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Non-degeneracy of Extremal Points∗
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Abstract For a family of smooth functions, the author shows that, under certain generic
conditions, all extremal (minimal and maximal) points are non-degenerate.
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1 Introduction

It is well-known that the set of Morse functions is residual in Cr(M, R) space, where M is
a closed manifold and r ≥ 2. Let us extend this issue to a family of smooth functions. Let
Fλ : M → R be a family of smooth functions continuously depending on a parameter λ ∈ [0, 1],
it is natural to ask that whether there exists a residual set R ⊂ Cr(M, R) such that for each
V ∈ R and for each λ ∈ [0, 1], the function Fλ + V is a Morse function. Unfortunately, it is not
true even if Fλ smoothly depends on the parameter. Here is a counterexample. Let Fλ : T → R

be a family of functions such that for each λ ∈ [0, 1], Fλ takes its maximum at x = 1
2π, takes

its minimum at x = − 1
2π and Fλ = 1

3x3 − (
1
2 − λ

)
x when the variables (λ, x) are restricted

in a suitably small neighborhood of the origin
(

1
2 , 0

)
. Clearly, the point x = ±(

1
2 − λ

) 1
2 is

the non-degenerate critical point of Fλ for λ > 0. There exists no critical point of Fλ in the
neighborhood of x = 0 for λ > 1

2 . For λ = 1
2 , the point x = 0 is a degenerate critical point. We

note that the third derivative of Fλ is bounded away from zero for all λ when x remains close
to the origin and the second derivative monotonously increases with respect to λ. Therefore,
for any C3-small perturbation V , certain λV exists such that

∣∣λV − 1
2

∣∣ is small and FλV + V

has a degenerate critical point close to the origin.
However, we are in different situation if we only consider the minimal as well as the maximal

points of functions. Let [a] denote the integer part of the real number a. The following theorem
is the main result of this paper.

Theorem 1.1 Let Fλ : T → R be a family of Cr-functions depending on the parameter
λ ∈ [0, 1].

(1) If r ≥ 4 and Fλ is Lipschitz in the parameter λ, there exists an open-dense set O ⊂
Cr(T, R) such that for each V ∈ O and each λ ∈ [0, 1], each global minimum as well as each
global maximum of Fλ − V is non-degenerate.
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(2) More generally, if Fλ is α-Hölder continuous in λ (0 < α ≤ 1) and

k =
[1
4

( 2
α

+ 1 +

√( 2
α

+ 1
)2

+ 16
)]

− 1,

then there exists an open-dense set O ⊂ Cr(T, R) (r ≥ 2k + 2) such that for each V ∈ O and
each λ ∈ [0, 1], certain weak non-degeneracy condition holds at each global minimum as well as
each global maximum of Fλ − V : Some integer 1 ≤ � ≤ k exists such that ∂2�(Fλ−V )

∂x2� �= 0.

For the function of Lagrange action, the non-degeneracy of critical points corresponds to
the hyperbolicity of periodic orbits of Lagrange flow (see [1]). It is closely related to the Mañé
conjecture (see [2]), one can refer to [3] for some new progress in this problem.

We feel that the result can be extended to functions defined on closed smooth manifold with
finite dimensions.

Conjecture 1.1 Let Fλ ∈ C4(M, R) be a family of smooth functions, where M is a closed
smooth manifold and λ ∈ [0, 1]. If Fλ is Lipschitz in the parameter λ, then some open-dense
set O ⊂ C4(M, R) exists such that for each V ∈ O and each λ ∈ [0, 1], each global minimum as
well as each global maximum of Fλ − V is non-degenerate.

2 Proof

We only need to prove the second part of the theorem, the first part is a special case of
the second one. Obviously, the set O is the open set, as weak non-degeneracy of the critical
point survives small perturbation. Therefore, we only need to show the density. Also, we only
need to prove the non-degeneracy of the minimum, it is the same for the non-degeneracy of the
maximum. Towards this goal, we introduce a set of small perturbations with 2k+2 parameters:

V =
{
V = ε

k+1∑
i=1

(Ai cos ix + Bi sin ix) : (A1, B1, · · · , Ak+1, Bk+1) ∈ I
2k+2

}
,

where I = [1, 2]. Let

M =
2

(2k + 2)!
sup
x,λ

|∂2k+2
x Fλ|.

We are going to show that, for any small numbers ε, d > 0, there exists (A1, B1, · · · , Ak+1, Bk+1)
∈ I2k+2 such that

(Fλ − V )(x) − min
x

(Fλ − V ) ≥ M |x − x∗|2k+2, ∀x ∈ [x∗ − d, x∗ + d] (2.1)

holds for each λ ∈ [0, 1] whenever the point x∗ is a global minimizer of Fλ − V . It implies that
there exists an even integer number 2 ≤ j ≤ 2k, such that the jth derivative of Fλ − V at x∗

is positive and the ith derivative is equal to zero for each i < j. Indeed, if there exists no such
even integer j, one can see that the (2k + 1)th derivative is also equal to zero because x∗ is
assumed the global minimum. Consequently, the above formula does not hold. In the following,
we define

OscIiF = max
x,x′∈Ii

|F (x) − F (x′)|.
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By choosing sufficiently large integer N , the numbers d = π
N and ε = d

1
p can be set arbitrarily

small, where the integer p ∈ Z+ will be determined later. Let

xi =
2iπ

N
, Ii = [xi − d, xi + d],

then
N−1⋃
i=0

Ii = T. Restricted on each interval Ii, each C∞-function V ∈ V is approximated by

the Taylor series (module constant)

Vi(x) = ε
( 2k+1∑

j=1

aj(x − xi)j + O(|x − xi|2k+2)
)
, ∀x ∈ Ii. (2.2)

Given two points (a1, a2, · · · , a2k+1) and (a′
1, a

′
2, · · · , a′

2k+1), we obtain two functions Vi(x)
and V ′

i (x) in the form of Taylor series as shown in (2.2). Let ΔV = V ′
i − Vi, Δaj = a′

j − aj for
j = 1, 2, · · · , 2k + 1. We have ΔV (xi) = 0 and

ΔV (xi + d) + ΔV (xi − d) = 2ε(Δa2d + Δa4d
3 + · · · + Δa2kd2k−1)d + O(εd2k+2),

ΔV (xi + d) − ΔV (xi − d) = 2ε(Δa1 + Δa3d
2 + · · · + Δa2k+1d

2k)d + O(εd2k+2),

ΔV
(
xi ± 1

2
d
)

= ε
(
± 1

2
Δa1 +

1
4
Δa2d ± 1

8
Δa3d

2 + · · ·

+
1

22k
Δa2kd2k−1 ± 1

22k+1
Δa2k+1d

2k
)
d + O(εd2k+2).

It follows that

OscIi(V
′
i − Vi) ≥ ε

22k+1
max{|Δa1|, |Δa2|d, |Δa3|d2, · · · , |Δa2k+1d

2k|}d. (2.3)

Let M1 = 3 · 22k+1M . We construct a grid for the parameters {aj}2k+1
j=1 by splitting the

domain equally into a family of cuboids and setting the size by

Δa1 = M1d
2k+1− 1

p , Δa2 = M1d
2k− 1

p , · · · , Δa2k = M1d
2− 1

p , Δa2k+1 = M1d
1− 1

p .

These cuboids are denoted by cij with j ∈ Ji = {1, 2, · · · }, the cardinality of the set of the
subscripts is up to the order

#(Ji) = M2[d−(k+1)(2k+1)+ 2k+1
p ],

where the integer 0 < M2 ∈ N is independent of d. If OscIiFλ(·) ≤ Md2k+2, we obtain from
the formula (2.3) that

OscIi(Fλ(x) − V (x)) ≥ 2Md2k+2,

if
V (x) = ε(a1(x − xi) + a2(x − xi)2 + · · · + a2k+1(x − xi)2k+1 + O(|x − xi|2k+2))

with
max{|a1|d−(2k+1)+ 1

p , |a2|d−2k+ 1
p , · · · , |a2k|d−2+ 1

p , |a2k+1|d−1+ 1
p } ≥ M1.

The coefficients (a1, a2, · · · , a2k+1) depend on the position xi and the parameters (A1, B1,

· · · , Ak+1, Bk+1). The gird for (a1, a2, · · · , a2k+1) induces the partition for the parameters
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(A1, B1, · · · , Ak+1, Bk+1), determined by the equation
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2

a3

a4

...
a2k

a2k+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= C(2k+1)×(2k+2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1

B1

A2

B2

...
Ak+1

Bk+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.4)

where C(2k+1)×(2k+2) is a (2k + 1) × (2k + 2) matrix as following

C(2k+1)×(2k+2) = [I1, I2, · · · , I2k+1, I2k+2]

in which each column has 2k + 1 entries which take the form

I2j−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

j cos
(π

2
+ jxi

)
j2 cos(π + jxi)

...

j2k cos
(
2k

π

2
+ jxi

)

j2k+1 cos
(
(2k + 1)

π

2
+ jxi

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

I2j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

j sin
(π

2
+ jxi

)
j2 sin(π + jxi)

...

j2k sin
(
2k

π

2
+ jxi

)

j2k+1 sin
(
(2k + 1)

π

2
+ jxi

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the integer j ranges from 1 to k + 1.
The coefficient matrix C(2k+1)(2k+2) is non-singular for each xi ∈ T. Indeed, and let M1 be

the (2k + 1) × (2k + 1) matrix constituted by first (2k + 1) columns of C, and let M2 be the
(2k + 1) × (2k + 1) matrix constituted by first 2k columns and the last column of C. We find

det(M1)(xi) = (−1)k−1M3 sin(k + 1)xi,

det(M2)(xi) = (−1)kM3 cos(k + 1)xi,

where the constant M3 is not equal to zero, and only depends on the integer k:

M3 =
k∏

j=2

(j3 − j)(j4 − j2)
k∏

j=3

j−1∏
�=2

(j2 − �2)2((k + 1)3 − (k + 1))
k∏

j=2

((k + 1)2 − j2).

It induces a positive lower bound

inf
xi∈T

{|det(M1)(xi)|, |det(M2)(xi)|} =
M3

2

√
2.
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Therefore, the grid for {aj}2k+1
j=1 induces a grid for (A1, B1, · · · , Ak+1, Bk+1) which contains

as many as M4[d−(k+1)(2k+1)+ 2k+1
p ] (2k + 2)-dimensional strips (M4 > 0 is independent of d),

denoted by sij with j ∈ Ji. Each sij is mapped onto cij by (2.4).
Given certain parameter λ ∈ [0, 1], if there exist Taylor coefficients {aj}2k+1

j=1 which determine
a perturbation V such that

OscIi(Fλ(x) − V (x)) ≤ Md2k+2,

then for any other Taylor coefficients {a′
j}2k+1

j=1 satisfying the condition

max
{ |a1 − a′

1|
M1d

2k+1− 1
p

,
|a2 − a′

2|
M1d

2k− 1
p

, · · · ,
|a2k − a′

2k|
M1d

2− 1
p

,
|a2k+1 − a′

2k+1|
M1d

1− 1
p

}
≥ 1,

which determines another perturbation V ′, one obtains from the formula (2.3) that

OscIi(Fλ(x) − V ′(x)) ≥ 2Md2k+2. (2.5)

Under the map defined by (2.4), the inverse image of a cuboid cj with the size

2M1d
2k+1− 1

p × 2M1d
2k− 1

p × · · · × 2M1d
2− 1

p × 2M1d
1− 1

p

is a strip in the parameter space of (A1, B1, A2, B2, · · · , Ak+1, Bk+1), denoted by sj(λ), with
the Lebesgue measure as small as N−1

3 [d(k+1)(2k+1)− 2k+1
p ]. If the cuboid cj is centered at

(a1j , a2j , · · · , a2k+1,j), then for (a′
1j , a

′
2j , · · · , a′

2k+1,j) /∈ cj , (2.5) holds. In other words, if
(A′

1, B
′
1, A

′
2, B

′
2, · · · , A′

k+1, B
′
k+1) /∈ sj , (2.5) holds.

Splitting the interval [0, 1] equally into small sub-intervals E� with the size |E�| = M−1
5 d

2k+2
α ,

we obtain as many as [M5d
− 2k+2

α ] small intervals. As the function Fλ is α-Hölder continuous
in λ, suitably large positive number M5 can be chosen so that

max
x∈Ii

|Fλ(x) − Fλ′ (x)| <
1
2
Md2k+2, ∀λ, λ′ ∈ E�.

Therefore, for V ∈ V with (A1, B1, A2, B2, · · · , Ak+1, Bk+1) /∈ sj , one has

OscIi(Fλ(x) − V (x)) ≥ Md2k+2. (2.6)

Picking up one parameter λ� in each small interval E�, we obtain [M5d
− 2k+2

α ] strips sj(λ�). By
considering all small intervals Ii with i = 0, 1, · · · , N − 1, we find

meas
(⋃

j,�

sj(λ�)
)
≤ N−1

3 d(k+1)(2k+1)− 2k+1
p M5d

− 2k+1
α d−1 = M5N

−1
3 dT ,

where
T = (2k + 2)

(
k − 1

α

)
+

(
k − 2k + 1

p

)
> 0

if we choose p = 2k + 2 and set

k =
[1
4

( 2
α

+ 1 +

√( 2
α

+ 1
)2

+ 16
)]

− 1.

Letting
Sc = I

2k+2\
⋃
j,�

sj(λ�),
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we obtain the Lebesgue measure estimate

meas(Sc) ≥ 1 − M5N
−1
3 dT → 1 as d → 0.

Obviously, for any (A1, B1, A2, B2, · · · , Ak+1, Bk+1) ∈ Sc, λ ∈ [0, 1] and i = 0, 1, 2, · · · ,

N − 1, (2.6) holds. It implies the density that all global minimal points of Fλ(·) satisfy the
following property: There is

1 ≤ � ≤ k,
∂2�(Fλ − V )

∂x2�
> 0.

Letting α = 1, one immediately obtains the first part of the theorem.
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