑
i,j=1

uijuijk = 0,

i.e.,

n∑
i=1

uiiuiik = 0. (2.8)

Differentiating the equation once again, we have

n∑
i,j=1

uijuijkl +
n∑

i,j,p,q=1

(−uiqupjuijkupql) = 0,

i.e.,

n∑
i=1

uiiuiikl =
n∑

i,j=1

uiiujjuijkuijl. (2.9)

Substituting (2.9) into (2.7), we obtain

n∑
i,j=1

uijϕij =
n∑

i=1

uiiϕii

= 2
n∑

i,j,k,l=1

uiiujjukkulluijkuijlukul −
n∑

i,j,k,l=1

ukkulluiiujjuijkuijlukul

=
n∑

i,j,k,l=1

uiiujjukkulluijkuijlukul

=
n∑

i,j=1

uiiujj
( n∑

k=1

uijku
kkuk

)2

≥ 0. (2.10)

We have completed the proof of Theorem 1.1.
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Remark 2.1 When n = 2, Ma [10] and Anedda, Porru [1] gave the result of Theorem 1.1

and further pointed out that ϕ assumes its minimum on ∂Ω or at the unique critical point x0 of

u, i.e., the point where Du = 0. We can also get the conclusion from the above proof directly.

In fact, from (2.3), we get

−ϕi =
2∑

k,l=1

ukkullukliukul,

that is {
(u11u1)2u111 + 2u1u2u112 + (u22u2)2u122 = −ϕ1,
(u11u1)2u112 + 2u1u2u122 + (u22u2)2u222 = −ϕ2.

Here we have used the equation det(uij) = 1. Combining with (2.8), that is
{
u11u111 + u22u122 = 0,
u11u112 + u22u222 = 0,

under the case of modulo Dϕ, we obtain the homogeneous linear algebraic system about the

third derivatives u111, u112, u122, u222 of u,
⎧⎪⎪⎨
⎪⎪⎩

u11u111 + u22u122 = 0,
u11u112 + u22u222 = 0,
(u11u1)2u111 + 2u1u2u112 + (u22u2)2u122 = 0,
(u11u1)2u112 + 2u1u2u122 + (u22u2)2u222 = 0.

(2.11)

From direct computations, we get that the determinant of the coefficient matrix is (u11u2
1 +

u22u2
2)

2, which is greater than 0 in Ω \ {x0}. Therefore

u111 = u112 = u122 = u222 = 0 mod (Dϕ).

Consequently, from (2.10), we have that

2∑
i,j=1

uijϕij = 0 mod (Dϕ) in Ω \ {x0},

and by the maximum principle, ϕ attains its minimum on ∂Ω or at the unique critical points

x0.

3 Proof of Theorem 1.2

Let ∂σ2(D2u)
∂ukl

= bkl. Then

ψ =
n∑

k,l=1

bklukul − 2(n− 1)u. (3.1)

We will prove the following differential inequality:

n∑
i,j=1

uijψij ≥ 0 in Ω. (3.2)
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From the differential inequality, and by the maximum principle, ψ attains its maximum on the

boundary ∂Ω.

In the following, we will prove the differential inequality (3.2). For any xo ∈ Ω, we choose

coordinates such that D2u(xo) is diagonal. All the following calculations are done at xo.

Let bijk = ∂bij

∂xk
and bijkk = ∂2bij

∂x2
k

. From direct computations, we have

ψi =
( n∑

k,l=1

bklukul

)
i
− 2(n− 1)ui

=
n∑

k,l=1

(bkl
iukul + 2bklukiul) − 2(n− 1)ui

=
n∑

k,l=1

bkl
iukul + 2biiuiiui − 2(n− 1)ui (3.3)

and

ψii =
n∑

k,l=1

(bkl
iiukul + 4bkl

iukiul + 2bklukiiul + 2bklukiuli)

− 2(n− 1)uii

=
n∑

k,l=1

bkl
iiukul + 4

n∑
l=1

biliuiiul + 2
n∑

k=1

bkkukiiuk

+ 2biiu2
ii − 2(n− 1)uii. (3.4)

Therefore,

n∑
i,j=1

uijψij =
n∑

i=1

uiiψii

=
n∑

i,k,l=1

uiibkl
iiukul + 4

n∑
i,l=1

biliul + 2
n∑

i,k=1

bkkuiiuiikuk

+ 2
n∑

i=1

biiuii − 2n(n− 1)

=
n∑

i,k,l=1

uiibkl
iiukul + 4σ2(D2u) − 2n(n− 1), (3.5)

where we have used (2.8) and

n∑
i=1

bili = 0,
n∑

i=1

biiuii = 2σ2(D2u)

in the last equality above. Since

bkl =

⎧⎪⎪⎨
⎪⎪⎩

n∑
j=1
j �=k

ujj , k = l,

−ukl, k �= l,
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we have

bkl
ii =

⎧⎪⎪⎨
⎪⎪⎩

n∑
j=1
j �=k

ujjii, k = l,

−uklii, k �= l.

(3.6)

Substituting (3.6) into (3.5), we can get

n∑
i,j=1

uijψij =
n∑

i=1

uiiψii

=
n∑

i,j,k=1
j �=k

uiiuiijju
2
k −

n∑
i,k,l=1

k �=l

uiiuiiklukul

+ (4σ2(D2u) − 2n(n− 1))

=
n∑

i,j,k,l=1
k �=l

(uiiujju2
ijlu

2
k − uiiujjuijkuijlukul)

+ (4σ2(D2u) − 2n(n− 1)), (3.7)

where we have used (2.9) in the last equality above. We also have

σ2(D2u) ≥ C2
n(σn(D2u))

2
n = C2

n =
n(n− 1)

2
(3.8)

by Newton’s inequality (see [6, section 2.22]), and

n∑
k,l=1

(u2
ijlu

2
k − uijkuijlukul) ≥ 0 (3.9)

by Cauchy-Schwarz’s inequality. Combining (3.7)–(3.9), We can obtain that

n∑
i,j=1

uijψij =
n∑

i=1

uiiψii

=
n∑

i,j,k,l=1
k �=l

(uiiujju2
ijlu

2
k − uiiujjuijkuijlukul)

+ (4σ2(D2u) − 2n(n− 1))

=
n∑

i,j=1

(
uiiujj

n∑
k,l=1

(u2
ijlu

2
k − uijkuijlukul)

)

+ (4σ2(D2u) − 2n(n− 1))

≥ 0. (3.10)

Furthermore, ψ = ϕ when n = 2. It is easily obtained that if ψ attains its maximum in Ω,

then Ω is an ellipse by Remark 2.1 and vice versa. We also can get that Ω is an ellipse from
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(3.10). In fact, if ψ attains its maximum in Ω, then ψ is a constant in Ω. So (3.10) is the

equality, that is,

0 =
2∑

i,j=1

(uiiujj
n∑

k,l=1

(u2
ijlu

2
k − uijkuijlukul))

= (u11)2(u111u2 − u112u1)2 + (u22)2(u122u2 − u222u1)2 + 2(u112u2 − u122u1)2.

Because u11 > 0, and u22 > 0,

⎧⎨
⎩
u111u2 − u112u1 = 0,
u122u2 − u222u1 = 0,
u112u2 − u122u1 = 0.

(3.11)

Since u is strictly convex, it has the unique critical point x0, and (u1, u2) �= (0, 0) in Ω \ {x0}.
From the theory of linear algebraic systems, we have that the rank of the coefficient matrix of

the system (3.11) about u1, u2 is less than 2, so

⎧⎨
⎩
u2

112 − u111u122 = 0,
u2

122 − u112u222 = 0,
u111u222 − u112u122 = 0.

(3.12)

By (2.8), we get

{
u111u

11 + u122u
22 = 0,

u112u
11 + u222u

22 = 0. (3.13)

Combining (3.12) with (3.13), we obtain

u111 = u112 = u122 = u222 = 0 in Ω \ {x0},

so all the third derivatives of u vanish in Ω by the continuousness. Consequently, Ω = {u < 0}
must be an ellipse.

When n ≥ 3, if ψ attains its maximum in Ω, then ψ is a constant in Ω. So (3.10) is the

equality and we must have 4σ2(D2u) − 2n(n− 1) = 0, that is, the equality holds in (3.8). But

the equality holds in the Newton’s inequality, if and only if all the eigenvalues of D2u are equal.

Therefore, the eigenvalues of D2u are equal to 1 by the equation detD2u = 1 and D2u is the

unit matrix. Consequently,

u =
1
2
(|x− x0|2 − r2),

where x0 ∈ R
n is a fixed point, r > 0 is a constant, and Ω = {u < 0} = Br(x0) is a ball. On the

other hand, if Ω = Br(x0) is a ball, then the solution to the problem (1.1) is u = 1
2 (|x−x0|2−r2)

and ψ ≡ (n− 1)r2 is a constant.

We have completed the proof of Theorem 1.2.
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4 Proof of Corollary 1.1

We firstly give the boundary estimate of the gradient Du for the solution of (1.1).

Lemma 4.1 Let Ω be a smooth, bounded and strictly convex domain in R
n, x ∈ ∂Ω and

κi(x), i = 1, 2, · · · , n− 1 be the principal curvatures of ∂Ω at x. Let

κm(x) = min{κi(x) | i = 1, 2, · · · , n− 1}, κM (x) = max{κi(x) | i = 1, 2, · · · , n− 1}.

If u is the smooth and strictly convex solution of (1.1), then on the boundary ∂Ω, |Du|∂Ω

satisfies the following estimate:

1
max
∂Ω

κM
≤ |Du|∂Ω ≤ 1

min
∂Ω

κm
. (4.1)

The same estimate is true for Ω′ =
{
x ∈ Ω | u(x) < c, c ∈ (

min
Ω
u, 0

)
is a constant

}
, that is, on

the boundary ∂Ω′, |Du|∂Ω′ satisfies

1
max
∂Ω′

κM
≤ |Du|∂Ω′ ≤ 1

min
∂Ω′

κm
. (4.2)

Proof For any boundary point x, let Ω ⊆ Ω0 and Ω1 ⊆ Ω be two balls of radius R = 1
min
∂Ω

κm

and r = 1
max
∂Ω

κM
respectively and x ∈ Ω ∩ Ωj , j = 0, 1. Let uΩj , j = 0, 1 be the solution to the

problem {
detD2u = 1 in Ωj ,
u = 0 on ∂Ωj .

Since u vanishes on ∂Ω, it follows immediately that

|DuΩ1(x)| ≤ |Du(x)| ≤ |DuΩ0(x)|.

An explicit calculation yields

|DuΩ1(x)| = r, |DuΩ0(x)| = R,

and thus

r ≤ |Du(x)| ≤ R.

Therefore,
1

max
∂Ω

κM
≤ |Du|∂Ω ≤ 1

min
∂Ω

κm
,

and (4.1) holds. For the same reasons, (4.2) also holds.

Next, we start the proof of Corollary 1.1.

Proof of Corollary 1.1 By Theorem 1.1, we have that K|Du|n+1−2u takes its maximum

on the boundary ∂Ω. For any x ∈ Ω, we have

K(x)|Du(x)|n+1 − 2u(x) ≤ max
∂Ω

K|Du|n+1,
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and thus, by u(x) < 0,

K(x)|Du(x)|n+1 ≤ max
∂Ω

K|Du|n+1 + 2u(x) < max
∂Ω

K|Du|n+1.

Therefore K|Du|n+1 attains its maximum only on the boundary ∂Ω. For the same reasons, by

Theorem 1.2, we get that H |Du|3 also attains its maximum only on the boundary ∂Ω. Since

u is strictly convex, |Du| increases along the increasing direction of the level sets. By Lemma

4.1, we have, for x ∈ Ω \ Ω′,

K(x) <
max
∂Ω

(K|Du|n+1)

|Du(x)|n+1
≤

max
∂Ω

(K|Du|n+1)

min
∂Ω′

|Du|n+1
≤

max
∂Ω

Kmax
∂Ω′

κn+1
M

min
∂Ω

κn+1
m

.

For the same reasons,

H(x) <
max
∂Ω

Hmax
∂Ω′

κn+1
M

min
∂Ω

κn+1
m

.

Remark 4.1 When n = 2, by Remark 2.1, ϕ attains its minimum on ∂Ω or at the unique

critical point x0 of u. Therefore, we can furthermore give the positive lower bounded estimate

for the curvature of the level lines. In fact, for any x ∈ Ω \ Ω′, we have

κ(x)|Du(x)|3 ≥ min
{

min
∂Ω

κmin
∂Ω

|Du|3,−2u(x0)
}

+ 2u(x)

≥ min
{

min
∂Ω

κmin
∂Ω

|Du|3 + 2c, 2c− 2u(x0)
}
.

Since

min
∂Ω

|Du|3 ≥ 1
max
∂Ω

κ3
,

|Du(x)|3 ≤ max
∂Ω

|Du|3 ≤ 1
min
∂Ω

κ3
,

we obtain

κ(x) ≥
(

min
∂Ω

κ3
)(

min
{ min

∂Ω
κ

max
∂Ω

κ3
+ 2c, 2c− 2u(x0)

})
.

Remark 4.2 It is more interesting to obtain the lower bounded estimate for the curvature

of the level sets for Monge-Ampère equations in higher dimensions. If it is true, then it may be

helpful to improve the regularity of solutions to degenerate elliptic Monge-Ampère equations in

higher dimensions as in [7].
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