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Abstract Based on the analytic property of the symmetric q-exponent eq(x), a new
symmetric q-deformed Kadomtsev-Petviashvili (q-KP for short) hierarchy associated with
the symmetric q-derivative operator ∂q is constructed. Furthermore, the symmetric q-CKP
hierarchy and symmetric q-BKP hierarchy are defined. The authors also investigate the
additional symmetries of the symmetric q-KP hierarchy.
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1 Introduction

The origin of q-calculus (quantum calculus) (see [1–2]) traces back to the early 20th century.
Many mathematicians have important works in the area of q-calculus, q-hypergeometric series
and quantum group. There exist two different forms of q-derivative operators, which are defined
respectively by

Dq(f(x)) =
f(qx) − f(x)

(q − 1)x
, q �= 1 (1.1)

and

∂q(f(x)) =
f(qx) − f(q−1x)

(q − q−1)x
, q �= 1. (1.2)

The so-called q-deformation of the integrable system (or q-deformed integrable system)
started in the 1990s by means of the first q-derivative Dq in (1.1) instead of the usual derivative
∂ with respect to x in the classical system. As we know, the q-deformed integrable system
reduces to a classical integrable system as q goes to 1. Several q-deformed integrable systems
have been presented, for example, the q-deformation of the KdV hierarchy (see [3–6]), the q-
Toda equation (see [7]), the q-Calogero-Moser equation (see [8]) and so on. The q-deformed
Kadomtsev-Petviashvili (q-KP for short) hierarchy is also a subject of intensive study in the
literature [9–17]. Indeed, it is worth pointing out that there exist two variants of the q-deformed
integrable system, one belonging to Frenkel [3] and the other to Zhang et al. [4–17].
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It has been known for some time that different sub-hierarchies of the KP hierarchy can
be obtained by adding different reduction conditions on Lax operator L. Two important sub-
hierarchies of the KP hierarchy are CKP hierarchy (see [18]) through a restriction L∗ = −L

and BKP hierarchy (see [19]) through a restriction L∗ = −∂L∂−1. However, to the best of our
knowledge, there has been no result on the q-deformed CKP hierarchy and the q-deformed BKP
hierarchy so far. The difficulty to define them is the conjugate operation “∗” of q-derivative Dq

in (1.1). In fact, D∗
q �= −Dq but D∗

q = −Dqθ
−1 = − 1

q D 1
q
. This paper shows a quite interesting

fact as ∂∗
q = −∂q, where the symmetric q-derivative operator ∂q is defined by (1.2). In what

follows, we shall fill the gap by constructing the new symmetric q-deformed KP hierarchy based
on the symmetric q-derivative operator ∂q.

This paper is organized as follows. Some basic results of the symmetric q-derivative operator
∂q are given in Section 2, and one formula for the symmetric q-exponent eq(x) is established.
Then a new symmetric q-KP hierarchy is stated in Sections 3 similar to the classical KP
hierarchy (see [20]), and also a symmetric q-CKP hierarchy and a symmetric q-BKP hierarchy
are given in this section. We further study the additional symmetries for the symmetric q-KP
hierarchy in Section 4. Section 5 is devoted to conclusions and discussions.

2 Symmetric Quantum Calculus

We give some useful facts about the symmetric q-derivative operator ∂q in the form of
(1.2) based on the literature [2]. We work in an associative ring of functions which includes a
q-variable x and infinite time variables ti ∈ R,

F = f = f(x; t1, t2, t3, · · · ).

The q-shift operator is defined by
θ(f(x)) = f(qx). (2.1)

Note that θ does not commute with ∂q. Indeed, the relation

(∂qθ
k(f)) = qkθk(∂qf), k ∈ Z

holds. The limit of ∂q(f(x)) as q approaches to 1 is the ordinary differentiation ∂x(f(x)). We
denote the formal inverse of ∂q as ∂−1

q .

Theorem 2.1 The conjugate of ∂q can be defined as

∂∗
q = −∂q.

Proof The first step is to prove θ∗ = q−1θ−1. According to the definition, we have

∂q(fg) = (θf)(∂qg) + (∂qf)(θ−1g) = (θg)(∂qf) + (∂qg)(θ−1f).

Calculating the quantum integration
∫ ·dqx for the above two formulas separately, it follows

that ∫
(θf)(∂qg)dqx = −

∫
(∂qf)(θ−1g)dqx, (2.2)∫

(θg)(∂qf)dqx = −
∫

(∂qg)(θ−1f)dqx. (2.3)
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Let g → θ−2g in (2.3), and it now yields∫
(θ−1g)(∂qf)dqx = −

∫
(∂qθ

−2g)(θ−1f)dqx.

Comparing it with (2.2), the above equation becomes∫
(θf)(∂qg)dqx =

∫
(∂qθ

−2g)(θ−1f)dqx.

It can now be written in the form

〈θf, ∂qg〉 = 〈θ−1f, q−2θ−2∂qg〉.
By letting g → θ−2g and f → θf in the above equation, we find that

〈θ2f, g〉 = 〈f, q−2θ−2g〉,
so one can choose θ∗ = q−1θ−1.

We will now proceed to prove ∂∗
q = −∂q. Let f → θ−1f and g → θg in (2.2), and it now

reads
〈∂qθ

−1f, g〉 = −〈f, ∂qθg〉.
This implies

(∂qθ)∗ = −∂qθ
−1.

According to the equation θ∗ = q−1θ−1, we get

∂∗
q = −qθ∂qθ

−1 = −∂q.

The following q-deformed Leibnitz rule holds:

∂n
q ◦ f =

∑
k≥0

(
n

k

)
q

θn−k(∂k
q f)θ−k∂n−k

q , n ∈ Z, (2.4)

where the q-number

(n)q =
qn − q−n

q − q−1

and the q-binomial is introduced as(
n

0

)
q

= 1,

(
n

k

)
q

=
(n)q(n − 1)q · · · (n − k + 1)q

(1)q(2)q · · · (k)q
, n ∈ Z, k ∈ Z+.

To illustrate the q-deformed Leibnitz rule, the following examples are given:

∂q ◦ f = θ(f)∂q + (∂qf)θ−1,

∂2
q ◦ f = (q + q−1)θ(∂qf)θ−1∂q + θ2(f)∂2

q + (∂2
qf)θ−2,

∂3
q ◦ f = (q2 + q−2 + 1)θ(∂2

q f)θ−2∂q + (q2 + q−2 + 1)θ2(∂qf)θ−1∂2
q + (∂3

qf)θ−3 + θ3(f)∂3
q ,

∂−1
q ◦ f = θ−1(f)∂−1

q − θ−2(∂qf)θ−1∂−2
q + · · · + (−1)kθ−k−1(∂k

q f)θ−k∂−k−1
q + · · · .

Using the Taylor’s formula, we can get the following proposition for the symmetric q-
exponent eq(x), which is crucial to developing the tau function of the symmetric q-KP hierarchy
and to researching the interaction of q-solitons in the future.
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Theorem 2.2 The q-exponent eq(x) is defined as

eq(x) =
∞∑

n=0

xn

(n)q!
, (2.5)

where
(n)q! = (n)q(n − 1)q(n − 2)q · · · (1)q,

and then the formula

eq(x) = exp
( ∞∑

k=1

ckxk
)

(2.6)

holds, where

ck =
k∑

i=1

(−1)i−1 1
i

∑
v1+v2+···+vi=k
v1,v2,··· ,vi∈Z+

1
(v1)q!(v2)q! · · · (vi)q!

. (2.7)

Proof From the definition of eq(x) and Taylor’s formula, it follows that

eq(x) = 1 +
∞∑

n=1

xn

(n)q!

= exp
(

ln
(
1 +

∞∑
n=1

xn

(n)q!

))

= exp
( ∞∑

i=1

(−1)i−1 1
i

( ∞∑
n=1

xn

(n)q!

)i)

= exp
( ∞∑

k=1

k∑
i=1

(−1)i−1 1
i

∑
v1+v2+···+vi=k
v1,v2,··· ,vi∈Z+

xk

(v1)q!(v2)q! · · · (vi)q!

)

= exp
( ∞∑

k=1

ckxk
)
,

where ck is given by (2.7).

Several explicit forms of q-exponent eq(x) can be written out as follows:

c1 =1,

c2 = − (q − 1)2

2(q2 + 1)
,

c3 =
(q − 1)2(q4 − q3 − q2 − q + 1)

3(q2 + 1)(q4 + q2 + 1)
,

c4 = − (q − 1)4(q4 − q3 − 2q2 − q + 1)
4(q2 − q + 1)(q6 + q4 + q2 + 1)

,

c5 =
(q − 1)4(q14 − 2q13 − 2q11 + q10 − 2q9 + 5q8 + q7 + 5q6 − 2q5 + q4 − 2q3 − 2q − 1)

5(q2 + 1)(q2 − q + 1)(q6 + q4 + q2 + 1)(q8 + q6 + q4 + q2 + 1)
,

c6 = − (q − 1)6((q12 + 1)(q2 − 3q + 1) + q2(q8 + 1)(q + 1) − 4q5(q3 − 1)(q − 1) + 2q7)
6(q2 − q + 1)(q6 + q4 + q2 + 1)(q4 − q3 + q2 − q + 1)(q8 − q7 + q6 + q2 − q + 1)

.
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For the case Dq(f(x)) = f(qx)−f(x)
(q−1)x and (ñ)q = qn−1

q−1 , the q-exponent function ẽq(x) is

defined as ẽq(x) =
∞∑

n=0

xn

(ñ)q!
, and then

ẽq(x) = exp
( ∞∑

k=1

c̃kxk
)
, (2.8)

where

c̃k =
(1 − q)k

k(1 − qk)
. (2.9)

Recall that the q-exponent function eq(x) is the eigenfunction of the operator ∂q, i.e.,

∂qeq(x) = eq(x).

Furthermore, from

eq(xz) =
∞∑

n=0

(xz)n

(n)q!

one obtains immediately the formula

∂m
q eq(xz) = zmeq(xz), m = 1, 2, 3, · · · ,

which is useful for defining the q-wave function of the symmetric q-KP hierarchy in the following
section.

3 Symmetric q-Deformed KP Hierarchy

Similar to the classical KP hierarchy (see [19–20]), we will define a new symmetric q-
deformed KP hierarchy. The Lax operator L of the symmetric q-KP hierarchy is given by

L = ∂q + u1 + u2∂
−1
q + u3∂

−2
q + · · · , (3.1)

where ui = ui(x; t1, t2, t3, · · · ), i = 1, 2, 3, · · · . The corresponding Lax equation of the symmet-
ric q-KP hierarchy is defined by

∂L

∂tn
= [Bn, L], n = 1, 2, 3, · · · , (3.2)

where the differential part Bn = (Ln)+ =
n∑

i=0

bi∂
i
q and the integral part (Ln)− = Ln − (Ln)+.

The first few Bn and flow equations in (3.2) for dynamical variables {u1, u2, u3, · · · } can be
written out as follows:

B1 = ∂q + u1,

B2 = ∂2
q + v1∂q + v0,

B3 = ∂3
q + w2∂

2
q + w1∂q + w0,
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where L2 = B2 + v−1∂
−1
q + · · · and

v1 = θ(u1) + u1,

v0 = (∂qu1)θ−1 + θ(u2) + u2
1 + u2,

v−1 = (∂qu2)θ−1 + θ(u3) + u1u2 + u2θ
−1(u1) + u3,

w2 = θ(v1) + u1,

w1 = (∂qv1)θ−1 + θ(v0) + u1v1 + u2,

w0 = (∂qv0)θ−1 + θ(v−1) + u1v0 + u2θ
−1(v1) + u3.

The first flow equations are

∂u1

∂t1
= θ(u2) − u2,

∂u2

∂t1
= (∂qu2)θ−1 + θ(u3) + u1u2 − u2θ

−1(u1) − u3,

∂u3

∂t1
= (∂qu3)θ−1 + θ(u4) + u1u3 + u2(θ−2(∂qu1))θ−1 − u3θ

−2(u1) − u4,

∂u4

∂t1
= (∂qu4)θ−1 + θ(u5) + u1u4 − u2(θ−3(∂2

qu1))θ−2 − u4θ
−3(u1) − u5

+ (2)qu3(θ−3(∂qu1))θ−1.

The Lax operator L in (3.1) can be generated by a pseudo-difference operator S = 1 +
∞∑

k=1

sk∂−k
q in the following way:

L = S∂qS
−1. (3.3)

Here S is called a dressing operator or a wave operator of the symmetric q-KP hierarchy.

Theorem 3.1 The dressing operator S of the symmetric q-KP hierarchy satisfies the Sato
equation

∂S

∂tj
= −(Lj)−S, j = 1, 2, 3, · · · . (3.4)

Proof From the Lax equation, ∂L
∂tn

= [Bn, L], which is followed by

∂L

∂tj
= [Bj , L] = (Lj)+L − L(Lj)+

= (Lj − (Lj)−)L − L(Lj − (Lj)−)

= −(Lj)−L + L(Lj)−.

On the other hand,

∂L

∂tj
=

∂

∂tj
(S∂qS

−1) =
∂S

∂tj
∂qS

−1 + S∂q
∂S−1

∂tj

=
∂S

∂tj
S−1S∂qS

−1 + S∂q

(
− S−1 ∂S

∂tj
S−1

)
=

∂S

∂tj
S−1L − L

∂S

∂tj
S−1,

and then
∂L

∂tj
= −(Lj)−L + L(Lj)− =

∂S

∂tj
S−1L − L

∂S

∂tj
S−1.



Symmetric q-Deformed KP Hierarchy 7

The above equation implies that

∂S

∂tj
S−1 = −(Lj)−, j = 1, 2, 3, · · · ,

which ends the proof.

Definition 3.1 The q-wave function wq(x, t; z) for the symmetric q-KP hierarchy (3.2) with
the wave operator S in (3.3) is given by

wq(x, t; z) = Seq(xz) exp
( ∞∑

i=1

tiz
i
)
, (3.5)

where t = (t1, t2, t3, · · · ).
Theorem 3.2 The q-wave function wq(x, t; z) of the symmetric q-KP hierarchy satisfies

the following linear q-differential equations:

Lwq = zwq, ∂mwq = (Lm)+wq,

where ∂m = ∂
∂tm

.

Proof Using the equation ∂qeq(xz) = zeq(xz), then

Lwq = S∂qS
−1Seq(xz) exp

( ∞∑
i=1

tiz
i
)

= S∂qeq(xz) exp
( ∞∑

i=1

tiz
i
)

= zwq.

From the Sato equation ∂mS = −(Lm)−S, it follows that

∂mwq = ∂m

(
Seq(xz) exp

( ∞∑
i=1

tiz
i
))

= (∂mS)eq(xz) exp
( ∞∑

i=1

tiz
i
)

+ Seq(xz) exp
( ∞∑

i=1

tiz
i
)
zm

= −(Lm)−Seq(xz) exp
( ∞∑

i=1

tiz
i
)

+ S∂m
q eq(xz) exp

( ∞∑
i=1

tiz
i
)

= −(Lm)−wq + (Lm)+wq

= (Lm)+wq .

Furthermore, we would like to give the definitions of the symmetric q-CKP hierarchy and
the symmetric q-BKP hierarchy respectively to answer the previous question proposed in the
introduction.

Definition 3.2 Let the operator L in (3.1) be the Lax operator for the symmetric q-KP
hierarchy associated with (3.2), if L satisfies the reduction condition L∗ = −L, and then we call
it the symmetric q-CKP hierarchy.

Definition 3.3 Let the operator L in (3.1) be the Lax operator for the symmetric q-KP
hierarchy associated with (3.2), if L satisfies the reduction condition L∗ = −θ−

1
2 ∂qL∂−1

q θ
1
2 , and

then it is the symmetric q-BKP hierarchy.
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4 Additional Symmetries of the Symmetric q-KP Hierarchy

Another main goal of this paper is to consider the additional symmetries of the symmetric
q-KP hierarchy. First, let us define Γq and Orlov-Shulman’s M operator as

Γq =
∞∑

i=1

(iti + icix
i)∂i−1

q , M = SΓqS
−1,

respectively, where ci is given by (2.7). Then the additional flows of the symmetric q-KP
hierarchy for each pair {m, n} are defined by

∂S

∂t∗m,n

= −(MmLn)−S. (4.1)

Theorem 4.1 The additional flows act on L and M of the symmetric q-KP hierarchy as

∂L

∂t∗m,n

= −[(MmLn)−, L], (4.2)

∂M

∂t∗m,n

= −[(MmLn)−, M ]. (4.3)

Proof By performing the derivative ∂
∂t∗m,n

on L = S∂qS
−1 and using (4.1), we observe that

∂L

∂t∗m,n

=
∂S

∂t∗m,n

∂qS
−1 + S∂q

∂S−1

∂t∗m,n

= −(MmLn)−S∂qS
−1 + S∂q

(
− S−1 ∂S

∂t∗m,n

S−1
)

= −(MmLn)−L + S∂qS
−1(MmLn)−

= −[(MmLn)−, L].

For the action on M = SΓqS
−1, there exists a similar derivation as ∂L

∂t∗m,n
, and then

∂M

∂t∗m,n

=
∂S

∂t∗m,n

ΓqS
−1 + SΓq

∂S−1

∂t∗m,n

= −(MmLn)−SΓqS
−1 + SΓq

(
− S−1 ∂S

∂t∗m,n

S−1
)

= −(MmLn)−M + SΓqS
−1(MmLn)−

= −[(MmLn)−, M ].

In the above calculation, the fact that Γq does not depend on the additional flow variables t∗m,n

has been used.

Theorem 4.2

∂Lk

∂t∗m,n

= −[(MmLn)−, Lk], (4.4)

∂Mk

∂t∗m,n

= −[(MmLn)−, Mk], (4.5)
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∂MkLl

∂t∗m,n

= −[(MmLn)−, MkLl], (4.6)

∂MkLl

∂tn
= [Bn, MkLl]. (4.7)

Proof We present only the proof of the first equation here. The others can be proved in a
similar way.

∂Lk

∂t∗m,n

=
∂L

∂t∗m,n

Lk−1 + L
∂L

∂t∗m,n

Lk−2 + · · · + Lk−2 ∂L

∂t∗m,n

L + Lk−1 ∂L

∂t∗m,n

=
k∑

l=1

Ll−1 ∂L

∂t∗m,n

Lk−l

=
k∑

l=1

Ll−1(−[(MmLn)−, L])Lk−l

= −[(MmLn)−, Lk],

where we have used the formula ∂L
∂t∗m,n

= −[(MmLn)−, L] in Theorem 4.1.

Theorem 4.3 The additional flows ∂∗
mn = ∂

∂t∗m,n
commute with the hierarchy ∂k = ∂

∂tk
,

i.e.,
[∂∗

mn, ∂k] = 0,

and thus we call them additional symmetries of the symmetric q-KP hierarchy.

Proof According to the definition and Theorem 4.2, it equals

[∂∗
mn, ∂k]S = ∂∗

mn(∂kS) − ∂k(∂∗
mnS)

= ∂∗
mn(−(Lk)−S) − ∂k(−(MmLn)−S)

= −(∂∗
mnLk)−S − (Lk)−(∂∗

mnS) + (∂kMmLn)−S + (MmLn)−(∂kS)

= [(MmLn)−, Lk]−S + (Lk)−(MmLn)−S + [(Lk)+, MmLn]−S − (MmLn)−(Lk)−S

= [(MmLn)−, Lk]−S − [(MmLn)−, (Lk)+]S + [(Lk)−, (MmLn)−]S

= [(MmLn)−, (Lk)−]−S + [(Lk)−, (MmLn)−]S

= 0.

[(Lk)+, (MmLn)]− = [(Lk)+, (MmLn)−]− and [(MmLn)−, (Lk)−]− = [(MmLn)−, (Lk)−] have
been used in the above derivation.

5 Conclusions and Discussions

To summarize, we have derived the antisymmetric property of ∂q in Theorem 2.1 and a
crucial expression of eq(x) by the usual exponential in Theorem 2.2. The analytic property of
symmetric eq(x) in Theorem 2.2 is used to define the wave function of the symmetric q-KP
hierarchy. After introducing the dressing operator and the q-wave function of the symmetric
q-KP hierarchy in Section 3, we also give the definitions of the symmetric q-CKP hierarchy and
the symmetric q-BKP hierarchy. The additional symmetries of the symmetric q-KP hierarchy
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are obtained in Section 4. The above results of this paper show obviously that the symmetric
q-KP hierarchy is different from the q-KP hierarchy (see [8–17]) based on Dq(f(x)).

In comparison with the known interesting results of the KP hierarchy (see [18–20]) and
the q-KP hierarchy based on the Dq(f(x)) (see [8–17]), the symmetric q-KP hierarchy defined
in this paper deserves further study from several aspects including the tau function and its
Hirota bilinear identity, the Hamiltonian structure, the gauge transformation, the symmetry
analysis and the interaction of q-solitons. Furthermore, it is highly nontrivial to consider the
above topics of the symmetric q-CKP (or q-BKP) hierarchy because of the reduction condition
L∗ = −L (or L∗ = −∂qL∂−1

q ) and the complexity of the ∂q.

References
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