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Abstract Cheng-type inequality, Cheeger-type inequality and Faber-Krahn-type inequal-
ity are generalized to Finsler manifolds. For a compact Finsler manifold with the weighted
Ricci curvature bounded from below by a negative constant, Li-Yau’s estimation of the
first eigenvalue is also given.

Keywords The first eigenvalue, Finsler-Laplacian, Ricci curvature, S-Curvature
2000 MR Subject Classification 53C60, 35P15

1 Introduction

In recent years, Finsler geometry has developed rapidly in its global and analytic aspects.
The present main work is to generalize and improve some famous theorems of Riemann geom-
etry to the Finsler setting. Among these issues, Finsler-Laplacian is one of the most important
and interesting projects. As is well-known, there are several definitions of Finsler-Laplacian
in Finsler geometry including nonlinear Laplacian, mean-value Laplacian and so on. With re-
gard to nonlinear Finsler-Laplacian, some Laplacian comparison theorems, volume comparison
theorems and various estimations on the first eigenvalue have been established (see [9, 12–13,
15]).

For a Riemannian n-manifold with Ric ≥ (n−1)k, Cheng [5] gave an upper bound estimation
of the first Dirichlet eigenvalue of a geodesic ball. By using the weighted Ricci curvature
condition, we extend this result to Finsler manifolds in this article (see Theorem 3.1). Besides,
we also obtain an upper bound estimation of the first Neumann eigenvalue on a compact Finsler
manifold in terms of the reversibility, the diameter and the lower bound of the weighted Ricci
curvature (see Theorem 3.2). It is worth mentioning that in [12] and [4], Shen and Chen
discussed these problems under the condition of Ricci curvature and S-curvature. However, in
[12], the upper bound dose not have an explicit expression, and in [4] the result only focuses
on the manifolds with Ricci curvature Ric ≥ (n − 1)k, k ≤ 0, while in this paper we will give
an explicit expression of the upper bound on Finsler manifolds with weighted Ricci curvature
RicN ≥ (n − 1)k, ∀k. Here RicN is defined in Definition 2.1 below.

It is well-known that Cheeger’s constant is estimated from below by a positive constant
which depends only on the diameter and the lower bound of Ricci curvature of M . By defining
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Cheeger’s constant on Finsler manifolds, we generalize the Cheeger’s inequality into the Finsler
setting (see Theorem 4.1). As to the Faber-Krahn inequality, Shen extended it in [6] to the
domains in a Minkowski space. In the present paper, we will consider the Randers manifolds
with constant flag curvature and obtain another Finsler version of Faber-Krahn inequality (see
Theorem 4.2).

In the Riemannian case, by using the gradient estimate, Li and Yau [7] gave the lower bound
of the first eigenvalue of manifolds with Ricci curvature bounded from below by a negative
constant. Recently, Wang and Xia [14] generalized it to Finsler manifolds by the method of
one-dimensional model. To give an explicit expression of the lower bound, we should use some
weighted-linear operators. The technique is based on a comparison theorem on the gradient of
the eigenfunction. Then we follow step by step the work of Li and Yau to get the result (see
Theorem 4.3).

The contents of this paper are arranged as follows. In Section 2, some fundamental formulas
which are necessary for the present paper are given, where some lemmas are contained. In
Section 3, the upper bounds of the first eigenvalue of Finsler-Laplacian such as Cheng’s type
of inequalities are obtained. In Section 4, the lower bounds of the first eigenvalue of Finsler-
Laplacian such as Cheeger type inequality, Faber-Krahn type inequality and Li-Yau’s estimation
are shown.

2 Preliminaries

Let M be an n-dimensional smooth manifold and π : TM → M be the natural projection
from the tangent bundle TM . Let (x, y) be a point of TM with x ∈ M , y ∈ TxM , and let
(xi, yi) be the local coordinates on TM with y = yi ∂

∂xi . A Finsler metric on M is a function
F : TM → [0, +∞) satisfying the following properties:

(i) (Regularity) F (x, y) is smooth in TM \ {0}.
(ii) (Positive homogeneity) F (x, λy) = λF (x, y) for λ > 0.
(iii) (Strong convexity) The fundamental quadratic form

g := gij(x, y)dxi ⊗ dxj , gij :=
1
2
[F 2]yiyj

is positively definite.
Let X = X i ∂

∂xi be a vector field. Then the covariant derivative of X by v ∈ TxM with
reference vector w ∈ TxM\{0} is defined by (see [2])

Dw
v X(x) :=

{
vj ∂X i

∂xj
(x) + Γi

jk(w)vjXk(x)
} ∂

∂xi
,

where Γi
jk denote the coefficients of the Chern connection.

Given two linearly independent vectors V, W ∈ TxM\{0}, the flag curvature is defined by

K(V, W ) :=
gV (RV (V, W )W, V )

gV (V, V )gV (W, W ) − gV (V, W )2
,

where RV is the Chern curvature:

RV (X, Y )Z = DV
XDV

Y Z − DV
Y DV

XZ − DV
[X,Y ]Z.
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Then the Ricci curvature for (M, F ) is defined as

Ric(V ) =
n−1∑
i=1

K(V, ei),

where e1, · · · , en−1,
V

F (V ) form an orthonormal basis of TxM with respect to gV .
For a given volume form dμ = σ(x)dx and a vector y ∈ TxM\{0}, the distortion of

(M, F, dμ) is defined by

τ(y) := ln

√
det(gij(y))

σ
.

To measure the rate of changes of the distortion along geodesics, we define

S(y) :=
d
dt

[τ(ċ(t))]t=0,

where c(t) is the geodesic with ċ(0) = y. S is called the S-curvature.
Now we introduce the weighted Ricci curvature on Finsler manifolds, which was defined by

Ohta. In the present paper, we reform it as follows.

Definition 2.1 (see [8]) Let (M, F, dμ) be a Finsler n-manifold with volume form dμ.
Given a vector V ∈ TxM , let γ : (−ε, ε) → M be a geodesic with γ(0) = x and γ̇(0) = V .
Define

Ṡ(V ) := F−2(V )
d
dt

[S(γ(t), γ̇(t))]t=0,

where S(V ) denotes the S-curvature at (x, V ).
The weighted Ricci curvature of (M, F, dμ) is defined by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ricn(V ) :=
{

Ric(V ) + Ṡ(V ) for S(V ) = 0,
−∞, otherwise,

RicN (V ) := Ric(V ) + Ṡ(V ) − S(V )2

(N − n)F (V )2
, ∀N ∈ (n,∞),

Ric∞(V ) := Ric(V ) + Ṡ(V ).

For a smooth function u : M → R, the gradient vector of u at x is defined as

∇u(x) :=

⎧⎨⎩gij(x,∇u)
∂u

∂xj

∂

∂xi
, du(x) 
= 0,

0, du(x) = 0.

Set MV := {x ∈ M | V (x) 
= 0} for a vector field V on M , and Mu := M∇u. For a smooth
vector field V on M and x ∈ MV , we define ∇V (x) ∈ T ∗

xM ⊗ TxM by using the covariant
derivative as

∇V (v) := DV
v V (x) ∈ TxM, v ∈ TxM.

For a smooth function u : M → R and x ∈ Mu, we set ∇2u(x) := ∇(∇u)(x). Let {ea}n
a=1 be a

local orthonormal basis with respect to g∇u on Mu and put uab = g∇u(D∇u
ea

∇u, eb). Then we
have

uab = uba, ∀a, b.

Let V = V i ∂
∂xi be a C∞ vector field on M . The divergence of V with respect to an arbitrary

volume form dμ is defined by

divV :=
n∑

i=1

(∂V i

∂xi
+ V i ∂Φ

∂xi

)
,
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where dμ = eΦdx. Then the Finsler-Laplacian of u can be defined by

Δu := div(∇u).

Given a vector field V such that V 
= 0 on Mu, the weighted gradient vector and the weighted
Laplacian on the weighted Riemannian manifold (M, gV ) are defined by

∇V u :=

{
gij(V )

∂u

∂xj

∂

∂xi
on Mu,

0 on M\Mu,
ΔV u := div(∇V u).

We note that∇∇uu = ∇u, and Δ∇uu = Δu.

Let (M, F ) be a Finsler manifold. Define the distance function by

d(p, q) := inf
γ

∫ 1

0

F (γ, γ̇(t))dt,

where the infimum is taken over all differentiable curves γ : [0, 1] → M with γ(0) = p and
γ(1) = q. Define reversibility η = η(M, F ) as

η := sup
X∈TM\{0}

F (−X)
F (X)

.

Obviously, η ∈ [1,∞), and η = 1 if and only if (M, F ) is reversible.

Lemma 2.1 (see [9]) Let (M, F, dμ) be a Finsler manifold with volume form dμ. If its
weighted Ricci curvature satisfies RicN ≥ K, K ∈ R, N ∈ (n,∞), then the Laplacian of the
distance function ρ(x) = d(p, x) from any given point p ∈ M can be estimated as follows:

Δρ ≤ (N − 1)ct
K

N−1
(ρ)

pointwise on M\({p} ∪ Cut(p)) and in the sense of distributions on M\{z}, where

ctc(ρ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

c · cot(
√

cρ), c > 0,

1
ρ
, c = 0,

√−c · coth(
√−cρ), c < 0.

Lemma 2.2 (see [11]) Let (M, F, dμ) be a Finsler metric measure space with volume form
dμ. Let ϕ be a piecewise C1 function on M such that every ϕ−1(t) is compact. Then for any
continuous function f on M ,∫

M

fF (∇ϕ)dμ =
∫ ∞

−∞

(∫
ϕ−1(t)

fdν
)
dt.

Lemma 2.3 (see [8]) Let (M, F, dμ) be a Finsler n-manifold with volume form dμ. Given
u ∈ C∞(M), we have

Δ∇u
(F (∇u)2

2

)
− D(Δu)(∇u) = |∇u|2Ric∞(∇u) + |∇2u|2HS(∇u)

pointwise on Mu, where |∇2u|2HS(∇u) stands for the Hilbert-Schmidt norm with respect to g∇u.
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Lemma 2.4 (see [15]) Let (M, F, dμ) be a Finsler n-manifold with volume form dμ and
u : M → R be a smooth function. Then on Mu we have

Δu = trg∇u(∇2u) − S(∇u) =
∑

a

uaa − S(∇u),

where uaa = g∇u(∇2u(ea), ea) and {ea}n
a=1 is a local g∇u-orthonormal basis on Mu.

3 The Upper Bound Estimation of the First Eigenvalue

For a positive number N , we denote by [N ] the integer part of N . Then N is defined by

N =
{

N, N ∈ N,
[N ] + 1, N ∈ R

+\N.
(3.1)

Theorem 3.1 Let (M, F, dμ) be a complete Finsler n-manifold with volume form dμ. If
the weighted Ricci curvature satisfies RicN ≥ (N − 1)k, N ∈ (n,∞), then the first Dirichlet
eigenvalue

λ1(Bp(r)) ≤ λ1(VN (k, r)),

where VN (k, r) denotes a geodesic ball with radius r in the N -dim simply connected space form
with sectional curvature k, and N is defined in (3.1).

Proof Let ϕ be the nonpositive first eigenfunction of VN (k, r). Since all simply connected
space forms are two-point homogenous, ϕ is a radial function. Namely, ϕ(x) = ϕ(d(x0, x)),
where x0 is the center of VN (k, r). Moreover, we have (see [5]){

ϕ′′(t) + (N − 1)ctk(t)ϕ′(t) + λ1(VN (k, r))ϕ(t) = 0,
ϕ(r) = 0, ϕ′(t) > 0, t ∈ (0, r).

Let ρ(x) = dF (p, x) be the distance function of (M, F ), u(x) = ϕ(ρ(x)). Since du = ϕ′dρ and
ϕ′ > 0, we find ∇u = ϕ′∇ρ. Using Lemma 2.1 and noting that F (∇ρ) = 1, we have

Δu =div(∇∇ρu) = div(∇∇ρϕ(ρ(x))) = div(ϕ′∇ρ) = ϕ′(ρ)Δρ + ∇ρ(ϕ′) = ϕ′′(ρ) + ϕ′(ρ)Δρ

≤ϕ′′(ρ) + (N − 1)ct
k
(t)ϕ′(ρ) = −λ1(VN (k, r))u.

Note that u|Bp(r) < 0 and u|∂Bp(r) = 0. It follows that∫
Bp(r)

(F ∗(du))2dμ =
∫

Bp(r)

du(∇u)dμ = −
∫

Bp(r)

uΔudμ

≤ λ1(VN (k, r))
∫

Bp(r)

u2dμ. (3.2)

Thus, λ1(Bp(r)) ≤
∫

Bp(r)(F
∗(du))2dμ∫

Bp(r) u2dμ
≤ λ1(VN (k, r)).

Corollary 3.1 Let (M, F, dμ) be a complete Finsler n-manifold volume form dμ. If the
Ricci curvature satisfies Ric ≥ (n−1)k and S-curvature S = 0, then the first Dirichlet eigenvalue

λ1(Bp(r)) ≤ λ1(Vn(k, r)),

where Vn(k, r) denotes a geodesic ball with radius r in the n-dim simply connected space form
with sectional curvature k.
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For a complete simply connected Finsler n-manifold with finite reversibility η, the authors
obtained in [16]

λ1(M) ≥ (n − 1)2

4η2
a2

under the condition that S ≤ 0 and K ≤ −a2 < 0. On the other hand, from Corollary 3.1 and
Cheng’s estimation on Vn(k, r), we have

λ1(Bp(r)) ≤ (n − 1)2

4
a2 +

C(n)
r2

for k = −a2. By the discussion above, we can state the following result.

Corollary 3.2 Let (M, F, dμ) be a complete and simply connected reversible Finsler n-
manifold with volume form dμ. If S = 0 and the flag curvature K = −a2, then

λ1(M) =
(n − 1)2

4
a2.

Remark 3.1 The result of Corollary 3.2 was also obtained by Chen [4].

Let (M, F, dμ) be a compact Finsler n-manifold with volume form dμ and boundary ∂M .
If there exists a function u ∈ W 1,2(M) satisfying

Δu = −μ1u in M

with a boundary condition
∇u ∈ Tx(∂M),

we call μ1 the first Neumann eigenvalue of the Finsler-Laplacian (see also [14]).

Theorem 3.2 Let (M, F, dμ) be a compact Finsler n-manifold with volume form dμ and the
finite reversibility η. Suppose that the weighted Ricci curvature satisfies RicN ≥ (N − 1)k, N ∈
(n,∞). Then the first Neumann or closed eigenvalue

μ1(M) ≤ η2λ1

(
VN

(
k,

d

1 + η

))
,

where d denotes the diameter of M .

Proof Let p1, p2 ∈ M so that dF (p1, p2) = d. Choosing r = d
1+η , then Bp1(r)∩Bp2 (r) = ∅.

In fact, if there exists a point q ∈ Bp1(r) ∩ Bp2(r), then

d = dF (p1, p2) ≤ dF (p1, q) + dF (q, p2) ≤ dF (p1, q) + ηdF (p2, q) < r(1 + η) = d,

which is a contradiction. Thus from (3.2) we conclude∫
Bpi

( d
1+η )

(F ∗(dui))2dμ ≤ λ1

(
VN

(
k,

d

1 + η

))∫
Bpi

( d
1+η )

u2
i dμ, i = 1, 2,

where ui are defined as in the proof of Theorem 3.1. Extend ui to be zero outside Bpi(
d

1+η )
and take a1 =

∫
M

u2dμ, a2 = − ∫
M

u1dμ. Then a1 < 0, a2 > 0 and

u := a1u1 + a2u2 
= 0,

∫
M

udμ = 0.
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Define η∗ := sup
θ∈T∗M\{0}

F∗(−θ)
F∗(θ) . Then we know from [4] that η∗ = η. Hence,

μ1(M)
∫

M

u2dμ ≤
∫

M

(F ∗(du))2dμ =
2∑

i=1

∫
Bpi

( d
1+η )

(F ∗(aidui))2dμ

a1<0<a2= a2
1

∫
Bp1( d

1+η )

(F ∗(−du1))2dμ + a2
2

∫
Bp2 ( d

1+η )

(F ∗(du2))2dμ

≤ η2
2∑

i=1

a2
i

∫
Bpi

( d
1+η )

(F ∗(dui))2dμ

≤ η2λ1

(
VN

(
k,

d

1 + η

)) 2∑
i=1

a2
i

∫
Bpi

( d
1+η )

u2
i dμ

= η2λ1

(
VN

(
k,

d

1 + η

))∫
M

u2dμ.

This completes the proof.

In [5], Cheng obtained the upper bound estimation of the first eigenvalue of a geodesic ball
in the space form (see also in [10]). Thus, we give the following proposition.

Proposition 3.1 Let (M, F, dμ) be a compact Finsler n-manifold with volume form dμ and
the finite reversibility η. If the weighted Ricci curvature satisfies RicN ≥ (N −1)k, N ∈ (n,∞),
then the first Neumann eigenvalue

μ1(M) ≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

η2(1 + η)2Nπ2

4d2
, k = 1,

N(N + 4)(1 + η)2η2

2d2
, k = 0,

(N − 1)2η2

4
(−k) +

C(N )(1 + η)2η2

d2
, k < 0.

4 The Lower Bound Estimation of the First Eigenvalue

Let (M, F, dμ) be a compact Finsler n-manifold with volume form dμ and boundary ∂M .
For any x ∈ ∂M , there exist exactly two unit norm vectors n characterized by

Tx(∂M) = {V ∈ TxM | gn(n, V ) = 0, gn(n,n) = 1}.
We remark here that if n is a norm vector, then −n may not be a norm vector unless F is
reversible. Denote by n+ (resp. n−) the normal vector that points outwards (resp. inwards)
∂M . Then the induced volume forms of ∂M with respect to n+ and n− are

dν+ = i∗(n+�dμ) and dν− = i∗(n−�dμ).

Consequently, the volumes of ∂M with respect to n+ and n− are

vol+(∂M) =
∫

∂M

dν+ =
∫

∂M

i∗(n+�dμ) and vol−(∂M) =
∫

∂M

dν− =
∫

∂M

i∗(n−�dμ).

Note that vol+(∂M) 
= vol−(∂M) in general. In fact, the ratio vol+(∂M)
vol−(∂M) or vol−(∂M)

vol+(∂M) may be
very large (see [4] for details).



38 S. T. Yin and Q. He

In the Riemannian case, Cheeger [3] defined a constant and gave an original estimation on
the lower bound of the first eigenvalue. Now we define Cheeger constant h(Ω) of Ω on Finsler
manifolds by

h(Ω) := inf
Ω′

min{vol+(∂Ω′), vol−(∂Ω′)}
vol(Ω′)

,

where Ω′ ranges over all open submanifolds of Ω with compact closure in Ω and smooth boundary
∂Ω′, vol(Ω′) denotes the volume of Ω′, and vol+(∂Ω′) and vol−(∂Ω′) denote the volumes of ∂Ω′

with respect to outwards normal vectors and inwards normal vectors, respectively.

Theorem 4.1 Let (M, F, dμ) be a complete Finsler n-manifold with volume form dμ. For
any bounded domain Ω with a piecewise smooth boundary in M , the first Dirichlet eigenvalue
satisfies

λ1 ≥ 1
4
h(Ω)2.

Proof By using Co-Area formula in Lemma 2.2, we have ∀ϕ ∈ C1(Ω), provided that
ϕ|Ω > 0, ϕ|∂Ω = 0, ∫

Ω

|∇ϕ|dμ =
∫ ∞

0

( ∫
ϕ−1(t)

dν
)
dt =

∫ ∞

0

vol−(ϕ = t)dt

=
∫ ∞

0

vol−(ϕ = t)
vol(ϕ ≥ t)

vol(ϕ ≥ t)dt

≥ inf
t

vol−(ϕ = t)
vol(ϕ ≥ t)

∫ ∞

0

vol(ϕ ≥ t)dt

≥ h(Ω)
∫

Ω

|ϕ|dμ.

Let f be the first eigenfunction with the Dirichlet boundary condition. Then from [12], we
know that f ∈ C1,α(Ω). If f > 0 in Ω, then let ϕ = f2 and we have∫

Ω

|∇f2|dμ ≥ h(Ω)
∫

Ω

f2dμ. (4.1)

On the other hand, it follows from Legendre transform that

∇f2 = L(2fdf) = 2fL(df) = 2f∇f.

Using Hölder’s inequality, one gets∫
Ω

|∇f2|dμ = 2
∫

Ω

f |∇f |dμ ≤ 2
(∫

Ω

f2dμ
) 1

2
( ∫

Ω

|∇f |2dμ
) 1

2
. (4.2)

Substituting (4.2) into (4.1), one has

λ1 =

∫
Ω |∇f |2dμ∫

Ω
f2dμ

≥ 1
4
h(Ω)2.

If f < 0 in Ω, we choose ϕ = −f2. Then by a similar argument as above, we have∫
Ω

|∇ϕ|dμ ≥ h(Ω)
∫

Ω

|ϕ|dμ.
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In this case, dϕ = −2fdf, which yields∫
Ω

|∇∇ff2|dμ ≥ h(Ω)
∫

Ω

f2dμ.

Since ∇∇ff2 = 2f∇f , a similar argument gives

λ1 =

∫
Ω
|∇f |2dμ∫
Ω f2dμ

≥ 1
4
h(Ω)2.

If f changes its sign in Ω, then we can choose a domain Ω̃ ⊂ Ω such that f > 0 in Ω̃ and
f |∂Ω̃ = 0. Define

f1 := f |Ω̃.

Then {
Δf1 = −λ1f1 in Ω̃,

f1 = 0 on ∂Ω̃.

From the above formula we find that f1 is the eigenfunction of Ω̃ and λ1 is an eigenvalue of
Ω̃ which implies λ1 ≥ λ1(Ω̃). On the other hand, since Ω̃ ⊂ Ω, λ1(Ω̃) ≥ λ1(Ω) = λ1. Thus
λ1(Ω̃) = λ1. According to the discussion above, we have

λ1 ≥ 1
4
h(Ω̃)2 ≥ 1

4
h(Ω)2.

Combining three cases above, we complete the proof.

Using Zermelo’s navigation idea, we can express a Randers metric F = α + β in terms of a
Riemannian metric h =

√
hij(x)yiyj and a vector field W = W i ∂

∂xi by

F =

√
λh2 + W 2

0

λ
− W0

λ
, W0 = Wiy

i, (4.3)

where Wi = hijW
i and

λ := 1 − WiW
i = 1 − h(x, W )2.

Theorem 4.2 Let (M, F, dμ) be a Randers manifold with Busemann-Hausdorff volume form
and the finite reversibility η, where F is expressed by (4.3) and has constant flag curvature. Let
Ω ⊂ M be a domain and B be a geodesic ball of Riemannian manifold (M, h). If voldμ(Ω) =
voldμ(B), then the first Dirichlet eigenvalue satisfies

λ1(Ω) ≥ 1
η2

λ1(B),

where the equality holds if and only if F = h and Ω = B.

Proof Firstly we have that if (M, F ) has constant flag curvature, then (M, h) has constant
sectional curvature (see [1]). Let f be the first Dirichlet eigenfunction corresponding to the first
eigenvalue λ1 in Ω, that is, {

Δf = −λ1f in Ω,

f = 0 on ∂Ω.
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When f > 0 in Ω, we set Ωt := {x ∈ Ω | f(x) > t} and Γt := {x ∈ Ω | f(x) = t}. Using a
symmetrization procedure, we construct the geodesic ball Bt in (M, h) such that voldμ(Bt) =
voldμ(Ωt) for each t, and B = B0. We define a function g : B → R+ such that g is a radially
decreasing function and ∂Bt = {x ∈ B | g(x) = t}.

Notice the important fact that dμ = dVh where dVh is the Riemaniann volume form of
(M, h) (see [1, p. 12]). Using Co-Area formula in Lemma 2.2, we have∫

Ω

f2dμ =
∫ ∞

0

∫
Γt

f2

F (∇f)
dνtdt =

∫ ∞

0

t2
(∫

Γt

dνt

F (∇f)

)
dt

= −
∫ ∞

0

t2
d
dt

voldμ(Ωt)dt = −
∫ ∞

0

t2
d
dt

voldVh(Bt)dt

=
∫ ∞

0

t2
( ∫

Bt

dAt

h(∇hg)

)
dt =

∫ ∞

0

∫
∂Bt

g2

h(∇hg)
dAtdt

=
∫

B

g2dVh =
∫

B

g2dVF , (4.4)

where dνt and dAt denote the volume elements on Γt and ∂Bt respectively, and ∇hg denotes
the gradient of g with respect to h. Here we have used the identity

d
dt

voldμ(Ωt) = −
∫

Γt

dνt

F (∇f)
.

From the discussion in [10, p. 28], we find

dAt = i∗(nh�dμ) = gn(n,nh)dνt,

where n = ∇f
F (∇f) and nh = ∇hf

h(∇hf) denote the unit normal vector fields of ∂Ωt with respect to

F and h respectively. Since ‖W‖h := sup
y∈TM

Wiy
i

h ≤ b0 < 1, for an arbitrary vector X , one gets

h(X) =
λh(X)√

λh(X)2 + W (X)2 − W (X)
F (X)

=
(√

λ +
W (X)2

h(X)2
+

W (X)
h(X)

)
F (X)

≥ inf
y∈TM

(√
λ +

W 2
0

h2
+

W0

h

)
F (X) (4.5)

≥ (1 − b0)F (X).

Using Hölder’s inequality, the isoperimetric inequality and (4.5), we obtain∫
Γt

F (∇f)dνt

∫
Γt

dνt

F (∇f)
≥

( ∫
Γt

dνt

)2

=
( ∫

Γt

dAt

gn(n,nh)

)2

≥ (1 − b0)2
(∫

Γt

dAt

)2

≥ (1 − b0)2
(∫

∂Bt

dAt

)2

,
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which yields ∫
Γt

F (∇f)dνt ≥
(
∫
Γt

dνt)2

− d
dtvoldμ(Ωt)

≥ (1 − b0)2
(
∫

∂Bt
dAt)2

− d
dtvoldVh(Bt)

≥ (1 − b0)2
(
∫

∂Bt
dAt)2∫

∂Bt

dAt

h(∇hg)

= (1 − b0)2
∫

∂Bt

h(∇hg)dAt. (4.6)

Recall that the dual metric of (4.3) is

F ∗ := h∗ + W ∗ =
√

hijξiξj + W iξi,

where (hij) = (hij)−1 and W i = Wjh
ij . Thus for a C1 function f , we have

F (∇f) = F ∗(df) = h∗(df) + W ifi = h(∇hf) + W ifi,

from which we conclude

(1 − b0)h(∇hf) ≤ F (∇f) ≤ (1 + b0)h(∇hf). (4.7)

From (4.6)–(4.7), we obtain∫
Ω

F (∇f)2dμ =
∫ ∞

0

(∫
Γt

F (∇f)dνt

)
dt ≥ (1 − b0)2

∫ ∞

0

(∫
∂Bt

h(∇hg)dAt

)
dt

= (1 − b0)2
∫

B

h(∇hg)2dVh ≥ (1 − b0)2

(1 + b0)2

∫
B

F (∇g)2dμ. (4.8)

By using (4.4) and (4.8), it follows that

λ1(Ω) ≥ λ1(B)
η2

.

Here we have used the fact that η = 1+b0
1−b0

.
If the equality holds, then the above inequalities become equalities. In particular,⎧⎨⎩

F (∇f) = (1 + b0)h(∇hf),
h(∇hf) = (1 − b0)F (∇hf),
gn(n,nh) = F (nh).

The third formula implies h(∇hf)2 = F (∇f)F (∇hf), which together with the first two formulas
yields b0 = 0. In this case, F = h and Ω = B.

When f < 0 in Ω, we set Ωt := {x ∈ Ω | f(x) < t} and Γt := {x ∈ Ω | f(x) = t}. Then by
a similar argument as the above, we also give the conclusion.

When f changes its sign in Ω, we can choose a domain Ω̃ ⊂ Ω such that f |Ω̃ > 0 and
f |∂Ω̃ = 0. Define

f1 := f |Ω̃.

Then f1 is the first eigenfunction of Ω̃ corresponding to λ1. Using the conclusion of the first
case, we have

λ1(Ω̃) ≥ 1
η2

λ1(B̃),
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where B̃ ⊂ B is a geodesic ball of Riemannian manifold (M, h) with voldμ(Ω̃) = voldμ(B̃).
Since λ1(Ω̃) = λ1 and λ1(B̃) ≥ λ1(B), we obtain

λ1(Ω) ≥ 1
η2

λ1(B).

Theorem 4.3 Let (M, F, dμ) be a compact Finsler n-manifold with volume form dμ, without
boundary. If the weighted Ricci curvature RicN ≥ (n − 1)(−k) for k ≥ 0 and N ∈ (n,∞), then
the first closed eigenvalue

μ1(M) ≥ 2 + 2
√

1 + 3.3(n − 1)(N − 1)d2k

3.3(N − 1)d2
exp{−[1 +

√
1 + 3.3(n − 1)(N − 1)d2k]},

where d denotes the diameter of M .

Proof Let u be the first eigenfunction of Finsler-Laplacian. Then
∫

M
udμ = 0. Without

loss of generality, we assume that −m = inf u < sup u = 1, where m ≤ 1. Let β > 1 be a real
number. We define the function

G(x) :=
|∇u|2

(β − u)2
. (4.9)

Suppose that x0 is a maximum point on M . Then x0 ∈ Mu and

∇∇uG(x0) = 0, Δ∇uG(x0) ≤ 0. (4.10)

From (4.9), we get

Δ∇uG · (β − u)2 + 2g∇u(∇∇uG,∇∇u(β − u)2) + GΔ∇u(β − u)2 = Δ∇u|∇u|2.

Then at x0 we have
Δ∇u|∇u|2 − GΔ∇u(β − u)2 ≤ 0.

Using Lemma 2.3, one gets

|∇2u|2HS(∇u) + g∇u

(∇∇uΔu,∇u
)

+ |∇u|2Ric∞(∇u) − 1
2
G[div(∇∇u((β − u)2))] ≤ 0,

where
div(∇∇u((β − u)2)) = 2div((u − β)∇u) = 2(u − β)Δu + 2|∇u|2.

Since u is the eigenfunction of Laplacian, we have

|∇2u|2HS(∇u) − μ1|∇u|2 + |∇u|2Ric∞(∇u) − G[μ1u(β − u) + |∇u|2] ≤ 0. (4.11)

A direct calculation on the first formula of (4.10) yields

∇2u(∇u) = −|∇u|2
β − u

∇u.

Choosing a g∇u-orthonormal basis at x0 such that e1 = ∇u
|∇u| , e2, · · · , en, we have⎧⎨⎩u11 = −|∇u|2

β − u
,

u1a = 0, a > 1.
(4.12)
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By using the standard inequality and Lemma 2.4, one has for 0 < ε < 1 that
n∑

a,b=2

u2
ab ≥

n∑
a=2

u2
aa ≥ 1

n − 1

( n∑
a=2

uaa

)2

=
1

n − 1
(Δu − u11 + S(∇u))2

=
(Δu − u11)2

N − 1
− S(∇u)2

N − n
+

(N − n)(N − 1)
n − 1

(Δu − u11

N − 1
+

S(∇u)
N − n

)2

≥ (Δu − u11)2

N − 1
− S(∇u)2

N − n

≥ 1 − ε

N − 1
u2

11 −
1 − ε

ε(N − 1)
μ2

1u
2 − S(∇u)2

N − n
. (4.13)

Using (4.11)–(4.13) and noting that RicN ≥ (n − 1)(−k), we obtain

1 − ε

N − 1
|∇u|4

(β − u)2
− 1 − ε

ε(N − 1)
μ2

1u
2 − (μ1 + (n − 1)k)|∇u|2 − μ1u

|∇u|2
β − u

≤ 0. (4.14)

Set α := u
β−u . Then −1 ≤ α ≤ 1

β−1 . Thus (4.14) can be changed into

1 − ε

N − 1
G2(x0) − 1 − ε

ε(N − 1)
μ2

1α
2 − (μ1 + (n − 1)k + μ1α)G(x0) ≤ 0. (4.15)

Viewing (4.15) as a quadratic inequality and noting that |α| ≤ max{1, 1
β−1} ≤ β

β−1 , we have

G(x0) ≤ N − 1
2(1 − ε)

{
2(μ1 + (n − 1)k + μ1α) +

2(1 − ε)
(N − 1)

√
ε
μ1|α|

}
≤

( 1
1 − ε

+
1√
ε

)
(N − 1)

(
(n − 1)k +

μ1β

β − 1

)
ε= 1

3≤ 3.3(N − 1)
(
(n − 1)k +

μ1β

β − 1

)
.

Therefore, for an arbitrary point x ∈ M , it is concluded that

|∇u| ≤
√

3.3(N − 1)
(
(n − 1)k +

μ1β

β − 1

)
(β − u).

Let x1, x2 be two points such that u(x1) = 0 and u(x2) = 1. Consider a regular minimal
geodesic γ(s) joining x1 and x2, and then

log
β

β − 1
=

∫ 1

0

du

β − u
=

∫
γ

γ̇(u)
β − u

ds

=
∫

γ

g∇u(∇u, γ̇)
β − u

ds ≤
∫

γ

|∇u|
β − u

ds

≤
√

3.3(N − 1)
(
(n − 1)k +

μ1β

β − 1

)
d,

where d is the diameter of M . Hence

μ1 ≥ β − 1
β

[ 1
3.3(N − 1)d2

(
log

β

β − 1

)2

− (n − 1)k
]
. (4.16)
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Let f(y) := y[a(log y)2 − b]. Then f(y) attains its maximum when y = exp
( − 1 −

√
1 + b

a

)
.

Putting a = 1
3.3(N−1)d2 , b = (n − 1)k and y = β−1

β into (4.16), we have

μ1 ≥ 2 + 2
√

1 + 3.3(n − 1)(N − 1)d2k

3.3(N − 1)d2
exp{−[1 +

√
1 + 3.3(n − 1)(N − 1)d2k]}.
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