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Schur Convexity for Two Classes of Symmetric Functions

and Their Applications∗

Mingbao SUN1 Nanbo CHEN1 Songhua LI1 Yinghui ZHANG1

Abstract For x = (x1, x2, · · · , xn) ∈ R
n
+ ∪ R

n
−, the symmetric functions Fn(x, r) and

Gn(x, r) are defined by

Fn(x, r) = Fn(x1, x2, · · · , xn; r) =
∑

1≤i1<i2<···<ir≤n

r∏
j=1

1 + xij

xij

and

Gn(x, r) = Gn(x1, x2, · · · , xn; r) =
∑

1≤i1<i2<···<ir≤n

r∏
j=1

1 − xij

xij

,

respectively, where r = 1, 2, · · · , n, and i1, i2, · · · , in are positive integers. In this paper,
the Schur convexity of Fn(x, r) and Gn(x, r) are discussed. As applications, by a bijective
transformation of independent variable for a Schur convex function, the authors obtain
Schur convexity for some other symmetric functions, which subsumes the main results in
recent literature; and by use of the theory of majorization establish some inequalities. In
particular, the authors derive from the results of this paper the Weierstrass inequalities and
the Ky Fan’s inequality, and give a generalization of Safta’s conjecture in the n-dimensional
space and others.

Keywords Symmetric function, Schur convexity, Inequality
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1 Introduction

We use the following notations throughout this paper: Let R
n denote the n-dimensional

Euclidean space over the field of real numbers (n ≥ 2), R
n
+ = {x = (x1, x2, · · · , xn) ∈ R

n : xi >

0, i = 1, 2, · · · , n}, R
n− = {x = (x1, x2, · · · , xn) ∈ R

n : xi < 0, i = 1, 2, · · · , n}, R = (−∞, +∞)
and N = {1, 2, · · · , n, · · · }. For x = (x1, x2, · · · , xn) ∈ R

n, y = (y1, y2, · · · , yn) ∈ R
n and

α ∈ R, we denote by

x + y = (x1 + y1, x2 + y2, · · · , xn + yn),

xy = (x1y1, x2y2, · · · , xnyn),
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αx = (αx1, αx2, · · · , αxn),
1
x

=
( 1

x1
,

1
x2

, · · · ,
1
xn

)
.

Schur in [1] gave the definition of the Schur convex function as in Definition 1.1, which can
be found in [2].

Definition 1.1 Let Ω ⊆ R
n be a set, a real-valued function f on Ω is said to be Schur

convex if
f(x1, x2, · · · , xn) ≤ f(y1, y2, · · · , yn)

for each pair of n-tuples x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) in Ω, such that x ≺ y,
that is

k∑
i=1

x[i] ≤
k∑

i=1

y[i], k = 1, 2, · · · , n − 1

and
n∑

i=1

x[i] =
n∑

i=1

y[i],

where x[i] denotes the i-th largest component of x. f is called Schur concave if −f is Schur
convex.

The above Schur convexity has many important applications in analytic inequalities (see
[3–13]), linear regression (see [14]), combinatorial optimization (see [15]), graphs and matrices
(see [16]), gamma and digamma functions (see [17]), reliability and availability (see [18]) and
other related fields. Hardy, Littlewood, and Polya were also interested in some inequalities that
are related to the Schur convex functions (see [19]).

Recently, Schur convexity of the some symmetric functions and their applications have been
investigated by many authors, see for instance (see [3, 20–24]) and the references therein.

In [3], Guan defined the following symmetric functions:

Kn(x, r) = Kn(x1, x2, · · · , xn; r) =
∑

1≤i1<i2<···<ir≤n

r∏
j=1

xij

1 − xij

(1.1)

for x = (x1, · · · , xn) ∈ [0, 1)n = {x = (x1, x2, · · · , xn) ∈ R
n : 0 ≤ xi < 1, i = 1, 2, · · · , n},

r ∈ N and r ≤ n, where i1, i2, · · · , in are positive integers. The Schur convexity and Schur
geometric convexity for Kn(x, r) were discussed and some inequalities were established by use
of the theory of majorization in [3].

In [20], Chu et al. had a further discussion on the Schur comvexity of Kn(x, r), in particular,
solved an open problem proposed by Guan in [3].

Xia and Chu in [21–22] defined the symmetric functions Mn(x, r) and Nn(x, r) as follows:

Mn(x, r) = Mn(x1, x2, · · · , xn; r) =
∑

1≤i1<i2<···<ir≤n

r∏
j=1

1 + xij

1 − xij

, (1.2)

Nn(x, r) = Nn(x1, x2, · · · , xn; r) =
∑

1≤i1<i2<···<ir≤n

r∏
j=1

1 − xij

1 + xij

(1.3)
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for x = (x1, · · · , xn) ∈ (0, 1)n, r ∈ N and r ≤ n, where i1, i2, · · · , in are positive integers. Xia
et al. [23] defined the symmetric function

Tn(x, r) = Tn(x1, x2, · · · , xn; r) =
∑

1≤i1<i2<···<ir≤n

r∏
j=1

xij

1 + xij

(1.4)

for x = (x1, · · · , xn) ∈ R
n
+, r ∈ N and r ≤ n, where i1, i2, · · · , in are positive integers. In

[21–23], they discussed the Schur convexity, Schur multiplicative convexity and Schur harmonic
convexity for Mn(x, r), Nn(x, r) and Tn(x, r), respectively, and established some inequalities.

In this paper, motivated by ideas in [3, 20–23], we define the following symmetric functions:

Fn(x, r) = Fn(x1, x2, · · · , xn; r) =
∑

1≤i1<i2<···<ir≤n

r∏
j=1

1 + xij

xij

, (1.5)

Gn(x, r) = Gn(x1, x2, · · · , xn; r) =
∑

1≤i1<i2<···<ir≤n

r∏
j=1

1 − xij

xij

(1.6)

for x = (x1, · · · , xn) ∈ R
n
+ ∪ R

n
−, r ∈ N and r ≤ n, where i1, i2, · · · , in are positive integers.

The main purpose of this paper is to discuss the Schur convexity for the symmetric function
Fn(x, r), As applications, by a bijective transformation of independent variable for a Schur
convex function, we obtain the Schur convexity of Gn(x, r) and the Schur convexity for the
symmetric functions Mn(x, r), Nn(x, r) and Tn(x, r), which subsumes the main results in [3,
20–23]; establish some inequalities by use of the theory of majorization. In particular, we derive
from our results the Weierstrass inequalities (see [25, P. 260]) and the Ky Fan’s inequality (see
[26]), and give a generalization of Safta’s conjecture (see [27–28]) in the n-dimensional space
and others.

This paper, except for the introduction, is divided into three sections. In Section 2, we
introduce and establish some lemmas. By using the results of Section 2, we will give the main
results in Section 3. Finally, some applications are given by use of the theory of majorization.

2 Some Lemmas

In this section, we introduce and establish some lemmas, which will be used in the proof of
our main results.

Lemma 2.1 Let Ω ⊆ R
n be a symmetric convex set with nonempty interior intΩ, and

f : Ω → R be a Schur convex (or concave, respectively) function on Ω. If the transformation
T : Ω′ → Ω defined by x = ay+b (a 
= 0) for y ∈ Ω′, a, b ∈ R is bijective, put ϕ(y) = f(ay+b) =
f(x), then ϕ : Ω′ → R is a Schur convex (or concave, respectively) function on Ω′. Here Ω is a
symmetric set which means that x ∈ Ω implies Px ∈ Ω for any n × n permutation matrix P .

Proof We give only the proof in the case of ϕ being Schur convex on Ω′, since the proof in
the others case is similar.

It is easy to derive that Ω′ is a symmetric convex set with nonempty interior. For any
y′, y′′ ∈ Ω′, y′ ≺ y′′, since T is bijective, there exist only point x′, x′′ ∈ Ω such that x′ =
ay′ + b, x′′ = ay′′ + b and x′ = ay′ + b ≺ ay′′ + b = x′′. Noting that f is Schur convex on Ω.
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We have f(x′) ≤ f(x′′). Further we obtain

ϕ(y′) = f(x′) ≤ f(x′′) = ϕ(y′′).

Therefore, ϕ is Schur convex on Ω′.

Lemma 2.2 (see [29]) Let Ω ⊆ R
n be a symmetric convex set with nonempty interior intΩ,

and f : Ω → R be a continuous symmetry function on Ω. If f is differentiable on intΩ, then f

is Schur convex on Ω if and only if

(xi − xj)
(∂f(x)

∂xi
− ∂f(x)

∂xj

)
≥ 0 (2.1)

for i, j = 1, 2, · · · , n and all x = (x1, · · · , xn) ∈ intΩ. And f is Schur concave on Ω if and
only if the inequality (2.1) is reversed. Here f is a symmetric function in Ω which means that
f(Px) = f(x) for any x ∈ Ω and any n × n permutation matrix P .

Remark 2.1 Since f is symmetric, the Schur’s condition in Lemma 2.2, i.e. (2.1) can be
reduced as

(x1 − x2)
(∂f(x)

∂x1
− ∂f(x)

∂x2

)
≥ 0.

For t = (t1, t2, · · · , tn) ∈ R
n
+ ∪ R

n
−(n ≥ 2) and r ∈ {1, 2, · · · , n}, the r-th order elementary

symmetric function En(t, r) (see [30]) is defined as

En(t, r) = En(t1, t2, · · · , tn; r) =

⎧⎨
⎩

∑
1≤i1<i2<···<ir≤n

r∏
j=1

tij , r = 1, 2, · · · , n,

1, r = 0.

where i1, i2, · · · , in are positive integers.

Lemma 2.3 Let t = (t1, t2, · · · , tn) ∈ R
n
+ ∪ R

n−. If 1 ≤ r ≤ n − 1, then

E2
n(t, r) ≥ En(t, r − 1)En(t, r + 1).

Proof For t = (t1, t2, · · · , tn) ∈ R
n
+, the proof of Lemma 2.3 can be found in [20, 31].

Applying the known results for t = (t1, t2, · · · , tn) ∈ R
n
+, we derive that Lemma 2.3 is valid for

t = (t1, t2, · · · , tn) ∈ R
n
−.

Lemma 2.4 Let n ≥ 3, 1 ≤ r ≤ n − 1. Then the function

ϕn(x1, x2, · · · , xn; r) =
Fn(x1, x2, · · · , xn; r + 1)

Fn(x1, x2, · · · , xn; r)

is decreasing with respect to xi (i = 1, 2, · · · , n) on (−1, 0).

Proof Since ϕn(x1, x2, · · · , xn; r) is symmetric with respect to (x1, x2, · · · , xn) ∈ (−1, 0)n,
we give only the proof in the case of ϕn(x1, x2, · · · , xn; r) being decreasing with respect to x1

on (−1, 0). The proof is divided into three cases.
Case 1 If r = 1, then

ϕn(x1, x2, · · · , xn; 1) =

1+x1
x1

n∑
i=2

1+xi

xi
+

∑
2≤i<j≤n

(1+xi)(1+xj)
xixj

n∑
i=1

1+xi

xi
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and

∂ϕn(x1, x2, · · · , xn; 1)
∂x1

=

−
( n∑

i=2

1+xi

xi

)2

+
∑

2≤i<j≤n

(1+xi)(1+xj)
xixj

[
x1

n∑
i=1

1+xi

xi

]2 ≤ 0.

Case 2 If r = n − 1, then

ϕn(x1, x2, · · · , xn; n − 1) =

n∏
i=1

1+xi

xi

∑
1≤i1<i2<···<in−1≤n

n−1∏
j=1

1+xij

xij

=
1

n∑
i=1

xi

1+xi

and
∂ϕn(x1, x2, · · · , xn; n − 1)

∂x1
= − 1[

(1 + x1)
n∑

i=1

xi

1+xi

]2 ≤ 0.

Case 3 If n ≥ 4 and 2 ≤ r ≤ n − 2, then

ϕn(x1, x2, · · · , xn; r) =
1+x1

x1
Fn−1(x2, x3, · · · , xn; r) + Fn−1(x2, x3, · · · , xn; r + 1)

1+x1
x1

Fn−1(x2, x3, · · · , xn; r − 1) + Fn−1(x2, x3, · · · , xn; r)

and

∂ϕn(x1, x2, · · · , xn; r)
∂x1

=
−F 2

n−1(x2, x3, · · · , xn; r) + Fn−1(x2, x3, · · · , xn; r − 1)Fn−1(x2, x3, · · · , xn; r + 1)
Δ2

=
−E2

n−1(t1, t2, · · · , tn−1; r) + En−1(t1, t2, · · · , tn−1; r − 1)En−1(t1, t2, · · · , tn−1; r + 1)
Δ2

,

(2.2)

where Δ = (1 + x1)Fn−1(x2, x3, · · · , xn; r − 1) + x1Fn−1(x2, x3, · · · , xn; r), ti = 1+xi+1
xi+1

, i =
1, 2, · · · , n − 1. From Lemma 2.3 and (2.2), we have

∂ϕn(x1, x2, · · · , xn; r)
∂x1

≤ 0.

This completes the proof of Lemma 2.4.

Lemma 2.5 (see [10]) Let x = (x1, x2, · · · , xn) ∈ R
n
+, and

n∑
i=1

xi = sn. If c ≥ sn, then

c − x
nc
sn

− 1
=

( c − x1
nc
sn

− 1
,
c − x2
nc
sn

− 1
, · · · ,

c − xn
nc
sn

− 1

)
≺ (x1, x2, · · · , xn) = x.

From Lemma 2.5, we have the following lemma.

Lemma 2.6 Let x = (x1, x2, · · · , xn) ∈ R
n
−, and

n∑
i=1

xi = sn. If c ≤ sn, then

c − x
nc
sn

− 1
=

( c − x1
nc
sn

− 1
,
c − x2
nc
sn

− 1
, · · · ,

c − xn
nc
sn

− 1

)
≺ (x1, x2, · · · , xn) = x.
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Lemma 2.7 (see [10]) Let x = (x1, x2, · · · , xn) ∈ R
n
+, and

n∑
i=1

xi = sn. If c ≥ 0, then

c + x
nc
sn

+ 1
=

( c + x1
nc
sn

+ 1
,
c + x2
nc
sn

+ 1
, · · · ,

c + xn
nc
sn

+ 1

)
≺ (x1, x2, · · · , xn) = x.

From Lemma 2.7, we derive the following lemma.

Lemma 2.8 Let x = (x1, x2, · · · , xn) ∈ R
n
−, and

n∑
i=1

xi = sn. If c ≤ 0, then

c + x
nc
sn

+ 1
=

( c + x1
nc
sn

+ 1
,
c + x2
nc
sn

+ 1
, · · · ,

c + xn
nc
sn

+ 1

)
≺ (x1, x2, · · · , xn) = x.

Lemma 2.9 (see [32]) Let x = (x1, x2, · · · , xn) ∈ R
n, and

n∑
i=1

xi = sn. If 0 ≤ λ ≤ 1, then

sn − λx

n − λ
=

(sn − λx1

n − λ
,
sn − λx2

n − λ
, · · · ,

sn − λxn

n − λ

)
≺ (x1, x2, · · · , xn) = x.

3 Main Results

Theorem 3.1 For n ≥ 2, the function Fn(x, 1) is Schur concave in R
n−, and Schur convex

in R
n
+.

Proof From (1.5), we have

Fn(x, 1) =
n∑

i=1

1 + xi

xi
,

∂Fn(x, 1)
∂xi

= − 1
x2

i

, i = 1, 2.

When x = (x1, x2, · · · , xn) ∈ R
n
−, we derive

(x1 − x2)
(∂Fn(x, 1)

∂x1
− ∂Fn(x, 1)

∂x2

)
=

(x1 − x2)2(x1 + x2)
x2

1x
2
2

≤ 0.

Applying Lemma 2.2 and Remark 2.1, we obtain that Fn(x, 1) is Schur concave in R
n
−.

Similarly, it is easy to see that Fn(x, 1) is Schur convex in R
n
+.

Theorem 3.2 For n ≥ 2 and 2 ≤ r ≤ n,
(1) if r is an even integer (or odd integer, respectively), then Fn(x, r) is Schur convex (or

concave, respectively) in
[ − 2n−r−1

2(n−1) , 0
)n;

(2) if r is an even integer (or odd integer, respectively), then Fn(x, r) is Schur concave (or
convex, respectively) in

[ − 1,− 2n−r−1
2(n−1)

]n;
(3) Fn(x, r) is Schur concave in (−∞,−1]n, and Schur convex in R

n
+.

Proof Here we give only the proof in the case of r being an even integer, since the proof
in the case of r being an odd integer is similar.

(1) According to Lemma 2.2 and Remark 2.1, we only need to prove that

(x1 − x2)
(∂Fn(x, r)

∂x1
− ∂Fn(x, r)

∂x2

)
≥ 0 (3.1)
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for x = (x1, x2, · · · , xn) ∈ ( − 2n−r−1
2(n−1) , 0

)n.
To prove (3.1), we divide the proof into five cases.
Case 1 If n ≥ 2, r = n, then from (1.5), we have

Fn(x, n) =
n∏

i=1

1 + xi

xi
. (3.2)

By (3.2), we obtain

(x1 − x2)
(∂Fn(x, n)

∂x1
− ∂Fn(x, n)

∂x2

)
= Δ1, (3.3)

where Δ1 = (x1−x2)
2(x1+x2+1)

x1x2(1+x1)(1+x2)
Fn(x, n). When r is even integer and x ∈ ( − 1

2 , 0
)n, we derive

Δ1 ≥ 0. Therefore, from (3.3) we get that (3.1) holds.
Case 2 If n = 3, r = 2, then (1.5) yields

F3(x, 2) =
(1 + x1)(1 + x2)

x1x2
+

(1 + x1)(1 + x3)
x1x3

+
(1 + x2)(1 + x3)

x2x3
. (3.4)

From (3.4), we have

(x1 − x2)
(∂F3(x, 2)

∂x1
− ∂F3(x, 2)

∂x2

)
=

(x1 − x2)2

x2
1x

2
2

Δ2, (3.5)

where Δ2 = (x1 + x2 + 1)+ 1+x3
x3

(x1 + x2). When x ∈ (− 3
4 , 0

)n, we obtain 1+x3
x3

< − 1
3 . Hence,

Δ2 = (x1 + x2 + 1) +
1 + x3

x3
(x1 + x2)

> (x1 + x2 + 1) − 1
3
(x1 + x2)

= 1 +
2
3
(x1 + x2) > 0.

Therefore, from (3.5), we get that (3.1) holds.
Case 3 If n ≥ 4, r = 2, then from (1.5) we have

Fn(x, 2) =
(1 + x1)(1 + x2)

x1x2
+

(1 + x1

x1
+

1 + x2

x2

) n∑
i=3

1 + xi

xi
+

∑
3≤i<j≤n

(1 + xi)(1 + xj)
xixj

. (3.6)

Hence, from (3.6), we get

(x1 − x2)
(∂Fn(x, 2)

∂x1
− ∂Fn(x, 2)

∂x2

)
=

(x1 − x2)2

x2
1x

2
2

Δ3, (3.7)

where Δ3 = (x1 + x2 + 1) + (x1 + x2)
n∑

i=3

1+xi

xi
. When x ∈ ( − 2n−3

2(n−1) , 0
)n, we have

n∑
i=3

1+xi

xi
<

n−2
−2n+3 . Thus

Δ3 > (x1 + x2 + 1) − (x1 + x2)
n − 2
2n − 3

=
2n − 3 + (n − 1)(x1 + x2)

2n − 3
≥ 0.

Therefore, from (3.7) we derive that (3.1) is valid.
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Case 4 If n ≥ 4, r = n − 1, from (1.5) we have

Fn(x, n − 1) =
[ (1 + x1)(1 + x2)

x1x2

n∑
i=3

xi

1 + xi
+

1 + x1

x1
+

1 + x2

x2

] n∏
i=3

1 + xi

xi
, (3.8)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂Fn(x, n − 1)
∂x1

=
(
− 1 + x2

x2
1x2

n∑
i=3

xi

1 + xi
− 1

x2
1

) n∏
i=3

1 + xi

xi
,

∂Fn(x, n − 1)
∂x2

=
(
− 1 + x1

x1x2
2

n∑
i=3

xi

1 + xi
− 1

x2
2

) n∏
i=3

1 + xi

xi
.

Hence, we obtain

(x1 − x2)
(∂Fn(x, n − 1)

∂x1
− ∂Fn(x, n − 1)

∂x2

)
=

(x1 − x2)2

x2
1x

2
2

Δ4, (3.9)

where Δ4 =
( n∑

i=3

xi

1+xi

)( n∏
i=3

1+xi

xi

)[
(x1 + x2 + 1) + x1+x2

n∑
i=3

xi
1+xi

]
. When r is an even integer and

x ∈ ( − n
2(n−1) , 0

)n, we have −n <
n∑

i=3

xi

1+xi
< 0,

n∏
i=3

1+xi

xi
< 0,

Δ4 >
( n∑

i=3

xi

1 + xi

)( n∏
i=3

1 + xi

xi

)[
(x1 + x2 + 1) − 1

n
(x1 + x2)

]

=
1
n

( n∑
i=3

xi

1 + xi

)( n∏
i=3

1 + xi

xi

)
[(n − 1)(x1 + x2) + n] > 0.

Thus, from (3.9), we have that (3.1) holds.
Case 5 If n ≥ 5, 3 ≤ r ≤ n − 2, from (1.5), we have

Fn(x, r) =
(1 + x1)(1 + x2)

x1x2
Fn−2(x3, x4, · · · , xn; r − 2)

+
(1 + x1

x1
+

1 + x2

x2

)
Fn−2(x3, x4, · · · , xn; r − 1) + Fn−2(x3, x4, · · · , xn; r),

⎧⎪⎪⎨
⎪⎪⎩

∂Fn(x, r)
∂x1

=
(1 + x2)Fn−2(x3, x4, · · · , xn; r − 2)

x2
1x2

− Fn−2(x3, x4, · · · , xn; r − 1)
x2

1

,

∂Fn(x, r)
∂x2

=
(1 + x1)Fn−2(x3, x4, · · · , xn; r − 2)

x1x2
2

− Fn−2(x3, x4, · · · , xn; r − 1)
x2

2

.

Hence, we obtain

(x1 − x2)
(∂Fn(x, r)

∂x1
− ∂Fn(x, r)

∂x2

)
=

(x1 − x2)2

x2
1x

2
2

Δ5, (3.10)

where Δ5 = Fn−2(x3, x4, · · · , xn; r− 2)
[
(x1 + x2 + 1) + Fn−2(x3,x4,··· ,xn;r−1)

Fn−2(x3,x4,··· ,xn;r−2) (x1 + x2)
]
. When r

is an even integer and x ∈ (− 2n−r−1
2(n−1) , 0

)n, we have Fn−2(x3, x4, · · · , xn; r− 2) > 0. From (1.5)
and Lemma 2.4, we derive

Δ5 ≥ Fn−2(x3, x4, · · · , xn; r − 2)
[
(x1 + x2 + 1) +

(n−2)!
(r−1)!(n−r−1)!

(n−2)!
(r−2)!(n−r)!

1 − 2n−r−1
2(n−1)

− 2n−r−1
2(n−1)

(x1 + x2)
]
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= Fn−2(x3, x4, · · · , xn; r − 2)
[ n − 1
2n − r − 1

(x1 + x2) + 1
]

> 0.

Therefore, from (3.10), we derive that (3.1) is valid.
(2) By the notations in the proof of (1), from Lemma 2.2 and Remark 2.1, we only need to

prove that

(x1 − x2)
(∂Fn(x, r)

∂x1
− ∂Fn(x, r)

∂x2

)
≤ 0 (3.11)

for x = (x1, x2, · · · , xn) ∈ ( − 1,− 2n−r−1
2(n−1)

)n.
To prove (3.11), using the discussion similar to that of (1), we also divide the proof into five

cases.
Case 1 If n ≥ 2, r = n, then from (3.3) we derive Δ1 ≤ 0 for x ∈ ( − 1,− 1

2

)n. Therefore,
we obtain that (3.11) holds.

Case 2 If n = 3, r = 2, and x ∈ ( − 1,− 3
4

)n, then − 1
3 < 1+x3

x3
< 0. Hence,

Δ2 = (x1 + x2 + 1) +
1 + x3

x3
(x1 + x2)

< (x1 + x2 + 1) − 1
3
(x1 + x2) = 1 +

2
3
(x1 + x2) < 0.

Therefore, from (3.5) we get that (3.11) holds.

Case 3 If n ≥ 4, r = 2, then when x ∈ ( − 1,− 2n−3
2(n−1)

)n, we get n−2
−2n+3 <

n∑
i=3

1+xi

xi
< 0.

Thus

Δ3 = (x1 + x2 + 1) + (x1 + x2)
n∑

i=3

1 + xi

xi

< (x1 + x2 + 1) − (x1 + x2)
n − 2
2n − 3

=
2n − 3 + (n − 1)(x1 + x2)

2n − 3
< 0.

Hence, from (3.7) we obtain that (3.11) is valid.

Case 4 If n ≥ 4, r = n − 1, and x ∈ ( − 1,− n
2(n−1)

)n, then
n∑

i=3

xi

1+xi
< −n,

n∏
i=3

1+xi

xi
< 0,

Δ4 =
( n∑

i=3

xi

1 + xi

)( n∏
i=3

1 + xi

xi

)[
(x1 + x2 + 1) +

x1 + x2
n∑

i=3

xi

1+xi

]

<
( n∑

i=3

xi

1 + xi

)( n∏
i=3

1 + xi

xi

)[
(x1 + x2 + 1) − 1

n
(x1 + x2)

]

=
1
n

( n∑
i=3

xi

1 + xi

)( n∏
i=3

1 + xi

xi

)
[(n − 1)(x1 + x2) + n] < 0.

Therefore, from (3.9), we have that (3.11) holds.
Case 5 If n ≥ 5, 3 ≤ r ≤ n−2, and x ∈ (−1,− 2n−r−1

2(n−1)

]n, then Fn−2(x3, x4, · · · , xn; r−2) >

0. From (1.5) and Lemma 2.4, we derive

Δ5 = Fn−2(x3, x4, · · · , xn; r − 2)
[
(x1 + x2 + 1) +

Fn−2(x3, x4, · · · , xn; r − 1)
Fn−2(x3, x4, · · · , xn; r − 2)

(x1 + x2)
]
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≤ Fn−2(x3, x4, · · · , xn; r − 2)
[
(x1 + x2 + 1) +

(n−2)!
(r−1)!(n−r−1)!

(n−2)!
(r−2)!(n−r)!

1 − 2n−r−1
2(n−1)

− 2n−r−1
2(n−1)

(x1 + x2)
]

= Fn−2(x3, x4, · · · , xn; r − 2)
[ n − 1
2n − r − 1

(x1 + x2) + 1
]

< 0.

Therefore, from (3.10), we get that (3.11) is valid.
(3) According to Lemma 2.2 and Remark 2.1, from (3.3), (3.5), (3.7), (3.9)–(3.10), it is easy

to see that Fn(x, r) is Schur concave in (−∞,−1]n, and Schur convex in R
n
+.

This completes the proof of Theorem 3.2.

Applying Lemma 2.1 to Theorems 3.1–3.2, we can derive the Schur convexity of the sym-
metric functions Gn(x, r), Mn(x, r), Nn(x, r) and Tn(x, r) as follows.

Theorem 3.3 For n ≥ 2, the function Gn(x, 1) is Schur concave in R
n−, and Schur convex

in R
n
+.

Proof By replacing xij by −xij in (1.5), we get

Fn(−x, r) = (−1)r
∑

1≤i1<i2<···<ir≤n

r∏
j=1

1 − xij

xij

= (−1)rGn(x, r),

where Gn(x, r) is the symmetric function in (1.6). From Lemma 2.1 and Theorem 3.1 we obtain
that Theorem 3.3 is valid.

Similarly, by replacing xij by −xij in (1.5), from Lemma 2.1 and Theorem 3.2, we can derive
the following Theorem 3.4.

Theorem 3.4 For n ≥ 2, and 2 ≤ r ≤ n,
(1) Gn(x, r) is Schur convex in

(
0, 2n−r−1

2(n−1)

]n, and Schur concave in
[

2n−r−1
2(n−1) , 1

]n;
(2) if r is an even integer (or odd integer, respectively), then Gn(x, r) is Schur convex (or

concave, respectively) in R
n−;

(3) if r is an even integer (or odd integer, respectively), then Gn(x, r) is schur concave (or
convex, respectively) in [1,∞)n.

By substituting xij by −1 + xij in (1.5), we get

Fn(−1 + x, r) = (−1)r
∑

1≤i1<i2<···<ir≤n

r∏
j=1

xij

1 − xij

= (−1)rKn(x, r),

where Kn(x, r) is the symmetric function in (1.1). From Lemma 2.1 and Theorems 3.1–3.2, we
can derive the following Corollaries 3.1–3.2.

Corollary 3.1 For n ≥ 2, the function Kn(x, 1) is Schur concave in (1,∞)n, and Schur
convex in (−∞, 1)n.

Corollary 3.2 For n ≥ 2, and 2 ≤ r ≤ n,
(1) the function Kn(x, r) is Schur convex in

[
r−1

2(n−1) , 1
)n, and Schur concave in

[
0, r−1

2(n−1)

]n;
(2) if r is an even integer (or odd integer, respectively), then Kn(x, r) is Schur convex (or

concave, respectively) in (1,∞)n;
(3) if r is an even integer (or odd integer, respectively), then Kn(x, r) is Schur concave (or

convex, respectively) in (−∞, 0]n.
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Remark 3.1 It is easy to see that Corollaries 3.1–3.2 are the generalization of the Schur
convexity of Kn(x, r) in (0, 1)n, which is obtained by Guan [3] and Chu et al. [20].

Replacing xij by −1 − xij in (1.5), we get

Fn(−1 − x, r) =
∑

1≤i1<i2<···<ir≤n

r∏
j=1

xij

1 + xij

= Tn(x, r),

where Tn(x, r) is the symmetric function in (1.4). From Lemma 2.1 and Theorems 3.1–3.2, we
can derive the following Corollaries 3.3–3.4.

Corollary 3.3 For n ≥ 2, the function Tn(x, 1) is Schur concave in (−1,∞)n, and Schur
convex in (−∞,−1)n.

Corollary 3.4 For n ≥ 2, and 2 ≤ r ≤ n,
(1) if r is an even integer (or odd integer, respectively), then Tn(x, r) is Schur convex (or

concave, respectively) in
( − 1,− r−1

2(n−1)

]n;
(2) if r is an even integer (or odd integer, respectively), then Tn(x, r) is Schur concave (or

convex, respectively) in
[ − r−1

2(n−1) , 0
]n;

(3) Tn(x, r) is Schur convex in (−∞,−1)n, and Schur concave in [0,∞)n.

Remark 3.2 It is easy to see that Corollaries 3.3–3.4 are the generalization of the Schur
convexity of Tn(x, r) in R

n
+, which is obtained by Xia et al. [23].

By replacing xij by
−1+xij

2 in (1.5), from Lemma 2.1 and Theorems 3.1–3.2, we have the
following Corollaries 3.5–3.6.

Corollary 3.5 For n ≥ 2, the function Mn(x, 1) is Schur concave in (1,∞)n, and Schur
convex in (−∞, 1)n.

Corollary 3.6 For n ≥ 2, and 2 ≤ r ≤ n,
(1) Mn(x, r) is Schur convex in

[
r−n
n−1 , 1

)n, and Schur concave in
[ − 1, r−n

n−1

]n;
(2) if r is an even integer (or odd integer, respectively), then Mn(x, r) is Schur convex (or

concave, respectively) in (1,∞)n;
(3) if r is an even integer (or odd integer, respectively), then Mn(x, r) is Schur concave (or

convex, respectively) in (−∞,−1]n.

Remark 3.3 It is easy to see that Corollaries 3.5–3.6 are the generalization of the Schur
convexity of Mn(x, r) in (0, 1)n, which is obtained by Xia and Chu [21].

By replacing xij by
−1−xij

2 in (1.5), from Lemma 2.1 and Theorems 3.1–3.2, we get the
following Corollaries 3.7–3.8.

Corollary 3.7 For n ≥ 2, the function Nn(x, 1) is Schur concave in (−∞,−1)n, and Schur
convex in (−1,∞)n.

Corollary 3.8 For n ≥ 2, and 2 ≤ r ≤ n,
(1)Nn(x, r) is Schur convex in

( − 1, n−r
n−1

]n, and Schur concave in
[

n−r
n−1 , 1

]n;
(2) if r is an even integer (or odd integer, respectively), then Nn(x, r) is Schur convex (or

concave, respectively) in (−∞,−1)n;
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(3) if r is an even integer (or odd integer, respectively), then Nn(x, r) is Schur concave (or
convex, respectively) in [1,∞)n.

Remark 3.4 It is easy to see that Corollaries 3.7–3.8 are the generalization of the Schur
convexity of Nn(x, r) in (0, 1)n, which is established by Xia and Chu [22].

Theorem 3.5 For n ≥ 2, and 1 ≤ r ≤ n, Gn(x, r) is Schur convex in Dn =
{
x =

(x1, x2, · · · , xn) | xi > 0,
n∑

i=1

xi ≤ 1
}
.

Proof According to Lemma 2.2 and Remark 2.1, we only need to prove that

(x1 − x2)
(∂Gn(x, r)

∂x1
− ∂Gn(x, r)

∂x2

)
≥ 0 (3.12)

for x ∈ Dn.
The proof is divided into seven cases.
Case 1 If n ≥ 2, r = 1, from (1.6), we have

Gn(x, 1) =
n∑

i=1

1 − xi

xi
.

Thus we derive

(x1 − x2)
(∂Gn(x, 1)

∂x1
− ∂Gn(x, 1)

∂x2

)
=

(x1 − x2)2(x1 + x2)
x2

1x
2
2

≥ 0.

Case 2 If n = 2, r = 2, then from (1.6), we have

G2(x, 2) =
(1 − x1)(1 − x2)

x1x2
.

Thus we get

(x1 − x2)
(∂Gn(x, 2)

∂x1
− ∂Gn(x, 2)

∂x2

)
=

(x1 − x2)2[1 − (x1 + x2)]
x2

1x
2
2

≥ 0.

Case 3 If n = 3, r = 2, then from (1.6) we have

G3(x, 2) =
(1 − x1)(1 − x2)

x1x2
+

(1 − x1)(1 − x3)
x1x3

+
(1 − x2)(1 − x3)

x2x3
.

Thus we obtain

(x1 − x2)
(∂G3(x, 2)

∂x1
− ∂G3(x, 2)

∂x2

)
=

(x1 − x2)2

x2
1x

2
2

[
1 − (x1 + x2) + (x1 + x2)

1 − x3

x3

]
≥ 0.

Case 4 If n ≥ 4, r = n − 1, then from (1.6) we have

Gn(x, n − 1) =
[ (1 − x1)(1 − x2)

x1x2

n∑
i=3

xi

1 − xi
+

1 − x1

x1
+

1 − x2

x2

] n∏
i=3

1 − xi

xi
.

Thus we derive

(x1 − x2)
(∂Gn(x, n − 1)

∂x1
− ∂Gn(x, n − 1)

∂x2

)
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=
(x1 − x2)2

x2
1x

2
2

n∏
i=3

1 − xi

xi

[
(1 − x1 − x2)

n∑
i=3

xi

1 − xi
+ (x1 + x2)

]
≥ 0.

Case 5 If n ≥ 4, r = 2, then from (1.6) we have

Gn(x, 2) =
(1 − x1)(1 − x2)

x1x2
+

(1 − x1

x1
+

1 − x2

x2

) n∑
i=3

1 − xi

xi
+

∑
3≤i<j≤n

(1 − xi)(1 − xj)
xixj

.

Thus we get

(x1 − x2)
(∂Gn(x, 2)

∂x1
− ∂Gn(x, 2)

∂x2

)
=

(x1 − x2)2

x2
1x

2
2

[
1 − (x1 + x2) + (x1 + x2)

n∑
i=3

1 − xi

xi

]
≥ 0.

Case 6 If n ≥ 3, r = n, then from (1.6), we have

Gn(x, n) =
n∏

i=1

1 − xi

xi
.

Thus we obtain

(x1 − x2)
(∂Gn(x, n)

∂x1
− ∂Gn(x, n)

∂x2

)
=

(x1 − x2)2[1 − (x1 + x2)]
x1x2(1 − x1)(1 − x2)

Gn(x, n) ≥ 0.

Case 7 If n ≥ 5, 3 ≤ r ≤ n − 2, then from (1.6), we have

Gn(x, r) =
(1 − x1)(1 − x2)

x1x2
Gn−2(x3, x4, · · · , xn; r − 2)

+
(1 − x1

x1
+

1 − x2

x2

)
Gn−2(x3, x4, · · · , xn; r − 1) + Gn−2(x3, x4, · · · , xn; r).

Thus we derive

(x1 − x2)
(∂Gn(x, r)

∂x1
− ∂Gn(x, r)

∂x2

)

=
(x1 − x2)2

x2
1x

2
2

[(1 − x1 − x2)Gn−2(x3, x4, · · · , xn; r − 2)

+ (x1 + x2)Gn−2(x3, x4, · · · , xn; r − 1)] ≥ 0.

Therefore, (3.12) follows from cases 1–7, and the proof of Theorem 3.5 is completed.

4 Applications

In this section, we establish some inequalities by use of Theorems 3.1–3.5 and the theory of
majorization.

Theorem 4.1 If n ≥ 2, x = (x1, x2, · · · , xn), and sn =
n∑

i=1

xi, 0 ≤ λ ≤ 1, then

(1) Fn(x, 1) ≤ Fn( sn−λx
n−λ , 1) for x ∈ R

n
−;

(2) Fn(x, 1) ≥ Fn( sn−λx
n−λ , 1) for x ∈ R

n
+.

Proof Theorem 4.1 follows from Theorem 3.1 and Lemma 2.9.

Taking λ = 0 in Theorem 4.1, we have the following corollary.
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Corollary 4.1 If n ≥ 2, x = (x1, x2, · · · , xn), sn =
n∑

i=1

xi, then

(1)
n∑

i=1

1+xi

xi
≤ n(n+sn)

sn
for x ∈ R

n
−;

(2)
n∑

i=1

1+xi

xi
≥ n(n+sn)

sn
for x ∈ R

n
+.

From Theorem 3.2 and Lemmas 2.5–2.6, we have the following result.

Theorem 4.2 Let n ≥ 2, 2 ≤ r ≤ n, and x = (x1, x2, · · · , xn) with sn =
n∑

i=1

xi.

(1) Suppose that x ∈ [ − 2n−r−1
2(n−1) , 0

)n and c ≤ sn. If r is even, then

Fn(x, r) ≥ Fn

( c − x
nc
sn

− 1
, r

)
, (4.1)

while if r is odd, the inequality (4.1) is reversed.
(2) Suppose that x ∈ [− 1,− 2n−r−1

2(n−1)

]n and c ≤ sn. If r is even, then (4.1) is reversed, while
if r is odd, then (4.1) is holds.

(3) If x ∈ R
n
+ and c ≥ sn, then (4.1) holds, while if x ∈ (−∞,−1]n and c ≤ sn, then (4.1)

is reversed.

Similarly, the following Theorems 4.3–4.5 can be derived from Theorem 3.2 and Lemmas
2.7–2.9 together with the fact that

sn + λx

n + λ
=

(sn + λx1

n + λ
,
sn + λx2

n + λ
, · · · ,

sn + λxn

n + λ

)
≺ (x1, x2, · · · , xn) = x. (4.2)

Theorem 4.3 Let n ≥ 2, 2 ≤ r ≤ n, and x = (x1, x2, · · · , xn) with sn =
n∑

i=1

xi.

(1) Suppose that x ∈ [ − 2n−r−1
2(n−1) , 0

)n and c ≤ 0. If r is even, then

Fn(x, r) ≥ Fn

( c + x
nc
sn

+ 1
, r

)
, (4.3)

while if r is odd, then (4.3) is reversed.
(2)Suppose that x ∈ [ − 1,− 2n−r−1

2(n−1)

]n and c ≤ 0. If r is even, then (4.3) is reversed, while
if r is odd, then (4.3) holds.

(3) If x ∈ R
n
+ and c ≥ 0, then (4.3) holds, while if x ∈ (−∞,−1]n and c ≤ 0, then (4.3) is

reversed.

Theorem 4.4 Let n ≥ 2, 2 ≤ r ≤ n, x = (x1, x2, · · · , xn) with sn =
n∑

i=1

xi, and 0 ≤ λ ≤ 1.

(1) Suppose that x ∈ [ − 2n−r−1
2(n−1) , 0

)n. If r is even, then

Fn(x, r) ≥ Fn

(sn − λx

n − λ
, r

)
, (4.4)

while if r is odd, then (4.4) is reversed.

(2) Suppose that x ∈ [− 1,− 2n−r−1
2(n−1)

]n. If r is even, then (4.4) is reversed, while if r is odd,
then (4.4) holds.

(3) If x ∈ R
n
+, then (4.4) holds, while if x ∈ (−∞,−1]n, then (4.4) is reversed.
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Theorem 4.5 Let n ≥ 2, 2 ≤ r ≤ n, x = (x1, x2, · · · , xn) with sn =
n∑

i=1

xi, and 0 ≤ λ ≤ 1.

(1) Suppose that x ∈ [ − 2n−r−1
2(n−1) , 0

)n
. If r is even, then

Fn(x, r) ≥ Fn

(sn + λx

n + λ
, r

)
, (4.5)

while if r is odd, then (4.5) is reversed.

(2) Suppose that x ∈ [− 1,− 2n−r−1
2(n−1)

]n. If r is even, then (4.5) is reversed, while if r is odd,
then (4.5) holds.

(3) If x ∈ R
n
+, then (4.5) holds, while if x ∈ (−∞,−1]n, then (4.5) is reversed.

Taking λ = 0 in Theorem 4.4 or Theorem 4.5, we derive the following theorem.

Theorem 4.6 Let n ≥ 2, 2 ≤ r ≤ n, x = (x1, x2, · · · , xn), with An(x) = 1
n

n∑
i=1

xi.

(1) Suppose that x ∈ [ − 2n−r−1
2(n−1) , 0

)n. If r is even, then

∑
1≤i1<i2<···<ir≤n

r∏
j=1

1 + xij

xij

≥ n!
r!(n − r)!

[An(1 + x)
An(x)

]r

, (4.6)

while if r is odd, then (4.6) is reversed.

(2) Suppose that x ∈ [− 1,− 2n−r−1
2(n−1)

]n. If r is even, then (4.6) is reversed, while if r is odd,
then (4.6) holds.

(3) If x ∈ R
n
+, then (4.6) holds, while if x ∈ (−∞,−1]n, then (4.6) is reversed.

Remark 4.1 Taking r = n and
n∑

i=1

xi = 1 in Theorem 4.6(3), we obtain the Weierstrass

inequality (see [25, p. 260])
n∏

i=1

( 1
xi

+ 1
)
≥ (n + 1)n. (4.7)

From Theorems 3.3–3.4, Lemmas 2.5–2.9, and (4.2), by an argument similar to that used in
the proof of Theorems 4.1–4.5, we have the following Theorems 4.7–4.11.

Theorem 4.7 Let n ≥ 2, x = (x1, x2, · · · , xn) with sn =
n∑

i=1

xi, and 0 ≤ λ ≤ 1. If x ∈ R
n
−,

then

Gn(x, 1) ≤ Gn

(sn − λx

n − λ
, 1

)
, (4.8)

while if x ∈ R
n
+, then (4.8) is reversed.

Taking λ = 0 in Theorem 4.7, we have the following corollary.

Corollary 4.2 Let n ≥ 2, x = (x1, x2, · · · , xn) with sn =
n∑

i=1

xi. If x ∈ R
n
−, then

n∑
i=1

1 − xi

xi
≤ n(n − sn)

sn
, (4.9)

while if x ∈ R
n
+, then (4.9) is reversed.
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Theorem 4.8 Let n ≥ 2, 2 ≤ r ≤ n, x = (x1, x2, · · · , xn) with sn =
n∑

i=1

xi.

(1) Suppose that c ≥ sn. If x ∈ (
0, 2n−r−1

2(n−1)

]n, then

Gn(x, r) ≥ Gn

( c − x
nc
sn

− 1
, r

)
, (4.10)

while if x ∈ [
2n−r−1
2(n−1) , 1

]n, then (4.10) is reversed.
(2) Suppose that x ∈ R

n
− and c ≤ sn. If r is even, then (4.10) holds, while if r is odd, then

(4.10) is reversed.

(3) Suppose that x ∈ [1, +∞)n and c ≤ sn. If r is even, then (4.10) is reversed, while if r is
odd, then (4.10) holds.

Theorem 4.9 Let n ≥ 2, 2 ≤ r ≤ n, x = (x1, x2, · · · , xn) with sn =
n∑

i=1

xi.

(1) Suppose that c ≥ 0. If x ∈ (
0, 2n−r−1

2(n−1)

]n, then

Gn(x, r) ≥ Gn

( c + x
nc
sn

+ 1
, r

)
, (4.11)

while if x ∈ [
2n−r−1
2(n−1) , 1

]n, then (4.11) is reversed.
(2) Suppose that x ∈ R

n
− and c ≤ 0. If r is even, then (4.11) is holds, while if r is odd, then

(4.11) is reversed.

(3) Suppose that x ∈ [1, +∞)n and c ≥ 0. If r is even, then (4.11) is reversed, while if r is
odd, then (4.11) holds.

Theorem 4.10 Let n ≥ 2, 2 ≤ r ≤ n, x = (x1, x2, · · · , xn) with sn =
n∑

i=1

xi, and 0 ≤ λ ≤ 1.

(1) If x ∈ (
0, 2n−r−1

2(n−1)

]n, then

Gn(x, r) ≥ Gn

(sn − λx

n − λ
, r

)
, (4.12)

while if x ∈ [
2n−r−1
2(n−1) , 1

]n, then (4.12) is reversed.
(2) Suppose that x ∈ R

n
−. If r is even, then (4.12) holds, while if r is odd, then (4.12) is

reversed.
(3) Suppose that x ∈ [1, +∞)n. If r is even, then (4.12) is reversed, while if r is odd, then

(4.12) holds.

Theorem 4.11 Let n ≥ 2, 2 ≤ r ≤ n, x = (x1, x2, · · · , xn) with sn =
n∑

i=1

xi, and 0 ≤ λ ≤ 1.

(1) If x ∈ (
0, 2n−r−1

2(n−1)

]n, then

Gn(x, r) ≥ Gn

(sn + λx

n + λ
, r

)
, (4.13)

while if x ∈ [
2n−r−1
2(n−1) , 1

]n, then (4.13) is reversed.
(2) Suppose that x ∈ R

n
−. If r is even, then (4.13) holds, while if r is odd, then (4.13) is

reversed;
(3) Suppose that x ∈ [1, +∞)n. If r is even, then (4.13) is reversed, while if r is odd, then

(4.13) holds.
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Taking λ = 0 in Theorem 4.10 or Theorem 4.11, we derive the following theorem.

Theorem 4.12 Let n ≥ 2, 2 ≤ r ≤ n, x = (x1, x2, · · · , xn), with An(x) = 1
n

n∑
i=1

xi.

(1) If x ∈ (
0, 2n−r−1

2(n−1)

]n, then

∑
1≤i1<i2<···<ir≤n

r∏
j=1

1 − xij

xij

≥ n!
r!(n − r)!

[An(1 − x)
An(x)

]r

, (4.14)

while if x ∈ [
2n−r−1
2(n−1) , 1

]n, then (4.14) is reversed.
(2) Suppose that x ∈ R

n−. If r is even, then (4.14) holds, while if r is odd, then (4.14) is
reversed.

(3) Suppose that x ∈ [1, +∞)n. If r is even, then (4.14) is reversed, while if r is odd, then
(4.14) holds.

Remark 4.2 Taking r = n in Theorem 4.12(1), we have the Ky Fan’s inequality (see [26])

( n∏
i=1

xi

1 − xi

) 1
n ≤ An(x)

An(1 − x)
(4.15)

for x ∈ (0, 1
2 ]n. Inequality (4.15) has evoked the interest of several mathematicians, and different

proofs as well as many extension, sharpenings, and variants have been published, see the survey
paper [33] and the references therein. It is easy to see that Theorem 4.12 is a generalizations
of the Ky Fan’s inequality (4.15).

Theorem 4.13 Let n ≥ 2, xi ≥ 0 (i = 1, 2, · · · , n), with
n∑

i=1

xi = 1. Then

∑
1≤i1<i2<···<ir≤n

r∏
j=1

1 − xij

xij

≥ n!
r!(n − r)!

(n − 1)r.

Proof Theorem 4.13 follows from Theorem 3.5 and the following fact

( 1
n

,
1
n

, · · · ,
1
n

)
≺ (x1, x2, · · · , xn).

Remark 4.3 Taking r = n and
n∑

i=1

xi = 1 in Theorem 4.13, we obtain the Weierstrass

inequality (see [25, p. 260])
n∏

i=1

( 1
xi

− 1
)
≥ (n − 1)n.

Theorem 4.14 Suppose that A ∈ Mn(C) (n ≥ 2) is a complex matrix, and λ1 ≥ λ2 ≥
· · · ≥ λn are the eigenvalues of A. If A is a positive Hermitian matrix, then

(1)
∑

1≤i1<i2<···<ir≤n

r∏
j=1

[ 2(n−1)λ1
(2n−r−1)λij

− 1
] ≥ n!

r!(n−r)!

[ 2n(n−1)λ1
(2n−r−1)tr A − 1

]r;

(2)
∑

1≤i1<i2<···<ir≤n

r∏
j=1

[ λij

2(n−1)λ1−(r−1)λij

] ≤ n!
r!(n−r)!

[
tr A

2n(n−1)λ1−(r−1)trA

]r;

(3)
∑

1≤i1<i2<···<ir≤n

r∏
j=1

(
λ−1

ij
+ 1

) ≥ n!
r!(n−r)!

(
1 + n

tr A

)r;
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(4)
∑

1≤i1<i2<···<ir≤n

r∏
j=1

λij

1+λij
≤ n!

r!(n−r)!

(
tr A

n+tr A

)r;

(5)
∑

1≤i1<i2<···<ir≤n

r∏
j=1

tr A+λij

λij
≥ n!

r!(n−r)!(n + 1)r;

(6)
∑

1≤i1<i2<···<ir≤n

r∏
j=1

tr A−λij

λij
≥ n!

r!(n−1)!(n − 1)r.

Proof It is easy to know that
(
− (2n − r − 1)tr A

2n(n − 1)λ1
,− (2n− r − 1)trA

2n(n − 1)λ1
, · · · ,− (2n− r − 1)trA

2n(n− 1)λ1

)

≺
(
− (2n − r − 1)λ1

2(n − 1)λ1
,− (2n− r − 1)λ2

2(n − 1)λ1
, · · · ,− (2n − r − 1)λn

2(n − 1)λ1

)
, (4.16)

− (2n − r − 1)λi

2(n − 1)λ1
∈

[
− 2n − r − 1

2(n − 1)
, 0

)
, i = 1, 2, · · · , n, (4.17)

(
− 1 +

(r − 1)trA

2n(n − 1)λ1
,−1 +

(r − 1)tr A

2n(n − 1)λ1
, · · · ,−1 +

(r − 1)trA

2n(n − 1)λ1

)

≺
(
− 1 +

(r − 1)λ1

2(n − 1)λ1
,−1 +

(r − 1)λ2

2(n − 1)λ1
, · · · ,−1 +

(r − 1)λn

2(n − 1)λ1

)
, (4.18)

− 1 +
(r − 1)λi

2(n − 1)λ1
∈

(
− 1,−2n− r − 1

2(n − 1)

)
, i = 1, 2, · · · , n, (4.19)

(tr A

n
,
tr A

n
, · · · ,

tr A

n

)
≺ (λ1, λ2, · · · , λn), (4.20)

(
− 1 − tr A

n
,−1 − tr A

n
, · · · ,−1 − tr A

n

)
≺ (−1 − λ1,−1 − λ2, · · · ,−1 − λn), (4.21)

( 1
n

,
1
n

, · · · ,
1
n

)
≺

( λ1

trA
,

λ2

trA
, · · · ,

λn

trA

)
. (4.22)

Therefore, Theorem 4.14(1) follows from (4.16)–(4.17) and Theorem 3.2(1). Theorem 4.14(2)
follows from (4.18)–(4.19) and Theorem 3.2(2). Theorem 4.14(3) and Theorem 4.14(4) follow
from (4.20) and (4.21) together with Theorem 3.2(3), respectively, while Theorem 4.14(5) and
Theorem 4.14(6) follow from (4.22) together with Theorem 3.2(3) and Theorem 3.5, respectively.

For the proofs of Theorem 4.14(1)and Theorem 4.14(2), the reader is also referred to [20].
In 1981, Safta [27–28] proposed the following conjecture:
Let AA1, BB1, CC1 be any Cevian lines in �ABC, where the points A1, B1, C1 lie on sides

BC, CA, AB, respectively. If AA1 ∩ B1C1 = P, BB1 ∩ A1C1 = Q, CC1 ∩ A1B1 = R, then

AP

PA1
+

BQ

QB1
+

CR

RC1
≥ 3. (4.23)

In [34], Zhang proved the inequality (4.23), and obtained a generalization and an improve-
ment of this conjecture in the n-dimensional space. In this paper we give a generalization of
Safta’s conjecture in the n-dimensional space, and obtain more extensive resuls than the main
results in [34].

Theorem 4.15 Let A = A1A2 · · ·An+1 be an n-dimensional simples in R
n and P be an

arbitrary point in the interior of A. If Bi is the intersection point of straight line AiP and
hyperplane

∑
i

= A1A2 · · ·Ai−1Ai+1 · · ·An+1 (i = 1, 2, · · · , n + 1), and Ci is the intersection
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point of straight line AiP and the hyperplane Ωi = B1B2 · · ·Bi−1Bi+1 · · ·Bn+1 (i = 1, 2, · · · , n+
1), then for r ∈ {1, 2, · · · , n + 1},

∑
1≤i1<i2<···<ir≤n+1

r∏
j=1

Aij Cij

Cij Bij

≥ (n + 1)!
r!(n − r + 1)!

(n − 1)r, (4.24)

∑
1≤i1<i2<···<ir≤n+1

r∏
j=1

Aij Bij

Cij Bij

≥ (n + 1)!
r!(n − r + 1)!

nr. (4.25)

Proof Let (λ1, λ2, · · · , λn+1) be the barycentric coordinates of the point P . It is easy to
know that the barycentric coordinates of the point Bi are Bi(λ1, λ2, · · · , λi−1, 0, λi+1, · · · , λn+1).

Suppose that AiCi

CiBi
= θi (i = 1, 2, · · · , n, n + 1). Then we have that the barycentric coordi-

nates of the point Ci are

Ci

( θ1

1 + θ1
· λ1

1 − λi
, · · · ,

θi−1

1 + θi−1
· λi−1

1 − λi
,

1
1 + θi

,
θi+1

1 + θi+1
· λi+1

1 − λi
, · · · ,

θn+1

1 + θn+1
· λn+1

1 − λi

)
,

Since the point Ci lie on the hyperplane Ωi, thus we have

(i)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 λ2 λ3 · · · λi · · · λn+1

λ1 0 λ3 · · · λi · · · λn+1

...
...

...
...

...
λ1 λ2 λ3 · · · 1−λi

θi
· · · λn+1

...
...

...
...

...
λ1 λ2 λ3 · · · λi · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (4.26)

Applying the property of determinant, we can derive

θi =
n − 1

n
· 1 − λi

λi
, i = 1, 2, · · · , n + 1. (4.27)

Noting that λi > 0 and
n+1∑
i=1

λi = 1, from (4.27), Theorem 3.5 and the fact

( 1
n + 1

,
1

n + 1
, · · · ,

1
n + 1

)
≺ (λ1, λ2, · · · , λn+1),

we have that (4.24) holds.
From (4.27), and noting the obvious fact that

AiBi = AiCi + CiBi,

we have
AiBi

CiBi
=

1
n

(n − 1
λi

+ 1
)
, i = 1, 2, · · · , n + 1. (4.28)

Applying (4.28), Theorems 3.1–3.2 and the fact
( 1

n2 − 1
,

1
n2 − 1

, · · · ,
1

n2 − 1

)
≺

( λ1

n − 1
,

λ2

n − 1
, · · · ,

λn+1

n − 1

)
,

we get that the inequality (4.25) holds.
This completes the proof of Theorem 4.15.



988 M. B. Sun, N. B. Chen, S. H. Li and Y. H. Zhang

Remark 4.4 It is easy to see that Safta’s conjecture is the special case of (4.24) with n = 2
and r = 1, while the case of r = n in Theorem 4.15 is the results of Theorems 1–2 in [34].
Thus we give a generalization of Safta’s conjecture in the n-dimensional space, and obtain more
extensive results than the main results in [34].

Theorem 4.16 Let A = A1A2 · · ·An+1 be an n-dimensional simples in R
n and P be an

arbitrary point in the interior of A. If Bi is the intersection point of straight line AiP and
hyperplane

∑
i

= A1A2 · · ·Ai−1Ai+1 · · ·An+1 (i = 1, 2, · · · , n+1), then for r ∈ {1, 2, · · · , n+1},

(1)
∑

1≤i1<i2<···<ir≤n+1

r∏
j=1

[ 2(n−1)Aij
Bij

(2n−r−1)PBij
− 1

] ≥ (n+1)!
r!(n−r+1)!

[ 2(n2−1)
2n−r−1 − 1

]r;

(2)
∑

1≤i1<i2<···<ir≤n+1

r∏
j=1

[ PBij

2(n−1)Aij
Bij

−(r−1)PBij

] ≤ (n+1)!
r!(n−r+1)!(2n2−r−1)r ;

(3)
∑

1≤i1<i2<···<ir≤n+1

r∏
j=1

[ 2(n−1)Aij
Bij

(2n−r−1)PAij
− 1

] ≥ (n+1)!
r!(n−r+1)!

[ 2(n2−1)
n(2n−r−1) − 1

]r;

(4)
∑

1≤i1<i2<···<ir≤n+1

r∏
j=1

[ PAij

2(n−1)Aij
Bij

−(r−1)PAij

] ≤ (n+1)!
r!(n−r+1)!

(
n

2n2−nr+n−2

)r;

(5)
∑

1≤i1<i2<···<ir≤n+1

r∏
j=1

Aij
Bij

+PBij

PBij
≥ (n+1)!

r!(n−r+1)!(n + 2)r;

(6)
∑

1≤i1<i2<···<ir≤n+1

r∏
j=1

PBij

Aij
Bij

+PBij
≤ (n+1)!

r!(n−r+1)!
1

(n+2)r ;

(7)
∑

1≤i1<i2<···<ir≤n+1

r∏
j=1

Aij
Bij

+PAij

PAij
≥ (n+1)!

r!(n−r+1)!

(
2n+1

n

)r;

(8)
∑

1≤i1<i2<···<ir≤n+1

r∏
j=1

PAij

Aij
Bij

+PAij
≤ (n+1)!

r!(n−r+1)!

(
n

2n+1

)r.

Proof It is easy to see that
n+1∑
i=1

PBi

AiBi
= 1 and PAi

AiBi
= 1 − PBi

AiBi
, i = 1, 2, · · · , n + 1, these

imply that

(
− 2n − r − 1

2(n2 − 1)
,−2n− r − 1

2(n2 − 1)
, · · · ,−2n − r − 1

2(n2 − 1)

)

≺
(
− (2n − r − 1)PB1

2(n − 1)A1B1
,− (2n− r − 1)PB2

2(n − 1)A2B2
, · · · ,− (2n− r − 1)PBn+1

2(n − 1)An+1Bn+1

)
, (4.29)

− (2n − r − 1)PBi

2(n − 1)AiBi
∈

(
− 2n − r − 1

2(n − 1)
, 0

)
, i = 1, 2, · · · , n + 1, (4.30)

(
− 2n2 − r − 1

2(n2 − 1)
,−2n2 − r − 1

2(n2 − 1)
, · · · ,−2n2 − r − 1

2(n2 − 1)

)

≺
(
− 1 +

(r − 1)PB1

2(n − 1)A1B1
,−1 +

(r − 1)PB2

2(n − 1)A2B2
, · · · ,−1 +

(r − 1)PBn+1

2(n − 1)An+1Bn+1

)
, (4.31)

− 1 +
(r − 1)PBi

2(n − 1)AiBi
∈

(
− 1,−2n− r − 1

2(n − 1)

)
, i = 1, 2, · · · , n + 1, (4.32)

(
− 2n2 − nr − n

2(n2 − 1)
,−2n2 − nr − n

2(n2 − 1)
, · · · ,−2n2 − nr − n

2(n2 − 1)

)

≺
(
− (2n − r − 1)PA1

2(n − 1)A1B1
,− (2n− r − 1)PA2

2(n − 1)A2B2
, · · · ,− (2n − r − 1)PAn+1

2(n − 1)An+1Bn+1

)
, (4.33)

− (2n − r − 1)PAi

2(n − 1)AiBi
∈

(
− 2n − r − 1

2(n − 1)
, 0

)
, i = 1, 2, · · · , n + 1, (4.34)
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(
− 2n2 − n(r − 1) − 2

2(n2 − 1)
,−2n2 − n(r − 1) − 2

2(n2 − 1)
, · · · ,−2n2 − n(r − 1) − 2

2(n2 − 1)

)

≺
(
− 1 +

(r − 1)PA1

2(n − 1)A1B1
,−1 +

(r − 1)PA2

2(n − 1)A2B2
, · · · ,−1 +

(r − 1)PAn+1

2(n − 1)An+1Bn+1

)
, (4.35)

− 1 +
(r − 1)PAi

2(n − 1)AiBi
∈

(
− 1,−2n− r − 1

2(n − 1)

)
, i = 1, 2, · · · , n + 1, (4.36)

( 1
n + 1

,
1

n + 1
, · · · ,

1
n + 1

)
≺

( PB1

A1B1
,

PB2

A2B2
, · · · ,

PBn+1

An+1Bn+1

)
, (4.37)

(
− 1 − 1

n + 1
,−1 − 1

n + 1
, · · · ,−1 − 1

n + 1

)

≺
(
− 1 − PB1

AiB1
,−1 − PB2

A2B2
, · · · ,−1 − PBn+1

An+1Bn+1

)
, (4.38)

( n

n + 1
,

n

n + 1
, · · · ,

n

n + 1

)
≺

( PA1

A1B1
,

PA2

A2B2
, · · · ,

PAn+1

An+1Bn+1

)
, (4.39)

(
− 1 − n

n + 1
,−1 − n

n + 1
, · · · ,−1 − n

n + 1

)

≺
(
− 1 − PA1

A1B1
,−1 − PA2

A2B2
, · · · ,−1 − PAn+1

An+1Bn+1

)
. (4.40)

Therefore, Theorem 4.16(1) and Theorem 4.16(3) follow from (4.29)–(4.30) and (4.33)–
(4.34) together with Theorem 3.2(1), respectively, Theorem 4.16(2) and Theorem 4.16(4) follow
from (4.31)–(4.32) and (4.35)–(4.36) together with Theorem 3.2(2), respectively, while Theorem
4.16(5)–(8) follow from (4.37)–(4.40) and Theorem 3.2(3), respectively.

For the proofs of Theorem 4.16(1)–(4), the reader is also referred to [20], while the other
proofs of Theorem 4.16(6) and Theorem 4.16(8) can be found in [23].

Remark 4.5 Mitrinović et al. (see [27, pp. 473–479]) established a series of inequalities
for PAi

AiBi
and PBi

AiBi
(i = 1, 2, · · · , n, n + 1). Obviously, our inequalities in Theorem 4.16(5) and

Theorem 4.16(7) are different from theirs.

Acknowledgement The authors would like to thank the referees for valuable comments
and suggestions.
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