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1 Introduction

A finite nonabelian p-group is said to be minimal nonabelian if its every proper subgroup
is abelian. As numerous results in [1–3] show, the structure of a p-group depends essentially
on its minimal nonabelian subgroups. Minimal nonabelian p-groups were classified by L. Rédei
[4]. More general groups, D1-groups, than minimal nonabelian p-groups were introduced and
characterized in [5]. A finite p-group G is called D1-group if the order of the derived subgroup
of every maximal subgroup of G is at most p. On the other hand, nonmetacyclic p-groups all
of whose maximal subgroups are metacyclic were classified in [6]. A natural question is: What
can be said about finite p-groups all of whose maximal subgroups either are metacyclic or have
a derived subgroup of order ≤ p? This is also a question proposed by Berkovich and Janko in
their joint book.

Problem 725 (cf. [2]) Study the p-groups all of whose maximal subgroups either are
metacyclic or have a derived subgroup of order ≤ p.

For convenience, the groups studied in Problem 725 is called P-groups. Since metacyclic
p-groups have been studied and classified in [7–8], respectively, hence assume that P-groups are
nonmetacyclic in this paper. We classify P-groups up to isomorphism.
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2 Preliminaries

Let G be a finite p-group. We use c(G), exp(G) and d(G) to denote the nilpotency class,
the exponent and the minimal number of generators of G respectively. For any positive integer
s, Ωs(G) = 〈a ∈ G | aps

= 1〉 and �s(G) = 〈aps | a ∈ G〉. Let

G > G′ = G2 > G3 > · · · > Gc+1 = 1

denote the lower central series of G, where c = c(G), and Gn denote the nth term of the lower
central series of a group G. We use Cpm , Cn

pm and H ∗ K to denote the cyclic group of order
pm, the direct product of n cyclic groups of order pm, and a central product of H and K

respectively. H � G denotes that H is a maximal subgroup of G. Other notations and symbols
refer to [9].

Lemma 2.1 (cf. [10, Lemma 2.2]) Assume that G is a finite nonabelian p-group. Then the
following conditions are equivalent:

(1) G is minimal nonabelian;
(2) d(G) = 2 and |G′| = p;
(3) d(G) = 2 and Φ(G) = Z(G).

Lemma 2.2 (cf. [2, Lemma 65.1]) Assume that G is a minimal nonabelian p-group. Then
G is one of the following groups:

(1) Q8;
(2) Mp(n, m) := 〈a, b | apn

= bpm

= 1, ab = a1+pn−1〉, n ≥ 2, m ≥ 1 (metacyclic);
(3) Mp(n, m, 1) := 〈a, b, c | apn

= bpm

= cp = 1, [a, b] = c, [c, a] = [c, b] = 1〉, n ≥ m ≥ 1
(nonmetacyclic).

Lemma 2.3 (cf. [6]) Assume that G is a minimal nonmetacyclic p-group. Then G is
isomorphic to one of the following groups:

(1) an elementary abelian p-group of order p3;
(2) p > 2, a nonabelian p-group of order p3 and exp(G) = p;
(3) a group of order 34 with c(G) = 3 : 〈a, b, c | b9 = c3 = 1, [c, b] = 1, a3 = b−3, [b, a] =

c, [c, a] = b−3〉;
(4) |G| = 16 and G ∼= Q8 × C2 or G ∼= Q8 ∗ C4 and G ∼= 〈a, b, c | a4 = 1, a2 = b2 =

c2, [a, b] = a2, [c, a] = [c, b] = 1〉;
(5) |G| = 32 and G ∼= 〈a, b, c | a4 = b4 = 1, c2 = a2b2, [a, b] = b2, [c, a] = a2, [c, b] = 1〉.
Lemma 2.4 (cf. [6]) A finite p-group G is metacyclic if and only if G/Φ(G′)G3 is meta-

cyclic.

Lemma 2.5 (cf. [11, Theorem 5.12]) Let G be a p-group.
(1) If G′ ∩ Z2(G) is cyclic, then G′ is cyclic;
(2) If Z(G′) is cyclic, then G′ is cyclic;
(3) If Z(Φ(G)) is cyclic, then Φ(G) is cyclic.

Lemma 2.6 (cf. [1, Lemma 1.1]) If a nonabelian p-group G has an abelian maximal sub-
group, then |G| = p|G′||Z(G)|.
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Lemma 2.7 (cf. [9, Theorem 2.4.4]) Let p be an odd prime. Then a finite p-group G is
metacyclic if and only if ω(G) ≤ 2.

Lemma 2.8 (cf. [9, Theorem 2.4.3]) A two-generator 2-group G is metacyclic if and only
if d(M) ≤ 2 for all maximal subgroups M of G.

Lemma 2.9 If G is a finite p-group with d(G) = 2, then Φ(G′)G3 � G′.

Proof Since d(G) = 2, G′/G3 is cyclic. It follow that G′/Φ(G′)G3 is cyclic. Since
exp(G′/Φ(G′)G3) = p, |G′/Φ(G′)G3| = p. So Φ(G′)G3 � G′.

Lemma 2.10 Let G be a p-group, N < G′ and N � G. If G/N is metacyclic, then G is
metacyclic.

Proof Let M � G′, N ≤ M and M � G. Then |(G/M)′| = |G′/M | = p. It follows that
Φ((G/M)′) = (G/M)3 = 1. Thus Φ(G′)G3 ≤ M . It follows by Lemma 2.9 that M = Φ(G′)G3.
Since G/N is metacyclic and N ≤ M , G/M is metacyclic. It follows from Lemma 2.4 that G

is metacyclic.

Lemma 2.11 Let G be a metacyclic p-group. Then the following conclusions are true:
(1) d(G) ≤ 2 and G′ is cyclic.
(2) G′ ≤ �1(G).
(3) If H ≤ G, then H is metacyclic.
(4) If N � G, then G/N is metacyclic.

Proof (1) is obvious.
(2) If G is abelian, then G′ ≤ �1(G). If G is not abelian, then there exists 〈a〉�G such that

G/〈a〉 is cyclic. Thus G′ ≤ 〈a〉. Since G/G′ is not cyclic, G′ < 〈a〉. Thus G′ ≤ 〈ap〉 ≤ �1(G).
(3) Since G is metacyclic, there exists 〈a〉� G such that G/〈a〉 is cyclic. Since H ∩ 〈a〉 char

〈a〉 � G, H ∩ 〈a〉 � G. Since H/H ∩ 〈a〉 ∼= H〈a〉/〈a〉 ≤ G/〈a〉, H/H ∩ 〈a〉 is cyclic. So H is
metacyclic.

(4) Since G is metacyclic, there exists 〈a〉 � G such that G/〈a〉 is cyclic. Since G/N〈a〉 ∼=
G/〈a〉/N〈a〉/〈a〉, G/N〈a〉 is cyclic. Since N〈a〉/N ∼= 〈a〉/N ∩ 〈a〉, N〈a〉/N is cyclic. Since
G/N/N〈a〉/N ∼= G/N〈a〉, G/N is metacyclic.

Lemma 2.12 Let G be a p-group with |G′| = p3. Then G′ is abelian.

Proof If G′ not abelian, then |Z(G′)| = p. By Lemma 2.5(2), G′ is cyclic, a contradiction.

Lemma 2.13 Assume that G is a finite p-group, and M1, M2 are two distinct maximal
subgroups of G. Then |G′| ≤ p|M ′

1M
′
2|.

Proof Since M ′
i char Mi � G, M ′

i � G for i = 1, 2. Let G = G/M ′
1M

′
2. Then M1, M2 � G,

and M1 and M2 are abelian. If G is abelian, then |G′| = 1. If G is not abelian, then Z(G) =
M1 ∩ M2. Since M1 ∩ M2 is the second maximal subgroup of G, p|G′| = |G/Z(G)| = p2 by
Lemma 2.6. Thus |G′| = p.

Lemma 2.14 Let G be a P-group. Then
(1) if H ≤ G, then H is a P-group;
(2) if N � G, then G/N is a P-group.
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Proof (1) Let K � H . Then there exists M � G such that K ≤ M . If |M ′| ≤ p, then
K ′ ≤ p. If |M ′| > p, then M is metacyclic since G is a P-group. By Lemma 2.11(3), K is
metacyclic. So H is a P-group.

(2) Let M/N � G/N . Then M � G. If |M ′| ≤ p, then |(M/N)′| ≤ p. If |M ′| > p, then M

is metacyclic since G is a P-group. By Lemma 2.11(4), M/N is metacyclic.

Lemma 2.15 If a finite p-group G has at least one metacyclic maximal subgroup, then
Φ(G) is metacyclic.

Proof It is straightforward by Lemma 2.11.

Lemma 2.16 If G is a finite p-group with exp(G′) = p, then c(G) = 2 if and only if
Φ(G) ≤ Z(G).

Proof ⇐. It is obvious.
⇒. Since c(G) = 2, G′ ≤ Z(G). Since exp(G′) = p, [xp, y] = [x, y]p = 1 for all x, y ∈ G. It

follows that �1(G) ≤ Z(G). That is, Φ(G) = G′
�1(G) ≤ Z(G).

Lemma 2.17 Assume that G is a finite p-group. If G′ ∼= C3
p , then d(G) = 2 if and only if

G/Φ(G′)G3
∼= Mp(n, m, 1).

Proof ⇐. Since d(G/Φ(G′)G3) = 2 and Φ(G′)G3 ≤ Φ(G), d(G) = 2.
⇒. Since d(G) = 2, d(G/Φ(G′)G3) = 2. On the other hand, by Lemma 2.9, we get

|(G/Φ(G′)G3)′| = |G′/Φ(G′)G3| = p.

It follows from Lemma 2.1 that G/Φ(G′)G3 is minimal nonabelian. Since G′ is nonmetacyclic, G

is nonmetacyclic by Lemma 2.11. It follows from Lemma 2.4 that G/Φ(G′)G3 is nonmetacyclic.
So G/Φ(G′)G3

∼= Mp(n, m, 1) by Lemma 2.2.

Lemma 2.18 If G is a P-group, then all the proper quotient groups of G/Ω1(G′) are abelian
or metacyclic.

Proof Let H/Ω1(G′) < G/Ω1(G′). Then H < G. If H/Ω1(G′) is nonmetacyclic, then H

is nonmetacyclic. It follows from Lemma 2.14 that |H ′| ≤ p. Hence H ′ ≤ Ω1(G′). Moreover,
H/Ω1(G′) is abelian.

Lemma 2.19 Let G be a P-group. If G has at least two nonmetacyclic maximal subgroups,
then |G′| ≤ p3.

Proof Let H and K be two distinct nonmetacyclic maximal subgroups of G. Then |H ′| ≤ p

and |K ′| ≤ p. Moreover, |H ′K ′| ≤ p2. It follows from Lemma 2.13 that |G′| ≤ p3.

3 P-Groups with Exactly One Nonmetacyclic Maximal Subgroup

Theorem 3.1 Let G be a p-group with exactly one nonmetacyclic maximal subgroup, where
p is an odd prime. Then G is a P-group if and only if G is isomorphic to one of the following
pairwise non-isomorphic groups:

(1) Cpn × Cp × Cp, where n ≥ 2;
(2) Mp(1, 1, 1) ∗ Cpk , where k ≥ 2;
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(3) Mp(n, 1) × Cp, where n ≥ 2;
(4) 〈a, b, c | apn

= bp = cp = 1, [a, b] = c, [a, c] = [b, c] = 1〉 ∼= Mp(n, 1, 1), n ≥ 2;
(5) 〈a, b, c | apn+1

= bp = cp = 1, [a, b] = c, [c, a] = apn

, [c, b] = 1〉, where n ≥ 2;
(6) 〈a, b, c | apn+1

= bp = cp = 1, [a, b] = c, [c, a] = 1, [c, b] = avpn〉, where n ≥ 2, v = 1 or
a fixed square non-residue modulo p.

Proof Obviously, |G| ≥ p4 and d(G) ≤ 3. If G is abelian, then d(G) = 3. In this case,
G ∼= Cpn × Cpm × Cpk , where n ≥ m ≥ k. We claim m = k = 1. If not, then m �= 1. Thus there
exist M1 � G and M2 � G such that M1

∼= Cpn × Cpm−1 × Cpk and M2
∼= Cpn−1 × Cpm × Cpk

are nonmetacyclic. This contradicts the hypothesis. Thus we get the group (1).
Assume that G is not abelian. Let N ≤ G′ with |N | = p and N � G, and G = G/N .
If G is metacyclic, then, since G is nonmetacyclic, G′ = N by Lemma 2.10. Since d(G) =

d(G) = 2, G is minimal nonabelian by Lemma 2.1. Thus G ∼= Mp(n, m, 1) by Lemma 2.2. We
claim m = 1. If not, then let M1 = 〈a, bp, c〉 and M2 = 〈ap, b, c〉. It is easy to see that

M1
∼= Cpn × Cpm−1 × Cp and M2

∼= Cpn−1 × Cpm × Cp.

Hence M1 and M2 are two distinct nonmetacyclic maximal subgroups of G. This contradicts
the hypothesis. Thus we get the group (4).

Assume that G is nonmetacyclic. Then G is minimal nonmetacyclic or G has exactly one
nonmetacyclic maximal subgroup.

If |G| = p4, then, by checking the classification of groups of order p4, we get that G is one
of the groups (1), (3), (4) when n = 2 and is group (2) when k = 2.

If |G| = p5, then the theorem is true by checking the classification of groups of order p5

given in [12].
Let |G| ≥ p6. Then |G| ≥ p5. By the classification of minimal nonmetacyclic p-groups

by Blackburn [6] and Lemma 2.3, G is not minimal nonmetacyclic. Thus G has exactly one
nonmetacyclic maximal subgroup. By the induction hypothesis, G is isomorphic to one of the
groups in the theorem.

Case 1 G ∼= Cpn × Cp × Cp.
In this case, d(G) = 3 and |G′| = p. Such groups are classified by [13, Theorem 3.1], and G is

isomorphic to one of the groups Mp(n, m, 1)×Cpk , Mp(n, m, 1)∗Cpk+1 and Mp(n+1, m)×Cpk .
If G ∼= Mp(n, m, 1) × Cpk , where Cpk = 〈d〉, then let M1 = 〈a, b, cp〉 and M2 = 〈ap, b, c, d〉.

It is easy to see that

M1
∼= Mp(n, m, 1) × Cpk−1 and M2

∼= Cpn−1 × Cpm × Cpk × Cp.

It follows that M1 and M2 are two distinct nonmetacyclic maximal subgroups of G. This
contradicts the hypothesis.

If G ∼= Mp(n, m, 1) ∗ Cpk+1 , then we claim n = 1. If not, then let M1 = 〈a, cp, b〉 and
M2 = 〈ap, b, c〉. We have

M1
∼= Mp(n, m, 1) ∗ Cpk and M2

∼= Cpn−1 × Cpm × Cpk .

It follows that M1 and M2 are two distinct nonmetacyclic maximal subgroups of G. This
contradicts the hypothesis. Thus n = m = 1. This is the group (2).
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If G ∼= Mp(n + 1, m) × Cpk , then we claim m = k = 1. If not, then, when k �= 1, let
M1 = 〈a, cp, b〉 and M2 = 〈ap, b, c〉. We have

M1
∼= Mp(n + 1, m) × Cpk−1 and M2

∼= Cpn × Cpm × Cpk ;

when m �= 1, let M1 = 〈a, bp, c〉 and M2 = 〈ap, b, c〉. We have

M1
∼= Cpn+1 × Cpm−1 × Cpk and M2

∼= Cpn × Cpm × Cpk .

In either case, it follows that M1 and M2 are two distinct nonmetacyclic maximal subgroups of
G. This contradicts the hypothesis. Thus we get the group (3).

Case 2 G = 〈a, b, c | ap = b
p

= cpk

= 1, [a, b] = cpk−1
, [c, a] = 1, [c, b] = 1〉

∼= Mp(1, 1, 1) ∗ Cpk .
Since |G| > p4, k > 2. Let G = 〈a, b, c〉. Notice that N ≤ Z(G). Then

[a, b, a] = [cpk−1
, a] = [c, a]p

k−1
= 1.

In the same way, [a, b, b] = 1. It follows that G3 = 1. Thus c(G) = 2. Since bp ∈ N ≤ Z(G),
[a, b]p = [a, bp] = 1. Hence G′ = 〈[a, b], N〉 ∼= C2

p and o(c) = pk. Let N = 〈d〉. Then

G = 〈a, b, c | ap = dx, bp = dy, cpk

= 1, dp = 1, [a, b] = cpk−1
di, [c, a] = dj , [c, b] = dt〉,

where x, y, i, j and t are positive integers, and p | j and p | t have at most one to be true. It is
easy to prove that Φ(G) = 〈cp, d〉.

We discuss the two cases: x ≡ 0 (mod p) and x �≡ 0 (mod p).
(i) x ≡ 0 (mod p).
Let M1 = 〈a, b, cp, d〉 and M2 = 〈a, c, d〉. Since M1 and M2 contain a subgroup 〈a, cpk−1

, d〉 ∼=
C3

p , M1 and M2 are two distinct nonmetacyclic maximal subgroups of G. This contradicts the
hypothesis.

(ii) x �≡ 0 (mod p).
(iia) y ≡ 0 (mod p).
By the same argument as that of (i), G has two distinct nonmetacyclic maximal subgroups,

a contradiction.
(iib) y �≡ 0 (mod p).
In this case, bp = ax−1yp. Let b1 = ba−x−1y. Then

bp
1 = 1, [a, b1] = [a, b] = cpk−1

di, [c, b1] = [c, a−x−1y][c, b] = d−x−1yjdt = dt1 .

This is reduced to the case of (iia).
Case 3 G = 〈a, b, c | apn

= b
p

= cp = 1, [a, b] = apn−1
, [c, a] = 1, [c, b] = 1〉

∼= Mp(n, 1) × Cp.
By a similar argument as that of Case 2, we get that G has two distinct nonmetacyclic

maximal subgroups. Hence this case does not occur. These details are omitted.
Case 4 G = 〈a, b, c | apn

= b
p

= cp = 1, [a, b] = c, [c, a] = 1, [c, b] = 1〉 ∼= Mp(n, 1, 1).
Let G = 〈a, b, c〉. Since |G′| = p, |G′| = p2. Thus |G4| = 1. Hence

G3 = 〈[a, b, a], [a, b, b]〉 = 〈[c, a], [c, b]〉.
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Notice that bp ∈ N ≤ Z(G). Thus

1 = [a, bp] = [a, b]p[a, b, b]
(

p
2

)
= [a, b]p[c, b]

(
p
2

)
= [a, b]p.

It follows that G′ = 〈[a, b], N〉 ∼= C2
p . Finite p-groups G with G′ ∼= C2

p and G/N ∼= Mp(n, m, 1)
are classified by [14], and such G are the groups (1), (2), (4), (5), (6), (7) and (8) with m = 1
in [14, Theorem 11].

If G is the group (1) or (2) in [14, Theorem 11], then it is the group (5) or (6) in this
theorem.

If G is the group (4) in [14, Theorem 11], then G is minimal nonmetacyclic. This contradicts
the hypothesis.

If G is the group (5) in [14, Theorem 11], then let M1 = 〈a, bp, c〉 and M2 = 〈ap, b, c〉. It is
easy to verify that M1 and M2 contain a subgroup 〈apn−1

, bpm

, c〉 ∼= C3
p . Thus M1 and M2 are

two distinct nonmetacyclic maximal subgroups of G. This contradicts the hypothesis.
If G is one of the groups (6), (7) and (8) in [14, Theorem 11], then it is easy to verify that

G has two distinct nonmetacyclic maximal subgroups. This is also a contradiction.
Case 5 G = 〈a, b, c | apn

= b
p

= cp = 1, [a, b] = c, [c, a] = apn−1
, [c, b] = 1〉.

Let G = 〈a, b〉. Since |G′| = p2, |G′| = p3. It follows from Lemma 2.12 that G′ is abelian.
Thus G4 = 1 and G3 = 〈[c.a], [c, b]〉 �= 1. Notice that bp, cp ∈ N ≤ Z(G). Thus

1 = [a, bp] = [a, b]p[a, b, b]
(

p
2

)
= [a, b]p[c, b]

(
p
2

)
= [a, b]p

and
1 = [a, cp] = [a, c]p[a, c, c]

(
p
2

)
= [a, c]p[apn−1

, c]
(

p
2

)
= [a, c]p.

It follows that G′ = 〈[a, b], [a, c], N〉 ∼= C3
p , and o(a) = pn, o(c) = p. Let N = 〈d〉. Then

[a, b] = c, [c, a] = apn−1
dj and [c, b] = dt, where t �≡ 0 (mod p).

If j ≡ 0 (mod p), then

G = 〈a, b, c | apn

= 1, bp = ds, cp = 1, dp = 1, [a, b] = c, [c, a] = apn−1
, [c, b] = dt〉,

where s and t are positive integers. Since Φ(G) = 〈ap, c, d〉, we let

M1 = 〈ap, b, c, d〉 and M2 = 〈a, c, d〉.

It is easy to verify that M1 and M2 contain a subgroup 〈apn−1
, c, d〉 ∼= C3

p . Hence M1 and M2

are two distinct nonmetacyclic maximal subgroups of G. This contradicts the hypothesis.
If j �≡ 0 (mod p), then, by replacing a with ab−t−1j and letting c = [ab−t−1j , b], this is

reduced to the case of j ≡ 0 (mod p).
Case 6 G = 〈a, b, c | apn

= b
p

= cp = 1, [a, b] = c, [c, a] = 1, [c, b] = avpn−1〉, where v = 1 or
a fixed square non-residue modulo p.

Let G = 〈a, b〉. Since |G′| = p2, |G′| = p3. It follows from Lemma 2.12 that G′ is abelian.
Thus G4 = 1 and G3 = 〈[c.a], [c, b]〉 �= 1. Notice that bp, cp ∈ N ≤ Z(G). Hence

1 = [a, bp] = [a, b]p[a, b, b]
(

p
2

)
= [a, b]p[c, b]

(
p
2

)
= [a, b]p

and
1 = [b, cp] = [b, c]p[b, c, c]

(
p
2

)
= [b, c]p[apn−1

, c]
(

p
2

)
= [b, c]p.
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It follows that G′ = 〈[a, b], [b, c], N〉 ∼= C3
p , and o(a) = pn, o(c) = p. Let N = 〈d〉. Then

[a, b] = c, [c, a] = dj and [c, b] = avpn−1
dt. Thus

G = 〈a, b, c | apn

= 1, bp = ds, cp = 1, dp = 1, [a, b] = c, [c, a] = dj , [c, b] = avpn−1
dt〉,

where s, j, t are positive integers and j �≡ 0 (mod p). Since Φ(G) = 〈ap, c, d〉, we let

M1 = 〈ap, b, c, d〉 and M2 = 〈a, c, d〉.

It is easy to verify that M1 and M2 contain a subgroup 〈apn−1
, c, d〉 ∼= C3

p . Hence M1 and M2

are two distinct nonmetacyclic maximal subgroups of G. This contradicts the hypothesis.
We prove the groups (1)–(6) in the theorem are pairwise non-isomorphic according to d(G) =

2 or 3.
If d(G) = 2, then G is one of the groups (1), (2) and (3). |G′| = 1 for the group (1), and

|G′| = p for the groups (2) and (3).
Let the group (2) be isomorphic to the group (3). Then for the group (3), let a1 = ai1bj1ck1 ,

b1 = ai2bj2ck2 and c1 = ai23bj3ck3 , where i1, j1, k1, i2, j2, k2, i3, j3 and k3 are positive
integers with (i1, p) = 1, (j2, p) = 1 and (k3, p) = 1. It follows that a1, b1 and c1 satisfy the
relation of the group (2). But ap

1 = (ai1bj1ck1)p = ai1p = 1. Hence i1 ≡ 0 (mod pn−1), a
contradiction.

If d(G) = 3, then G is one of the groups (4), (5) and (6). |G′| = p for the group (4), and
|G′| = p2 for the groups (5) and (6).

Let the group (5) be isomorphic to the group (6). Then for the group (5), let a1 = ai1bj1ck1

and b1 = ai2bj2ck2 , where i1, j1, k1, i2, j2 and k2 are positive integers with (i1, p) = 1 and
(j2, p) = 1. Let [a1, b1] = c1. Then a1, b1 and c1 satisfy the relation of the group (6). Since
bp
1 = 1, i2 ≡ 0 (mod pn). On the other hand, [c1, a1] = [a1, b1, a1] = 1 = avpn

1 = ai1vpn

, a
contradiction.

Finally, we prove that the groups (1)–(6) in the theorem satisfy the hypothesis by taking
the group (3) for example. In this case,

G ∼= Mp(n, 1) × Cp = 〈a, b, c | apn

= bp = cp = 1, [a, b] = apn−1
, [c, a] = 1, [c, b] = 1〉.

Obviously, Φ(G) = 〈ap〉, and M1 = 〈ap, b, c〉, M2 = 〈abi, ap, c〉 and M3 = 〈acj , bct, ap〉
are all maximal subgroups of G, where 0 ≤ i, j, t < p. Since M1 contains a subgroup which
is isomorphic to C3

p , M1 is nonmetacyclic. Obviously, |M1| ≤ p. It is easy to check that
�1(M2) = Φ(M2), �1(M3) = Φ(M3) and d(M1) = d(M2) = 2. So ω(M2) ≤ 2 and ω(M3) ≤ 2.
By Lemma 2.7, M2 and M3 are metacyclic. So G satisfies the hypothesis.

Due to the classification of finite 2-groups with exactly one nonmetacyclic maximal subgroup
by Z. Janko [15], it is enough to check that those groups in [15] are P-groups. The following
theorem lists the results and the proof is omitted.

Theorem 3.2 Let G be a 2-group with exactly one nonmetacyclic maximal subgroup. Then
G is a P-group if and only if G is isomorphic to one of the following pairwise non-isomorphic
groups:

(I) d(G) = 3.
(1) C2n × C2 × C2, where n ≥ 2;
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(2) M2(n, 1) × C2, where n ≥ 3;
(3) Q8 ∗ C2n , where n ≥ 3;
(4) Q8 × C2n , where n ≥ 2;
(5) 〈a, b, c | a4 = b4 = c2n

= 1, a2 = b2, [a, c] = 1, [c, b] = c2n−1
, [a, b] = a2〉 ∼= Q8C2n ,

where n ≥ 3.
(II) d(G) = 2.
(6) M2(n, 1, 1), where n ≥ 2;
(7) 〈a, b, c | a2n

= b2 = c2 = 1, [c, a] = b, [b, c] = 1, [b, a] = a2n−1〉, where n ≥ 2;
(8a) 〈a, x | a2m ∈ 〈v〉, x2 ∈ 〈v2n−1〉, v2n

= 1, [a, x] = v, [v, x] ∈ 〈v2n−1〉, [v, a2] =
1, [a2, x] = 1, [v, a] = v−2〉, where m ≥ 2 and n ≥ 2;

(8b) 〈a, x | a2m ∈ 〈v〉, x2 ∈ 〈v2n−1〉, v2n

= 1, [a, x] = v, [v, x] ∈ 〈v2n−1〉, [v, a2] =
1, [a2, x] = v2n−1

, [v, a] = vx, 2n−1|s + 2〉, where m ≥ 2 and n ≥ 2;
(8c) 〈a, x | a2m

, x2 ∈ 〈v, b〉, v2 = b2 = [v, b] = 1, [a, x] = v, [v, a] = b, [b, a] = [b, x] =
1, [v, x] = zt ∈ 〈v, b〉 ∩ Z(G), t = 0, 1〉, where m ≥ 2;

(8d) 〈a, x | a2m ∈ 〈v, b〉, x2 ∈ 〈v2, b〉, v4 = b2 = 1, [a, x] = v, [v, a] = b, [v, x] =
v2b, [b, a] = [b, x] = [v, b] = 1〉, where m ≥ 2;

(9) 〈a, b, c | a22
= 1, b2, c2m ∈ 〈a2〉, [a, b] = [a, c] = a2, [c, b] = a〉, where m ≥ 2;

(10) 〈a, b | a8 = b4 = d2 = 1, a4 = b2 = c, d2 = c2 = 1, [a, b] = d, [d, a] = c, [d, c] = 1〉.

4 P-Groups with at Least Two Nonmetacyclic Maximal Subgroups

For convenience of statement, we introduce the following.

Assumption 4.1 A finite p-group G has at least two nonmetacyclic maximal subgroups
and a metacyclic maximal subgroup.

Theorem 4.1 If G is not a D1-group, then G is a P-group satisfying Assumption 4.1 if
and only if G is isomorphic to one of the following non-isomorphic groups:

(I) c(G) = 2.
(1) 〈a, b, c | apn+2

= bpm

= cp = 1, [a, b] = apn

, [a, c] = 1, [b, c] = 1〉, m ≥ 2;
(2) 〈a, b, c | apn+2

= bpm

= cp = 1, [a, b] = apn

, [a, c] = apn+1
, [b, c] = 1〉, m ≥ 3, n ≥ 2;

(3) 〈a, b, c | apn+2
= bpm

= cp = 1, [a, b] = apn

, [a, c] = 1, [b, c] = apn+1〉, m ≥ 2, n ≥ 2;
(4) 〈a, b, c | apn+2

= bpm+1
= cp = 1, [a, b] = apn

, [a, c] = 1, [b, c] = 1, bpm

= apn+1〉,
n + 1 < m, n ≥ 2;

(5) 〈a, b, c | apn+2
= bpm+1

= cp = 1, [a, b] = apn

, [a, c] = apn+1
, [b, c] = 1, bpm

= apn+1〉,
n + 1 ≤ m, n ≥ 2;

(6) 〈a, b, c | apn+2
= bpm+1

= cp = 1, [a, b] = apn

, [a, c] = 1, [b, c] = apn+1
, bpm

= apn+1〉,
n + 1 < m, n ≥ 2;

(II) c(G) = 3.
(7) 〈a, b, c | ap3

= bpm

= cp = 1, [a, b] = ap, [a, c] = 1, [b, c] = 1〉, if p > 2, then m ≥ 2; if
p = 2, then m ≥ 1;

(8) 〈a, b, c | a8 = b2m

= c2 = 1, [a, b] = a6, [a, c] = 1, [b, c] = 1〉, m ≥ 1;
(9) 〈a, b, c | ap3

= bpm

= cp = 1, [a, b] = ap, [a, c] = ap2
, [b, c] = 1〉, m ≥ 3 if p > 2; m ≥ 1

if p = 2;
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(10) 〈a, b, c | ap3
= bpm

= cp = 1, [a, b] = ap, [a, c] = 1, [b, c] = ap2〉, m ≥ 2 if p > 2; m ≥ 1
if p = 2;

(11) 〈a, b, c | ap3
= bpm+1

= cp = 1, [a, b] = ap, [a, c] = 1, [b, c] = 1, bpm

= ap2〉, m ≥ 3 if
p > 2; m ≥ 2 if p = 2;

(12) 〈a, b, c | a8 = b4 = c2 = 1, [a, b] = a6, [a, c] = 1, [b, c] = 1, b2 = a4〉;
(13) 〈a, b, c | ap3

= bpm+1
= cp = 1, [a, b] = ap, [a, c] = ap2

, [b, c] = 1, bpm

= ap2〉, m ≥ 3 if
p > 2; m ≥ 2 if p = 2.

Proof Let M be a metacyclic maximal subgroup of G. Thus d(G) ≤ 3. By Lemma 2.19,
|G′| ≤ p3. Moreover, we claim |G′| ≥ p2. If not, then |G′| ≤ p. It follows from [5, Theorem 3.1]
that G is a D1-group. This contradicts the hypothesis. So |G′| = p2 or p3.

Case 1 |G′| = p3.
By Lemma 2.12, G′ is abelian. Let M1 and M2 be two distinct nonmetacyclic maximal

subgroups of G. It follows from |G′| = p3 and Lemma 2.13 that |M ′
1| = |M ′

2| = p and M ′
1∩M ′

2 =
1. Thus M ′

1M
′
2
∼= C2

p and M ′
1M

′
2 ≤ Z(G).

If G′ ∼= Cp3 , then |M ′
1| = |M ′

2| = p. Hence M ′
1 ∩ M ′

2 = 1, a contradiction.
If G′ ∼= C3

p , then, since G is a P-group and not a D1-group, there exists M � G such that
|M ′| > p and M is metacyclic. It follows from Lemma 2.11 that M ′ is cyclic. Since M ′ ≤ G′,
M ′ ∼= C2

p or M ′ ∼= C3
p , a contradiction.

Assume G′ ∼= Cp2 ×Cp. Since G is a P-group and not a D1-group, there exists M � G such
that |M ′| > p and M is metacyclic.

If d(G) = 2, then let G = G/M ′
1M

′
2. We get that G is minimal nonabelian. Thus M ′ =

M ′
1M

′
2
∼= Cp × Cp. It follows from Lemma 2.11 that M ′ is cyclic. This is a contradiction.

Assume d(G) = 3. Since G′ is abelian, |Ω1(G′)| = |G′/�1(G′)| = |G′/Φ(G′)| = p2. Since
M ′

1M
′
2 ≤ Ω1(G′), Ω1(G′) = M ′

1M
′
2 ≤ Z(G). Let G = G/Ω1(G′). Then d(G) = 3 and |G′| = p.

Thus G is isomorphic to one of the groups in [13, Theorem 3.1].
If G is isomorphic to the group (1) in [13, Theorem 3.1], that is,

G ∼= 〈a, b, c | a4 = c2k

= 1, [a, b] = a2 = b
2
, [c, a] = 1, [c, b] = 1〉 ∼= Q8 × C2k ,

then G′ = 〈[a, b] and Ω1(G′)〉 ∼= C4 × C2. Notice that Ω1(G′) ∼= C2
2 . Thus o[a, b] = 4. Since

[a, b] ≡ a2 ≡ b2 (mod Ω1(G′)), 1 = [a2, b] = [a, b]2[a, b, a] = [a, b]2. This is a contradiction.
If G is isomorphic to the group (2) in [13, Theorem 3.1], that is,

G ∼= 〈a, b, c | a4 = c2k+1
= 1, [a, b] = a2 = b

2
= c2k

, [c, a] = 1, [c, b] = 1〉 ∼= Q8 ∗ C2k+1 ,

then, by the same argument as that of the above paragraph, a contradiction occurs.
If G is isomorphic to the group (3) in [13, Theorem 3.1], that is,

G ∼= 〈a, b, c, d | apn

= b
pm

= cpk

= d
p

= 1, [a, b] = d, [c, a] = 1, [c, b] = 1〉
∼= Mp(n, m, 1) × Cpk ,

then Φ(G) = 〈ap, b
p

and cp, d〉. Thus M = 〈a, b, cp, d〉 � G and |M ′| = p. If k > 1, then
M ∼= Mp(n, m, 1) × Cpk−1 . If k = 1, then M ∼= Mp(n, m, 1). It follows from Lemma 2.18 that
G is not a P-group. This contradicts the hypothesis.
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If G is isomorphic to the group (4) in [13, Theorem 3.1], that is,

G ∼= 〈a, b, c | apn

= b
pm

= cpk+1
= 1, [a, b] = cpk

, [c, a] = 1, [c, b] = 1〉
∼= Mp(n, m, 1) ∗ Cpk+1 ,

then, by the same argument as that of the group (3), we get that G is not a P-group.
If G is isomorphic to the group (5) in [13, Theorem 3.1], that is,

G ∼= 〈a, b, c | apn+1
= b

pm

= cpk

= 1, [a, b] = apn

, [c, a] = 1, [c, b] = 1〉
∼= Mp(n + 1, m) × Cpk ,

then Φ(G) = 〈ap, b
p
, cp〉. Let G = 〈a, b, c〉. Since |G′| = p, G4 = 1. Thus

G3 = 〈[a, b, b]〉 and G′ = 〈[a, b], [c, a], [c, b], [a, b, b]〉.

Notice that Ω1(G′) ∼= C2
p . Thus o([a, b]) = p2, and [a, c], [b, c] and [a, b, a] can not belong to

〈[a, b]〉 at the same time.
If [b, c] �∈ 〈[a, b]〉, then there exists M �G such that M = 〈ap, b, c〉 ∼= Cpn ×Cpm ×Cpk . Thus

M is nonmetacyclic. By calculation, o([ap, b]) = p and o([b, c]) = p. Since 〈[ap, b]〉 �= 〈[b, c]〉,
|M ′| > p. It follows that G is not a P-group. If [a, c] �∈ 〈[a, b]〉 or [a, b, a] �∈ 〈[a, b]〉, then, by
similar argument as that of the case [b, c] �∈ 〈[a, b]〉, we get that G is not a P-group.

To sum up, there does not exist a P-group which is not a D1-group with |G′| = p3.
Case 2 |G′| = p2.
If G′ ∼= C2

p , then, since G is a P-group and not a D1-group, there exists M � G such that
|M ′| > p and M is metacyclic. It follows from Lemma 2.11 that M ′ is cyclic. Since M ′ ≤ G′,
M ′ = G′ ∼= C2

p . This is a contradiction. Hence G′ ∼= Cp2 .
Since G is not a D1-group, d(G) = 3 by [5, Theorem 3.1]. Since G′ is abelian,

|Ω1(G′)| = |G′/�1(G′)| = |G′/Φ(G′)| = p.

Thus Ω1(G′) ≤ Z(G). Let G = G/Ω1(G′). Then d(G) = 3 and |G′| = p. Thus G is isomorphic
to one of the groups in [13, Theorem 3.1].

If G is isomorphic to one of the groups (1)–(4) in [13, Theorem 3.1], then, by a similar
argument as that of Case 1, we get that G is not a P-group.

Assume that G is isomorphic to one of the group (5) in [13, Theorem 3.1], that is,

G ∼= 〈a, b, c | apn+1
= b

pm

= cpk

= 1, [a, b] = apn

, [c, a] = 1, [c, b] = 1〉
∼= Mp(n + 1, m) × Cpk ,

then Φ(G) = 〈ap, b
p
, cp〉. Thus M = 〈a, b, cp〉 � G and |M ′| = p. If k > 1, then M ∼=

Mp(n + 1, m) × Cpk−1 . It follows from Lemma 2.18 that G is not a P-group. Assume k = 1.
Since d(G) = 3, G = 〈a, b, c〉. Since |G′| = p, G4 = 1. Thus

G3 = 〈[a, b, b]〉 = 〈[a, b]p
n〉 and G′ = 〈[a, b], [a, c], [b, c], [a, b, b]〉.

Since G′ ∼= Cp2 , [a, c] and [b, c] are contained in Ω1(G′). Hence G′ = 〈[a, b]〉 = 〈apn〉. It follows
that Ω1(G′) = 〈apn+1〉.
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If n ≥ 2, then c(G) = 2. If n = 1, then c(G) = 3. We discuss the two cases: c(G) = 2 and
c(G) = 3.

Case 2.1 c(G) = 2.
It is easy to see that o(a) = pn+2. Notice that Ω1(G′) = 〈apn+1〉. Assume [a, b] = apn

,
[a, c] = aipn+1

and [b, c] = ajpn+1
without loss of generality. We discuss the possible value of i

and j.
(i) i = j = 0. Then

[a, b] = apn

, [a, c] = 1 and [b, c] = 1. (4.1)

(ii) i �= 0 and j = 0. Let c1 = ci−1
. Then

[a, b] = apn

, [a, c] = apn+1
and [b, c] = 1. (4.2)

(iii) j �= 0 and i = 0. Let c1 = cj−1
. Then

[a, b] = apn

, [a, c] = 1 and [b, c] = apn+1
. (4.3)

(iv) j �= 0, i �= 0.
If o(a) ≥ o(b), then, letting a1 = abt, where t = −ij−1, we get [a1, c] = 1. This is reduced

to the case (iii).
If o(a) < o(b), then, letting b1 = bat, where t = −ji−1, we get [b1, c] = 1. This is reduced to

the case (ii).
We discuss the possible value of o(b) and o(c).
First, we claim o(b) ≥ p2 and o(c) = p. If not, then o(b) = p. Thus [a, b]p = [a, bp] = 1, a

contradiction. If o(c) = p2, then cp = atpn+1
. Let c1 = ca−tpn

. Then cp
1 = (ca−tpn

)p = 1 which
satisfies the relations. Thus o(c) = p2 can be reduced to the case of o(c) = p. Hence we only
need to discuss the possible value of o(b).

If o(b) = pm, then m ≥ 2.
If a, b and c are of the relation (4.1), then

G = 〈a, b, c | apn+2
= bpm

= cp = 1, [a, b] = apn

, [a, c] = 1, [b, c] = 1〉,

where m ≥ 2 and n ≥ 2. This is the group (1).
If a, b and c are of the relation (4.2), then

G = 〈a, b, c | apn+2
= bpm

= cp = 1, [a, b] = apn

, [a, c] = apn+1
, [b, c] = 1〉,

where n ≥ 2. If m = 2, then, letting c1 = cb−p, we get [a, c1] = 1. This is reduced to the group
(1). If m ≥ 3, then we get the group (2).

If a, b and c are of the relation (4.3), then

G = 〈a, b, c | apn+2
= bpm

= cp = 1, [a, b] = apn

, [a, c] = 1, [b, c] = apn+1〉,

where m ≥ 2 and n ≥ 2. This is the group (3).
If o(b) = pm+1, then m ≥ 1. Assume bpm

= aspn+1
, where (p, s) = 1 without loss of

generality.
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If a, b and c are of the relation (4.1), then, let b1 = ba−spn+1−m

if n+1 ≥ m. We get bpm

1 = 1.
This is reduced to the case when o(b) = pm. If n + 1 < m, then

G = 〈a, b, c | apn+2
= bpm+1

= cp = 1, [a, b] = apn

, [a, c] = 1, [b, c] = 1, bpm

= apn+1〉.

This is the group (4).
If a, b and c are of the relation (4.2), then, let b1 = ba−spn+1−m

if n+1 > m. We get bpm

1 = 1.
This is reduced to the case when o(b) = pm. If n + 1 ≤ m, then

G = 〈a, b, c | apn+2
= bpm+1

= cp = 1, [a, b] = apn

, [a, c] = apn+1
, [b, c] = 1, bpm

= apn+1〉.

This is the group (5).
If a, b and c are of the relation (4.3), then, let b1 = ba−spn+1−m

if n+1 ≥ m. We get bpm

1 = 1.
This is reduced to the case when o(b) = pm. If n + 1 < m, then

G = 〈a, b, c | apn+2
= bpm+1

= cp = 1, [a, b] = apn

, [a, c] = 1, [b, c] = apn+1
, bpm

= apn+1〉.

This is the group (6).
Case 2.2 c(G) = 3.
In this case, o(a) = p3.
First, we claim o(b) ≥ p2 if p > 2. If not, then o(b) = p. Thus

1 = [a, bp] = [a, b]p[a, b, b]
(

p
2

)
= [a, b]p,

a contradiction. Notice that Ω1(G′) = 〈ap2〉. Without loss of generality, we assume

[a, b] = ap, [a, c] = aip2
and [b, c] = ajp2

if p > 2.

If p = 2, then [a, b] = a2 or a6. Without loss of generality, we assume

[a, c] = ai22
and [b, c] = aj22

.

We discuss the possible value of i and j.
(i) i = j = 0. Then

[a, b] = ap, [a, c] = 1, [b, c] = 1 (4.4)

and

[a, b] = a6, [a, c] = 1, [b, c] = 1 for p = 2. (4.5)

(ii) i �= 0 and j = 0.
If p > 2, then let cj−1

replace c. We get

[a, b] = ap, [a, c] = ap2
and [b, c] = 1. (4.6)

If p = 2 and [a, b] = a6, then let b1 = bc if o(b) ≥ o(c). We get [a, b1] = a2. This is reduced
to the relation (4.6). Assume o(b) < o(c). Then we have

[a, b] = a6, [a, c] = a4 and [b, c] = 1. (4.7)
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(iii) j �= 0 and i = 0.
If p > 2, then let cj−1

replace c. We get

[a, b] = ap, [a, c] = 1 and [b, c] = ap2
. (4.8)

If p = 2 and [a, b] = a6, then let a1 = ac if o(c) = p. We get [a1, b] = a2
1. This is reduced to

the relation (4.6). If o(c) = p2, then

[a, b] = a6, [a, c] = 1 and [b, c] = a4. (4.9)

(iv) j �= 0 and i �= 0.
If o(a) ≥ o(b), then let a1 = abt, where t = −ij−1. We get [a1, c] = 1. This is reduced to

(iii).
If o(a) < o(b), then let b1 = bat, where t = −ji−1. We get [b1, c] = 1. This is reduced to

(ii).
We discuss the possible value of o(b) and o(c).
Case 2.2.1 o(b) = pm and o(c) = p.
In this case, m ≥ 2 if p > 2 and m ≥ 1 if p = 2.
If a, b and c are of the relation (4.4), then

G = 〈a, b, c | ap3
= bpm

= cp = 1, [a, b] = ap, [a, c] = 1, [b, c] = 1〉.

This is the group (7).
If a, b and c are of the relation (4.5), then

G = 〈a, b, c | a8 = b2m

= c2 = 1, [a, b] = a6, [a, c] = 1, [b, c] = 1〉.

This is the group (8).
If a, b and c are of the relation (4.6), then, let c1 = cb−p if p > 2 and m = 2. We get

o(c1) = o(c) and [a, c1] = 1. This is reduced to the group (7). If p > 2 and m ≥ 3, then

G = 〈a, b, c | ap3
= bpm

= cp = 1, [a, b] = ap, [a, c] = ap2
, [b, c] = 1〉.

This is the group (9).
If a, b and c are of the relation (4.7), then

G = 〈a, b, c | ap3
= bpm

= cp = 1, [a, b] = ap, [a, c] = 1, [b, c] = ap2〉.

This is the group (10).
Case 2.2.2 o(b) = pm+1 and o(c) = p.
In this case, m ≥ 1. Without loss of generality, we assume bpm

= asp2
, where (p, s) = 1.

If a, b and c are of the relation (4.4), then let b1 = ba−sp2−m

if p > 2 and m ≤ 2. We get
bpm

1 = 1. This is reduced to the group (7). If p = 2 and m = 1, then let b1 = ba−1. We get
bpm

1 = 1. This is reduced to the group (7). If p > 2 and m ≥ 3 or p = 2 and m ≥ 2, then

G = 〈a, b, c | ap3
= bpm+1

= cp = 1, [a, b] = ap, [a, c] = 1, [b, c] = 1, bpm

= ap2〉.

This is the group (11).
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If a, b and c are of the relation (4.5), then let a1 = ab2m−1
if m ≥ 2. We get o(a1) = o(a).

This is reduced to the group (11). Thus m = 1 and

G = 〈a, b, c | a8 = b4 = c2 = 1, [a, b] = a6, [a, c] = 1, [b, c] = 1, b2 = a4〉.

This is the group (12).
If a, b and c are of the relation (4.6), then let b1 = ba−sp if p > 2 and m = 1. We get

bp
1 = 1. This is reduced to the group (10). If p > 2 and m = 2, then let b1 = a and a1 = b. By

symmetry, the relation keeps invariant. Let b1 = ba−s. Then bpm

1 = 1. This is reduced to the
group (11). Thus, if p > 2 and m ≥ 3 or p = 2 and m ≥ 2, then

G = 〈a, b, c | ap3
= bpm+1

= cp = 1, [a, b] = ap, [a, c] = ap2
, [b, c] = 1, bpm

= ap2〉.

This is the group (13).
If a, b and c are of the relation (4.8), then let b1 = ba−sp2−m

if p > 2 and m ≤ 2. We get
bpm

1 = 1. This is reduced to the group (10). If p = 2 and m = 1, then let b1 = ba−s. We get
bp
1 = 1. This is reduced to the group (10). If p = 2 and m ≥ 1 or p > 2 and m ≥ 2, then let

c1 = caspb−pm−1
. We get cp

1 = 1, [a, c1] = [b, c1] = 1. This is reduced to the group (11).
In the case of o(b) = pm and o(c) = p2 or o(b) = pm+1 and o(c) = p2, by a similar argument

as that of Cases 2.2.1 and 2.2.2, we get the groups (7)–(13). There is no new group to occur.
Those groups listed in Theorem 4.1 are pairwise non-isomorphic. To prove this is a tedious

but not trivial work, so the details are omitted.
Finally, we prove that the groups (1)–(13) in Theorem 4.1 satisfy the hypothesis by taking

the group (1) for example. Let G be the group (1), that is,

G = 〈a, b, c | apn+2
= bpm

= cp = 1, [a, b] = apn

, [a, c] = 1, [b, c] = 1〉.

By calculation, we get Φ(G) = 〈ap, bp〉, and

M1 = 〈b, c, ap〉, M2 = 〈abi, ap, bp, c〉 and M3 = 〈acj , ap, bp, bct〉

are all maximal subgroups of G, where 0 ≤ i, j, t < p. It is easy to see that M1 and M2 contain a
subgroup which is isomorphic to C3

p . This means that G has at least two distinct nonmetacyclic
maximal subgroups. On the other hand, |M ′

1| = |M ′
2| = p. This means that M1 and M2 satisfy

the hypothesis.
For the maximal subgroup M3, if p = 2, then Φ(M3) = 〈a2, b2〉, and H1 = 〈bct, a2〉 and

H2 = 〈acj , (bct)m, a2, b2〉 are all maximal subgroups of M3, where 0 ≤ t, j, m < 2. It is easy to
prove that d(H1) = d(H2) = 2. It follows from Lemma 2.8 that M3 is metacyclic. If p > 2,
then M ′

3 ≤ G′ ≤ �1(M3). Thus ω(M3) = d(M3) = 2. It follows from Lemma 2.7 that M3 is
metacyclic. On the other hand, d(G) = 3 and |G′| = p2. It follows from [5, Theorem 3.1] that
G is not a D1-group. So the group (1) satisfies the hypothesis.

Theorem 4.2 If G is a D1-group, then G is a P-group satisfying Assumption 4.1 if and
only if G is isomorphic to one of the following non-isomorphic groups:

(1) Cpn × Cpm × Cp, where n ≥ m > 1;
(2) 〈a, b, c | apn

= bp = cpk+1
= 1, [a, b] = cpk

, [c, a] = [c, b] = 1〉 ∼= Mp(n, 1, 1) ∗ Cpk+1 ,
where n > 1;
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(3) 〈a, b, c | apn

= bp = cpk

= 1, [a, b] = apn−1
, [c, a] = [c, b] = 1〉 ∼= Mp(n, 1) × Cpk , where

n > 1, k > 1;
(4) 〈a, b, c | apn

= bpm

= cp = 1, [a, b] = apn−1
, [c, a] = [c, b] = 1〉 ∼= Mp(n, m) × Cp, where

n > 1, m > 1;
(5) 〈a, b, c | ap = bpm+1

= cpm+1
= 1, [b, c] = 1, [c, a] = cpm

, [a, b] = b−pm〉, where p > 2;
(6) 〈a, b, c | ap = bpm+1

= cpm+1
= 1, [b, c] = 1, [c, a] = bpm

cpm

, [a, b] = b−pm〉, where p > 2;
(7) 〈a, b, c | ap = bpm+1

= cpm+1
= 1, [b, c] = 1, [c, a] = bpm

ctpm

, [a, b] = b−tpm

cνpm〉, where
p > 2, ν = 1 or a fixed square non-residue modulo p. t2 �= −ν, and t ∈ {0, 1, · · · , p−1

2 };
(8) 〈a, b, c | a2 = b2m+1

= c2m+1
= 1, [b, c] = 1, [c, a] = b2m

, [a, b] = c2m〉;
(9) 〈a, b, c | a2 = b2m+1

= c2m+1
= 1, [b, c] = 1, [c, a] = c2m

, [a, b] = b2m〉;
(10) 〈a, b, c | a2 = b2m+1

= c2m+1
= 1, [b, c] = 1, [c, a] = b2m

, [a, b] = b2m

c2m〉;
(11) 〈a, b, c | ap = bpm+1

= cpn+1
= 1, [b, c] = 1, [a, b] = bpm

, [c, a] = ctpn〉, where m > n

and 1 ≤ t ≤ p − 1;
(12) 〈a, b, c | ap = bpm+1

= cpn+1
= 1, [b, c] = 1, [a, b] = cνpn

, [c, a] = bpm〉, where m > n

and ν = 1 or a fixed square non-residue modulo p;
(13) 〈a, b, c | apl+1

= bp = cpn+1
= 1, [b, c] = 1, [c, a] = cpn

, [a, b] = apl〉;
(14) 〈a, b, c | apl+1

= bpm+1
= cp = 1, [b, c] = 1, [c, a] = bpm

, [a, b] = apl〉;
(15) 〈a, b, c | b4 = c4 = 1, a2 = b2, [a, b] = c2, [a, c] = b2, [b, c] = 1〉.
Proof Since G has one metacyclic maximal subgroup, d(G) ≤ 3. By Lemma 2.19, |G′| ≤ p3.

Since G is a D1-group, G′ is one of the following possible cases by [5, Theorem 3.1]:
(i) |G′| ≤ p;
(ii) d(G) = 2, |G′| = p2;
(iii) d(G) = 2, c(G) = 3, G′ ∼= C3

p , where p > 2;
(iv) d(G) = 3, c(G) = 2, G′ ∼= C3

p or G′ ∼= C2
p .

Case 1 |G′| = 1.
In this case, d(G) = 3 and |G| ≥ p5. Thus G ∼= Cpn × Cpm × Cpk , where n ≥ m ≥ k.

We claim k = 1. If not, then M1
∼= Cpn × Cpm−1 × Cpk , M2

∼= Cpn−1 × Cpm × Cpk and M3
∼=

Cpn × Cpm × Cpk−1 are all maximal subgroups of G, and M1, M2 and M3 are nonmetacyclic,
a contradiction. Thus we get the group (1). Conversely, the group (1) satisfies the theorem’s
hypothesis.

Case 2 |G′| = p.
If d(G) = 2, then G is minimal nonabelian by Lemma 2.1. Since G is nonmetacyclic,

G ∼= Mp(n, m, 1) by Lemma 2.2. If m = 1, then G is the group (4) in Theorem 3.1. Obviously,
G is not the required group by the theorem’s hypothesis. If m > 1, then Φ(G) = 〈ap, bp, c〉,
and d(Φ(G)) = 3. It follows from Lemma 2.11 that Φ(G) is nonmetacyclic. This contradicts
Lemma 2.15.

Assume d(G) = 3. Then G is isomorphic to one of the groups in [13, Theorem 3.1].
If G is isomorphic to the group (1) or (2) in [13, Theorem 3.1], then G is the group (3) or

(4) in Theorem 3.2. So G is not the required group by the theorem’s hypothesis.
If G is isomorphic to the group (3) in [13, Theorem 3.1], that is, G ∼= Mp(n, m, 1) × Cpk ,

then Φ(G) = 〈ap, bp, cp, d〉 if m > 1. Notice that d(Φ(G)) ≥ 3. Then it follows from Lemma
2.11 that Φ(G) is nonmetacyclic. This contradicts Lemma 2.15. Thus m = 1.
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If k �= 1, then, by the same argument as that of the case when m > 1, a contradiction
occurs. If k = 1, then, it is easy to prove that all maximal subgroups of G are nonmetacyclic.
This contradicts the theorem’s hypothesis.

If G is isomorphic to the group (4) in [13, Theorem 3.1], that is, G ∼= Mp(n, m, 1) ∗ Cpk+1 ,
then, by the same argument as that of the case when m > 1 above, a contradiction occurs.
Thus m = 1. If n = 1, then G is the group (2) in Theorem 3.1. So G is not the required group.
If n > 1, then Φ(G) = 〈ap, cp, d〉, and

M1 = 〈b, c, ap〉, M2 = 〈aci, bcj , cp〉 and M3 = 〈abt, c〉

are all maximal subgroups of G, where 0 ≤ i, j, t < p. It is easy to verify that M1 and M2

are nonmetacyclic, and M3 is metacyclic. On the other hand, since |G′| = p, |M ′
1| ≤ p and

|M ′
2| ≤ p. Thus we get the group (2).
If G is isomorphic to the group (5) in [13, Theorem 3.1], that is, G ∼= Mp(n + 1, m) × Cpk ,

then, if m = k = 1, then G is the group (3) in Theorem 3.1. So G is not the required group.
If m = 1 and k �= 1, then Φ(G) = 〈ap, cp, d〉, and

M1 = 〈b, c, ap〉, M2 = 〈a, b, cp〉 and M3 = 〈a, c〉

are all maximal subgroups of G. It is easy to verify that M1 and M2 are nonmetacyclic, and
M3 is metacyclic. On the other hand, since |G′| = p, |M ′

1| ≤ p and |M ′
2| ≤ p. Thus we get the

group (3).
If m �= 1 and k = 1, then Φ(G) = 〈ap, bp, d〉, and

M1 = 〈b, c, ap〉, M2 = 〈abi, bp, c〉 and M3 = 〈acj , bct〉

are all maximal subgroups of G, where 0 ≤ i, j, t < p. It is easy to verify that M1 and M2

are nonmetacyclic, and M3 is metacyclic. On the other hand, since |G′| = p, |M ′
1| ≤ p and

|M ′
2| ≤ p. Thus we get the group (4).
Z(G) = 〈ap, c〉 ∼= Cpn−1×Cpk for the group (3), and Z(G) = 〈ap, bp, c〉 ∼= Cpn−1×Cpm−1×Cp

for the group (4), so the group (3) is not isomorphic to the group (4).
Case 3 d(G) = 2, |G′| = p2.
Let N ≤ G′ ∩ Z(G) and |N | = p. Then d(G/N) = 2 and |(G/N)′| = p. It follows from

Lemma 2.1 that G/N is minimal nonabelian.
If G′ ∼= C2

p , then G/N ∼= Mp(m, n, 1) by [14, Lemma 8(2) and Lemma 9]. Thus G is
isomorphic to one of the groups in [14, Theorem 11]. If G′ ∼= Cp2 , then G is isomorphic to one
of the groups in [14, Theorems 10 and 12] (notice that there is a typographical error in [14],
where Theorem 12 is printed to Theorem 11). By checking the list of groups in [14, Theorems
10–12], we get that G is metacyclic in [14, Theorem 10]. This is not the required group. Those
groups in [14, Theorems 11 and 12] do not satisfy the theorem’s hypothesis. The details are
omitted. So this case does not occur.

Case 4 d(G) = 2, c(G) = 3, G′ ∼= C3
p , p > 2.

Since G′ ∼= C3
p , G′ is nonmetacyclic. It follows from Lemma 2.11 that Φ(G) is nonmetacyclic.

This contradicts Lemma 2.15. So this case does not occur.
Case 5 d(G) = 3, c(G) = 2, G′ ∼= C3

p or C2
p .
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If G′ ∼= C3
p , then, by the same argument as that of Case 4, G is not the required group.

Assume G′ ∼= C2
p . By Lemma 2.16, Φ(G) ≤ Z(G). Thus G is the group in [13, Theorem 4.7].

It is enough to check that those groups satisfy the theorem’s hypothesis.
If G is one of the groups (A1)–(A3) and (A7)–(A8) in [13, Theorem 4.7], then Φ(G) =

〈ap, bp, cp〉 when l > 1. In this case, d(Φ(G)) = 3. Thus Φ(G) is nonmetacyclic. This contradicts
Lemma 2.15. So l = 1. It is easy to get that Φ(G) = 〈bp, cp〉, and

M1 = 〈a, c, bp〉, M2 = 〈a, b, cp〉 and M3 = 〈b, c〉

are all maximal subgroups of G. It is easy to check that M1 and M2 are nonmetacyclic, and
M3 is metacyclic. On the other hand, since G′ ∼= C2

p , we get |M ′
1| ≤ p and |M ′

2| ≤ p. Thus we
get the groups (5)–(7) and (11)–(12), respectively.

By the same argument as that of the above paragraph, we get the following conclusions:
If G is one of the groups (A4)–(A6) in [13, Theorem 4.7], then l = 1, and we get the groups

(8)–(10), respectively.
If G is the group (A9) in [13, Theorem 4.7], then m = 1, and we get the group (13).
If G is the group (A10) in [13, Theorem 4.7], then n = 1, and we get the group (14).
If G is one of the groups (A12) or (D) in [13, Theorem 4.7], then n = 1, and we get the

group (15).
If G is one of the groups (A11), (B1)–(B4) and (C) in [13, Theorem 4.7], then there is no

group to be the required.

5 P-Groups All of Whose Maximal Subgroups are Nonmetacyclic

For the convenience of classifying P-groups, here we give the classification of D1-groups. It
is not difficult to do this by [5, Theorem 3.1].

Theorem 5.1 Assume that G is a finite p-group. Then G is a D1-group if and only if G

is isomorphic to one of the following pairwise non-isomorphic groups:
(I) metacyclic groups
(1) an abelian group with d(G) ≤ 2;
(2) Mp(n, m);
(3) one of the groups in [14, Theorem 10];
(II) nonmetacyclic groups
(4) an abelian group with d(G) > 2;
(5) (A1 ∗ A2 ∗ A3 · · · ∗ As)Z(G), where A1, A2, · · · , As are minimal nonabelian groups. In

particular, if s = 1 and d(G) = 2, then G ∼= Mp(n, m, 1), where n ≥ m ≥ 2;
(6) one of the groups in [14, Theorems 11 and 12];
(7) one of the groups in [16, Theorem 4.9] with p > 2;
(8) one of the groups in [13, Theorem 4.8];
(9) one of the groups in [17, Theorem 3.1].

Proof If G is metacyclic, then d(G) ≤ 2 and G′ is cyclic. It follows from [5, Theorem 3.1]
that |G′| ≤ p or G′ ∼= Cp2 . If G′ = 1, then we get the group (1). If |G′| = p, then G ∼= Mp(n, m)
by Lemmas 2.1–2.2. We get the group (2). If G′ ∼= Cp2 , then there exists N < G′ such that
N �G and |N | = p. Let G = G/N . Then G is minimal nonabelian. Since G is metacyclic, G is
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metacyclic. Hence G ∼= Mp(n, m) by Lemma 2.2. Such groups with G′ ∼= Cp2 and G ∼= Mp(n, m)
are classified in [14], and G is one of the groups in [14, Theorem 10]. By a simple verification,
we get the group (3).

Assume that G is nonmetacyclic. Since G is a D1-group, G′ is one of the following possible
cases by [5, Theorem 3.1]:

(i) |G′| ≤ p;
(ii) d(G) = 2, |G′| = p2;
(iii) d(G) = 2, c(G) = 3, G′ ∼= C3

p , where p > 2;
(iv) d(G) = 3, c(G) = 2, G′ ∼= C3

p or G′ ∼= C2
p .

If G′ = 1, then G is abelian with d(G) > 2. This is the group (4).
If |G′| = p, then such groups are characterized in [18] and G = (A1 ∗A2 ∗A3 · · · ∗As)Z(G),

where A1, A2, · · · , As are minimal nonabelian groups. This is the group (5).
If d(G) = 2 and |G′| = p2, then there exists N < G′ such that N � G and |N | = p. Let

G = G/N . Then G is minimal nonabelian. Since G is nonmetacyclic, G is nonmetacyclic by
Lemma 2.10. It follows by Lemma 2.2 that G/N ∼= Mp(n, m, 1).

If G′ ∼= C2
p , then G is isomorphic to one of the groups in [14, Theorem 11]. If G′ ∼= Cp2 ,

then G is isomorphic to one of the groups in [14, Theorem 12]. By a simple verification, we get
the group (6).

If d(G) = 2, c(G) = 3 and G′ ∼= C3
p , where p > 2, then, by Lemmas 2.9 and 2.17, G is

isomorphic to one of the groups in [16, Theorem 4.9] with p > 2. This is the group (7).
If d(G) = 3, c(G) = 2 and G′ ∼= C2

p , then, by Lemma 2.16, G is isomorphic to one of the
groups in [13, Theorem 4.8]. This is the group (8).

If d(G) = 3, c(G) = 2 and G′ ∼= C3
p , then, by Lemma 2.16, G is isomorphic to one of the

groups in [17, Theorem 3.1]. This is the group (9).
Conversely, the groups in the theorem are D1-groups. The details are omitted.

Theorem 5.2 If all maximal subgroups of a finite p-group G are nonmetacyclic, then G is
a P-group if and only if G is isomorphic to one of the following non-isomorphic groups:

(1) an abelian group with d(G) > 3;
(2) (A1 ∗ A2 ∗ A3 · · · ∗ As)Z(G), where A1, A2, · · · , As are minimal nonabelian groups. In

particular, if s = 1 and d(G) = 2, then G ∼= Mp(n, m, 1), where n ≥ m ≥ 2. In addition, the
following groups are excepted: The groups (2)–(4) and (6) in Theorem 3.2, the group (4) in
Lemma 2.3, the groups (2)–(4) in Theorem 4.1 and the groups (2)–(4) in Theorem 3.1;

(3) one of the groups in [14, Theorems 11 and 12], where the following groups are excepted:
The group (1) with p > 2, groups (7) and (8) with p = 2 and m ≤ 2, and groups (2)–(4) in [14,

Theorem 11]; the groups (5)–(6) with p = 2 and m = 2 and group (11) in [14, Theorem 12];
(4) one of the groups in [16, Theorem 4.9] with p > 2;
(5) one of the groups in [13, Theorem 4.8], except for the groups (A1)–(A8) with l = 1, (A9)

with m = 1, (A10) with n = 1, (A12) and (D) in [13, Theorem 4.8];
(6) one of the groups in [17, Theorem 3.1].

Proof Since G is a P-group, G is a nonmetacyclic D1-group by the hypothesis. Thus G

is one of the groups of type II in Theorem 5.1. Since G has no metacyclic maximal subgroup,
we get the groups in the theorem by checking those groups in Theorems 3.1–3.2, 4.1–4.2 and
Lemma 2.3. The details are omitted.
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