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Abstract The weak finite determinacy of relative map-germs is studied. The authors first
give the concept of weak finite determination, and then give several sufficient conditions for
a relative map-germ to be weak finitely determined, which is an important complement to
Mather’s work. Moreover, as an application, it is proven that the relative stable map-germs
are weak finitely determined.
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1 Introduction

Singularity theory is a young branch of analysis which currently occupies a central place in
mathematics; it is the crossroads of paths leading from very abstract subjects of mathematics,
such as commutation algebra, Lie group, differential geometry and topology. Moreover, sin-
gularity theory offers an extremely useful approach to most applied areas, such as differential
geometry (see [1–2]), the theory of bifurcation (see [3–4]) and physics (see [5]). Because every
finitely determined germ is equivalent to its Taylor polynomial of some degree, the analysis of
the conditions for a germ to be finitely determined involves the most important local aspects
of the singularity theory. Therefore, the study of finite determinacy of smooth map-germs is
an important subject in singularity theory, and it has been widely studied. The foundation of
the study is laid in an important paper [6]. In [6], Mather gave both algebraic and geometric
characterizations of finitely determined germs with respect to the groups R, L, A, C and K.
There are also numerous useful results on the determinacy of germs due to Gaffney, du Pless
and Wall, etc., for instance in [7, 8].

In the present paper, we shall work in the space of differentiable map-germs between
Euclidean spaces with the constraint that a fixed submanifold is mapped into another fixed
submanifold, and then naturally we encounter the relative map-germs. The concept of relative
finite determination was introduced by Porto and Loibel [9]. More recently there are more
and more papers studying the notions of singularity theory in the relative case, for instance,
finite determinacy, stability and universality (see [9–14]). However, the study of relative finite
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determinacy of map-germs is very few, and in all the references, the relative finite determinacy
is only related to the Taylor polynomial at the origin of map-germs. In this paper we generalize
this concept for a proper submanifold without boundary of the source space, and we call it
the weak finite determination. The purpose of this paper is to obtain algebraic characteriza-
tion of weak finitely determined relative map-germs with respect to two equivalent relations.
The first is relative right-left equivalence, and the second is relative contact equivalence (i.e.,
AS, T -equivalence and KS, T -equivalence).

The paper is organized as follows. Section 2 deals with the weak finite AS, T -determinacy
of relative map-germs. We achieve a sufficient condition to characterize weak finite AS, T -
determinacy of relative map-germs (see Theorem 2.1) and two results for estimating the precise
degree of determinacy (see Theorems 2.2–2.3). In Section 3 we give a sufficient condition for
a relative map-germ to be weak finitely KS, T -determined (see Theorem 3.1). Finally, as an
application, we prove that AS, T -stable map-germs are weak (m + 1)-AS, T -determined and
weak (m+ 1)-KS, T -determined.

We shall use the notations as follows.
Let S and T be submanifolds without boundary of R

n and R
m respectively, both containing

the origin. Since this paper is concerned with a local study, without loss of generality, we may
assume that

S = {0} × R
n−s ⊂ R

n, T = {0} × R
m−t ⊂ R

m (s, t ≥ 1).

A relative map-germ f : (Rn, S) → (Rm, T ) is a differential map-germ at 0 ∈ R
n with

f(S) ⊂ T and f(0) = 0. Denote by E the space of relative map-germs.
Let En denote the ring of smooth function-germs at the origin in R

n, and let Mn denote
its unique maximal ideal. Let CS(Rn) be the local ring {f ∈ En : f |S ≡ constant}, and let
ε(S, n) = {f ∈ CS(Rn) | f(S) ≡ 0}, which is the maximal ideal of CS(Rn).

For any f ∈ E, it induces a homomorphism f∗ : CT (Rm) → CS(Rn) defined by f∗(h) = h◦f ;
this allows us to consider every CS(Rn)-module as a CT (Rm)-module via f∗. Let f∗ε(T, m) =
〈f1, f2, · · · , ft〉 be the ideal generated by the components f1, · · · , ft, and let f∗(ε(T, m))
denote the image of ε(T, m) under f , which is not (in general) an ideal of CS(Rn).

Let e1, e2, · · · , em be the canonical basis of the vector space R
m, and they define a system

of generators of the CS(Rn)-module

CS(Rn)m = CS(Rn)〈e1, e2, · · · , em〉.
Similarly, we have ε(S, n)m = ε(S, n)〈e1, e2, · · · , em〉.
Let R denote the group of germs at the origin of local diffeomorphisms of R

n, and let
RS(n) = {φ ∈ R : φ|S ≡ idS }, where id denotes the identity. We also observe that RS(n) is a
subgroup of R.

Now, let AS, T = RS(n) ×RT (m) denote the relative right-left equivalent group, and let

KS, T = {(M, h) |M : (Rn, 0) → (GL(m, R),M(0)) is a C∞ map-germ, h ∈ RS(n)}
denote the relative contact equivalent group.

The two groups act on E in the following way:
If f ∈ E, (φ, ψ) ∈ AS, T and (M, h) ∈ KS, T , then (φ, ψ) · f and (M, h) · f are defined

respectively by

(φ, ψ) · f = ψ ◦ f ◦ φ−1 and (M, h) · f = M(x) · f(h(x)).
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Let G be a group which acts on E.

Definition 1.1 (see [8]) Two relative map-gems f, g are called G-equivalent if f and g

belong to the same orbit of G on E.

For f, g ∈ E, we say that f and g have the same k-jet at S if g has the same k-jet as f at
each point of S. We write jkf for the k-jet at S of f .

Definition 1.2 A relative map-germ f is called weak k-G-determined if every relative map-
germ having the same k-jet at S as f is G-equivalent to f . If f is weak k-G-determined for some
k <∞, then it is weak finitely G-determined, and the least such k is the degree of determinacy.

Remark 1.1 (i) If f and g are AS, T -equivalent, then f |S = g|S , that is, the value of a
germ at S is an invariant of the action of AS, T . Set Ef = {g ∈ E : f |S = g|S}.

(ii) Taking s = n and t = m, then S = T = {0}. In this case, the weak G-determinacy
actually is the G-determinacy.

2 Weak Finite AS,T -Determinacy of Relative Map-Germs

Definition 2.1 (see [10]) Let f ∈ E be a relative map-germ. We define

Tf = ε(S, n)〈df〉 + f∗(ε(T, m))〈e1, · · · , em〉,

where 〈df〉 = 〈 ∂f
∂x1

, · · · , ∂f
∂xn

〉.
In addition, denote Tf = CS(Rn)〈df〉 + CT (Rm)〈e1, · · · , em〉.
Definition 2.2 (see [10]) Let F : (Rp ×R

n, R
p×S) → (Rp×R

m, R
p×T ) be a germ of the

form F (t, x) = (t, f(t, x)). Then we say that F is a p-parameter unfolding of f0 : (Rn, S) →
(Rm, T ), if f(0, x) = f0(x) and f(t, x) = f(0, x) for all t ∈ R

p and x ∈ S.

In order to characterize weak finite AS, T -determinacy for relative map-germs, we need the
following lemmas which can be obtained in a similar way as [6]. So these results are stated
without proofs here.

Lemma 2.1 Suppose that g has the same k-jet at S as f . Then
(1) Tf + εk+1(S, n) · CS(Rn)m = Tg + εk+1(S, n) · CS(Rn)m;
(2) Tf + εk(S, n) · CS(Rn)m = Tg + εk(S, n) · CS(Rn)m,

where εk(S, n) denotes the k-th power of ε(S, n).

Lemma 2.2 Let F, G : (R × R
n, R × S) → (R × R

m, R × T ) be level preserving C∞

map-germs such that G− F ∈ ε�(S, n) · CR×S(R × R
n)m. Then

TF + ε�(S, n) · CR×S(R × R
n)m = TG+ ε�(S, n) · CR×S(R × R

n)m,

where TF = ε(R×S, 1+n)〈dft(x)〉+F ∗(ε(R×T, 1+m))〈e1, · · · , em〉 and F (t, x) = (t, ft(x)).

Lemma 2.3 Let F0(t, x) = (t, f(x)) be the constant unfolding of f . Then ε�(S, n) ·
CS(Rn)m ⊂ Tf if and only if ε�(S, n) · CR×S(R × R

n)m ⊂ TF0.

Lemma 2.4 (see [10]) Let F (t, x) = (t, f(t, x)) be a one-parameter unfolding of f0. Then
F is trivial if and only if ∂F

∂t ∈ TF.
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Lemma 2.5 Let f be a relative map-germ, A and B be a finitely generated CS(Rn)-
module and a CT (Rm)-module respectively, and M ⊂ CS(Rn) be a finitely generated ideal. If
B ⊂ f∗ε(T, m) · A, then M ·A ⊂ B +M2 · A implies M · A ⊂ B.

Lemma 2.6 (see [15]) Let h : U → U ′ be a G-submersion, where G is a Lie group. Let
u′ ∈ U ′ and V = h−1(u′). Suppose that V is connected. Then the necessary and sufficient
condition for V to be contained in a single orbit of G is that

TvV = Tv(G · v) for all v ∈ V.

Lemma 2.7 Let F : (R×R
n, R× S) → (R×R

m, R×T ) be given by F (t, x) = (t, ft(x)),
which is a C∞ level preserving map-germ. Then each germ ft has the same k-jet at S if and
only if

∂F

∂t
∈ εk+1(S, n) · CR×S(R × R

n)m.

Lemma 2.8 Let f ∈ E and V = {g ∈ Ef | jkg = jkf}. Then

TfV = εk+1(S, n) · CS(Rn)m.

Theorem 2.1 Let f ∈ E. If εk+1(S, n) · CS(Rn)m ⊂ Tf , then f is weak (2k + 1)-AS, T -
determined.

Proof Let g ∈ Ef such that j�g = j�f , where � = 2k + 1. Let

F : (R × R
n, R × S) → (R × R

m, R × T )

be given by F (t, x) = (t, ft(x)), where ft(x) = (1 − t)f(x) + tg(x). So F is a level preserving
C∞ map-germ with f0(x) = f(x) and f1(x) = g(x). To prove that f is AS, T -equivalent to g,
it is enough to show that F is a trivial unfolding of f . However, by using the assumption that
f and g have the same �-jet at S, we get

∂F

∂t
=
∂ft(x)
∂t

∈ ε�+1(S, n) · CR×S(R × R
n)m.

According to Lemma 2.4, it suffices to prove that

ε�+1(S, n) · CR×S(R × R
n)m ⊂ TF. (2.1)

The hypothesis in the theorem gives

εk+1(S, n) · CS(Rn)m ⊂ Tf. (2.2)

By Lemma 2.1, we have

Tf + ε�+1(S, n) · CS(Rn)m = Tg + ε�+1(S, n) · CS(Rn)m. (2.3)

So

εk+1(S, n) · CS(Rn)m ⊂ Tg + ε�+1(S, n) · CS(Rn)m. (2.4)
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Set

A = CS(Rn)m/ε(S, n)〈dg〉,
B = f∗(ε(T, m))〈e1, · · · , em〉/ε(S, n)〈dg〉 ∩ f∗(ε(T, m))〈e1, · · · , em〉,
M = εk+1(S, n).

Then A is a finitely generated CS(Rn)-module, B is a finitely generated CT (Rm)-module, and
M is an ideal of CS(Rn). Note that

B = [f∗(ε(T, m))〈e1, · · · , em〉 + ε(S, n)〈dg〉]/ε(S, n)〈dg〉
⊂ [(f∗ε(T, m) · CS(Rn)m + ε(S, n)〈dg〉)]/ε(S, n)〈dg〉
= f∗ε(T, m) ·A.

From (2.4) we get

M ·A ⊂ B +M2 · A. (2.5)

Thus (2.5) implies M · A ⊂ B by Lemma 2.5. This shows that

εk+1(S, n) · CS(Rn)m ⊂ Tg. (2.6)

Since each germ ft has the same �-jet at S as f , it follows that

εk+1(S, n) · CS(Rn)m ⊂ Tft. (2.7)

For fixed t0 ∈ R, we let F t0(t, x) = (t, ft0(x)). Applying Lemma 2.3 and (2.7), we get

εk+1(S, n) · CR×S(R × R
n)m ⊂ TF t0.

F (t, x) − F t0(t, x) = (0, (t− t0)[g(x) − f(x)]), then

F − F t0 ∈ ε�+1(S, n) · CR×S(R × R
n)m.

Thus,

TF + ε�+1(S, n) · CR×S(R × R
n)m = TF t0 + ε�+1(S, n) · CR×S(R × R

n)m,

and we again use the algebraic argument as (2.6) to conclude that

εk+1(S, n) · CR×S(R × R
n)m ⊂ TF.

Then (2.1) holds.

Theorem 2.2 Let f be a relative map-germ. If any relative map-germ g which has the
same k-jet at S as f satisfies

εk+1(S, n) · CS(Rn)m ⊂ Tg + ε2k+2(S, n) · CS(Rn)m, (2.8)

then f is weak k-AS, T -determined.
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Proof Let � = 2k + 1. We denote by J� the set of �-jets at S of elements of Ef , and
G = A�

S, T . Let V = π−1(jkf), where π : J� → Jk is the canonical projection. Then G is a
Lie group, and J� is a C∞ manifold with a vector space structure, so V is a subspace of J�.
Therefore, V is a connected C∞ manifold of J�.

First, we show that V is in a single orbit of the action of G on J�. By Lemma 2.6, it suffices
to show that

TvV ⊂ Tv(G · v) (2.9)

for all v ∈ V . Let π� : Ef → J� be the canonical projection. From (2.8), we get

π�(εk+1(S, n) · CS(Rn)m) ⊂ π�(Tg).

Note that π�(εk+1(S, n) · CS(Rn)m) = Tj�gV and π�(Tg) = Tj�g(G · j�g), thus

Tj�gV ⊂ Tj�g(G · j�g) for all j�g ∈ V.

So (2.9) holds. Hence j�g and j�f are in the same G-orbit. This means that there exists
Φ ∈ AS, T such that j�Φ · j�g = j�f , that is, j�(Φ · g) = j�f .

Since f also satisfies (2.8), we get

εk+1(S, n) · CS(Rn)m ⊂ Tf + ε2k+2(S, n) · CS(Rn)m. (2.10)

From the proof of Theorem 2.1, we have

εk+1(S, n) · CS(Rn)m ⊂ Tf. (2.11)

Then f is weak (2k + 1)-AS, T -determined. Noting that j2k+1(Φ · g) = j2k+1f , it follows that
Φ · g is AS, T -equivalent to f . Clearly g and Φ · g are AS, T -equivalent. Therefore, g and f are
AS, T -equivalent.

Theorem 2.3 Let f be a relative map-germ. If D is a CS(Rn)-module such that
(a) D ⊂ Tf + εk(S, n) · CS(Rn)m,
(b) εk(S, n) · CS(Rn)m ⊂ ε(S, n)〈df〉 + f∗ε(T, m) ·D + εk+1(S, n) · CS(Rn)m,

then f is weak k-AS, T -determined.

Proof It suffices to show that (a) and (b) imply the condition (2.8), for any g ∈ Ef which
has the same k-jet at S as f .

By Lemma 2.1, we see that (a), (b) also hold with g replacing f :
(a′) D ⊂ Tg + εk(S, n) · CS(Rn)m,
(b′) εk(S, n) · CS(Rn)m ⊂ ε(S, n)〈dg〉 + g∗ε(T, m) ·D + εk+1(S, n) · CS(Rn)m.

Set A = [ε(S, n)〈dg〉 + g∗ε(T, m) ·D + εk(S, n) · CS(Rn)m]/[ε(S, n)〈dg〉 + g∗ε(T, m) ·D+
ε2k+2(S, n) · CS(Rn)m]. It follows from (b′) that

A ⊂ ε(S, n) · A.

Besides, εk+2(S, n) · A = 0. Thus A = 0. So

εk(S, n) · CS(Rn)m ⊂ ε(S, n)〈dg〉 + g∗ε(T, m) ·D + ε2k+2(S, n) · CS(Rn)m. (2.12)
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Combining (a′) and (2.12), we have

εk(S, n) · CS(Rn)m ⊂ ε(S, n)〈dg〉 + g∗ε(T, m)[Tg + εk(S, n) · CS(Rn)m]

+ ε2k+2(S, n) · CS(Rn)m

⊂ Tg + g∗ε(T, m) · εk(S, n) · CS(Rn)m + ε2k+2(S, n) · CS(Rn)m. (2.13)

Set B = [Tg + εk(S, n) · CS(Rn)m)]/[Tg + ε2k+2(S, n) · CS(Rn)m]. Then (2.13) implies

B ⊂ g∗ε(T, m) · B.

Note that εk+2(S, n) · B = 0, and g∗ε(T, m) ⊂ ε(S, n). So

B ⊂ ε(S, n) · B ⊂ εk+2(S, n) ·B = 0.

Therefore, B = 0. It follows that

εk+1(S, n) · CS(Rn)m ⊂ εk(S, n) · CS(Rn)m ⊂ Tg + ε2k+2(S, n) · CS(Rn)m.

Applying Theorem 2.2, we complete the proof.

3 Weak Finite KS,T -Determinacy of Relative Map-Germs

For a map-germ f , define

TKS, T f = ε(S, n) · 〈df〉 + f∗ε(T, m) · CS(Rn)m.

This is a CS(Rn)-submodule of CS(Rn)m.

Theorem 3.1 Let f be a relative map-germ. If

εk(S, n) · CS(Rn)m ⊂ TKS, T f, (3.1)

then f is weak k-KS, T -determined.

Proof Let g be a relative map-germ which has the same k-jet at S as f . Define

F : (R × R
n, R × S) → (Rm, T )

by F (λ, x) = f(x) + λh(x) and Fλ(x) = F (λ, x), where h = g − f .
For fixed λ0 ∈ R, it is clear that we only have to prove that Fλ is KS, T -equivalent to Fλ0

for any λ sufficiently close to λ0 in R.
Since Fλ0 − f = λ0h ∈ εk+1(S, n) · CS(Rn)m, from (3.1), it follows that

TKS,TFλ0 ⊂ TKS,T f

and
TKS, T f ⊂ TKS, TFλ0 + ε(S, n) · TKS, T f.

By Nakayama’s lemma, we get

TKS, TFλ0 = TKS, T f. (3.2)
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Hence TKS, TFλ0 also satisfies (3.1). Now we identify CS(Rn) with the subring of CR×S(R×
R

n) composed of functions independent of λ, so CS(Rn) ⊂ CR×S(R × R
n). From (3.1)–(3.2),

we get

εk(S, n) · CR×S(R × R
n)m ⊂ ε(R × S, 1 + n) · 〈dFλ0 〉 + F ∗

λ0
ε(T, m) · CR×S(R × R

n)m. (3.3)

Also, since F −Fλ0 = (λ− λ0)h ∈ εk+1(S, n) ·CR×S(R×R
n)m, by the same argument just

as (3.2), we have

ε(R × S, 1 + n) · 〈dFλ0〉 + F ∗
λ0
ε(T, m) · CR×S(R × R

n)m

= ε(R × S, 1 + n) ·
〈 ∂F
∂x1

, · · · , ∂F
∂xn

〉
+ F ∗ε(T, m) · CR×S(R × R

n)m. (3.4)

Combining (3.3) and (3.4), it shows that there exist germsXi ∈ ε(R×S, 1+n), i = 1, · · · , n,
such that

h+
n∑

i=1

Xi(λ, x)
∂F

∂xi
∈ F ∗ε(T, m) · CR×S(R × R

n)m. (3.5)

From (3.5), we can find a germ of the vector field X in R × R
n of the following form:

∂

∂λ
+

n∑
i=1

Xi(λ, x)
∂

∂xi
, where Xi ∈ ε(R × S, 1 + n)

such that DF (X) ∈ F ∗ε(T, m) · CR×S(R × R
n)m. By integrating the vector field X , we get a

one-parameter family of diffeomorphisms φλ ∈ RS(n). So we can find a m×m matrix A(λ, x)
with entries in CR×S(R × R

n) such that

d
dλ
F (λ, φλ(x)) = DF (λ, φλ(x)) ·X(λ, φλ(x)) = A(λ, φλ(x)) · F (λ, φλ(x)), (3.6)

where matrix A(λ, x) has the form:

( ∗ 0m×(m−t)

)
m×m

.

Hence, for fixed x ∈ R
n, F (λ, φλ(x)) is a solution of the differential equation ẏ = A(λ, φλ(x))y

with initial condition y(λ0, x) = Fλ0(φλ0 (x)).

Since the solution of this differential equation is unique and of the form:

y(λ, x) = M(λ, x) · y(λ0, x),

where M(λ, x) is an invertible matrix, we can conclude that

F (λ, φλ(x)) = M(λ, x) · (Fλ0 ◦ φλ0(x)). (3.7)

Therefore, f + λh and f + λ0h are KS, T -equivalent for λ close to λ0. By the connection of
[0, 1], we obtain that f and g are KS, T -equivalent.
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4 Application

Definition 4.1 A relative map-germ f is AS, T -stable if all its unfoldings are trivial with
respect to group AS, T .

Remark 4.1 The argument given in [10] shows that a relative map-germ f is AS, T -stable
if and only if Tf = CS(Rn)m.

Theorem 4.1 Suppose that a relative map-germ f is AS, T -stable. Then f is weak (m+1)-
AS, T -determined and weak (m+ 1)-KS, T -determined.

Proof Set A = CS(Rn)〈df〉 + f∗ε(T, m) · CS(Rn)m. This is a CS(Rn)-submodule of
CS(Rn)m. Consider the sequence of inclusion of CS(Rn)-module:

CS(Rn)m ⊃ A+ ε(S, n)CS(Rn)m ⊃ A+ ε(S, n)MnCS(Rn)m · · ·
⊃ A+ ε(S, n)Mm

n CS(Rn)m ⊃ · · · .

Denote by ci the codimension of A+ ε(S, n)Mi
nCS(Rn)m in A+ ε(S, n)Mi−1

n CS(Rn)m, i ≥ 1
and let c0 denote the codimension of A+ ε(S, n)CS(Rn)m in CS(Rn)m. Thus the codimension
of A+ ε(S, n)Mi

nCS(Rn)m in CS(Rn)m is equal to

c0 + c1 + · · · + ci. (4.1)

Note that f∗(ε(T, m)) · CS(Rn)m ⊂ A. By Remark 4.1, we have

dimCS(Rn)m/(A+ ε(S, n)Mm
n CS(Rn)m)

≤ dim f∗(CT (Rm))〈e1, · · · , em〉/f∗(ε(T, m))〈e1, · · · , em〉
≤ m.

Therefore, by (4.1), c0 + c1 + · · · + cm ≤ m, thus cm = 0. It follows that

ε(S, n)Mm−1
n CS(Rn)m ⊂ A.

So, εm(S, n)CS(Rn)m ⊂ A.
Then it follows that
(a) εm(S, n) · CS(Rn)m ⊂ CS(Rn)〈df〉 + f∗ε(T, m) · CS(Rn)m.
Multiplying through (a) by ε(S, n), we have
(b) εm+1(S, n) · CS(Rn)m ⊂ ε(S, n)〈df〉 + f∗ε(T, m) · ε(S, n)m.
On the other hand, by the definition of AS, T -stable map-germ, we get
(c) ε(S, n)m = Tf ⊂ Tf .
Using Theorem 2.3 with D = ε(S, n)m, we can conclude that f is (m+1)-AS, T -determined.
From (b), we get
(d) εm+1(S, n) · CS(Rn)m ⊂ TKS, T f .
Thus f is weak (m+ 1)-KS, T -determined, by applying Theorem 3.1.
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