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Non-degeneracy of Extremal Points*
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1 Introduction

It is well-known that the set of Morse functions is residual in C"(M,R) space, where M is
a closed manifold and r > 2. Let us extend this issue to a family of smooth functions. Let
Fy : M — R be a family of smooth functions continuously depending on a parameter A € [0, 1],
it is natural to ask that whether there exists a residual set 8 C C"(M,R) such that for each
V € R and for each \ € [0, 1], the function F 4+ V is a Morse function. Unfortunately, it is not
true even if F smoothly depends on the parameter. Here is a counterexample. Let F : T — R
be a family of functions such that for each A € [0, 1], F) takes its maximum at z = %71’, takes
its minimum at =z = —%w and F = %x?’ - (% - )\)x when the variables (A, z) are restricted
in a suitably small neighborhood of the origin (%,0). Clearly, the point x = i(% — )\)% is
the non-degenerate critical point of F for A > 0. There exists no critical point of F) in the
neighborhood of x = 0 for A > % For A = %, the point x = 0 is a degenerate critical point. We
note that the third derivative of F) is bounded away from zero for all A when x remains close
to the origin and the second derivative monotonously increases with respect to A. Therefore,
for any C3-small perturbation V, certain Ay exists such that ‘)\V — %| is small and Fy, +V
has a degenerate critical point close to the origin.

However, we are in different situation if we only consider the minimal as well as the maximal
points of functions. Let [a] denote the integer part of the real number a. The following theorem

is the main result of this paper.

Theorem 1.1 Let F : T — R be a family of C"-functions depending on the parameter
A€ [0,1].

(1) Ifr > 4 and Fy is Lipschitz in the parameter A, there exists an open-dense set O C
C"(T,R) such that for each V € O and each A € [0,1], each global minimum as well as each
global mazximum of Fy —V is non-degenerate.
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(2) More generally, if Fy is a-Hélder continuous in A (0 < o < 1) and

1/2 2 2
k=714 (S+1) +16)] -1,
4\« «a
then there exists an open-dense set O C C"(T,R) (r > 2k + 2) such that for each V € O and
each A € [0,1], certain weak non-degeneracy condition holds at each global minimum as well as

each global maximum of Fy — V: Some integer 1 < £ < k exists such that % #0.

For the function of Lagrange action, the non-degeneracy of critical points corresponds to
the hyperbolicity of periodic orbits of Lagrange flow (see [1]). It is closely related to the Mané
conjecture (see [2]), one can refer to [3] for some new progress in this problem.

We feel that the result can be extended to functions defined on closed smooth manifold with

finite dimensions.

Conjecture 1.1 Let F\ € C*(M,R) be a family of smooth functions, where M is a closed
smooth manifold and A € [0,1]. If F) is Lipschitz in the parameter A, then some open-dense
set O C C*(M,R) exists such that for each V € O and each A € [0, 1], each global minimum as
well as each global maximum of F\ — V' is non-degenerate.

2 Proof

We only need to prove the second part of the theorem, the first part is a special case of
the second one. Obviously, the set O is the open set, as weak non-degeneracy of the critical
point survives small perturbation. Therefore, we only need to show the density. Also, we only
need to prove the non-degeneracy of the minimum, it is the same for the non-degeneracy of the
maximum. Towards this goal, we introduce a set of small perturbations with 2k + 2 parameters:

kt1
Y= {V = 62(141 cosiz + B;siniz) : (A1, B1, -+, Agt1, Bet1) € H%H},

i=1

where I = [1,2]. Let

2
M _ 2k+2F .
EEFIT G
We are going to show that, for any small numbers e, d > 0, there exists (A1, B1, -+, Agt1, Brt1)
€ 1?k*+2 such that
(Fx — V) (z) —min(Fy — V) > M|z — 2*|***2 V€ [2* —d,z* +d| (2.1)

holds for each A € [0, 1] whenever the point 2* is a global minimizer of F\ — V. It implies that
there exists an even integer number 2 < j < 2k, such that the jth derivative of F), — V at x*
is positive and the ith derivative is equal to zero for each i < j. Indeed, if there exists no such
even integer j, one can see that the (2k 4+ 1)th derivative is also equal to zero because x* is
assumed the global minimum. Consequently, the above formula does not hold. In the following,
we define

Oscp, F = max |F(z) — F(2)|.

z,x’'€l;
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By choosing sufficiently large integer N, the numbers d = § and € = dv can be set arbitrarily
small, where the integer p € Z,; will be determined later. Let

€T; = —— Ii:[xi—d,xi—l—d],

N-1
then |J I; = T. Restricted on each interval I;, each C*°-function V' € U is approximated by

the Taylor series (module constant)

241
Vi(z) = e( 3" aj(z —2:) + O(le - xi|2k+2)), vz € 1. (2.2)
j=1
Given two points (a1, az,--- ,azx11) and (af,ay,--- ,ay,,,), we obtain two functions V;(x)
and V/(x) in the form of Taylor series as shown in (2.2). Let AV =V/ —V;, Aa; = a} — a; for
j=1,2,---,2k+ 1. We have AV (z;) =0 and
AV (z; + d) + AV (z; — d) = 2¢(Aagd + Aagd® + - - - + Aagpd®1)d + O(ed* +?),
AV (z; +d) — AV (z; — d) = 2¢(Aay + Aazd® + - - + Aagpy1d*F)d + O(ed* 2),
1 1 1 1.
AV(mi + Ed) = e( + EAal + ZAagdi —Aaszd” +
1 -
+ o Aand® !t e a1 d?F ) d + O(ed? ),
It follows that
Oscy, (V) = V;) > max{|Aay|, |Aag|d, |Aas|d?, - - -, |Aagy,1d**|}d. (2.3)

= 22k+1

Let My, = 3- 2210, We construct a grid for the parameters {aj}?f{l by splitting the
domain equally into a family of cuboids and setting the size by

Aa1 = M1d2k+1_%, Aag = Mlko_%, Ty Aagk = Mldz_%, Aa2k+1 = Mldl__

These cuboids are denoted by C;; with j € J; = {1,2,---}, the cardinality of the set of the
subscripts is up to the order

#(J:) = JWQ[d_(k"‘l)(2k+1)_|.273#]7

where the integer 0 < Ms € N is independent of d. If Oscy, F\(-) < Md***2, we obtain from
the formula (2.3) that
Oscr, (Fa(z) = V(z)) > 2Md**2,

if
V(z) = e(ar(z — z5) + ag(x — )% + - + agpr1 (z — )2 + O(|z — 24 22))
with
max{|a1|d”C*TOHS Jaold 25 Jagk|d2HE Jagpan TP} > M.
The coefficients (ay,az,- - ,a2,+1) depend on the position z; and the parameters (Ay, By,

, A1, Biy1). The gird for (a1, a2, -+ ,asx+1) induces the partition for the parameters
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(A1, By, -+, Agt+1, Br11), determined by the equation
[ ai i [ A1 i
a2 Bl
as A2
W | = Crapsnyxrs | P2 | (2.4)
azy, Ag+1
| A2k+1 | [ Bre+1

where C(op41)x(2k+2) 15 @ (2k + 1) x (2k + 2) matrix as following

Cokt1)x@2kt+2) = U1, L2, Iopyr, Iopy2]

in which each column has 2k + 1 entries which take the form

5+ i)
§% cos(m + jx;)

) 7
jcos (—

Iy 1= : ;
32 cos (Zkﬁ —l—jmi)

3251 cos ((Qk +1)= —|—sz)

jsin (5 + jxi)
g2sin(m + jx;)

% sin (2]@% +jxi)

725+ sin ((Zk + 1)% + jmi)

where the integer j ranges from 1 to k& + 1.

The coefficient matrix C(ap1)(2k+2) is non-singular for each x; € T. Indeed, and let M; be
the (2k + 1) x (2k + 1) matrix constituted by first (2k 4 1) columns of C, and let My be the
(2k 4+ 1) x (2k + 1) matrix constituted by first 2k columns and the last column of C. We find

det(M;y)(z;) = (—=1)* " M3 sin(k + 1),
det(Ms)(z;) = (—1)F M3 cos(k + 1)a;,
where the constant Ms is not equal to zero, and only depends on the integer k:

k k j—1

k
Ms = T]G% - )G* - 52 HH; — 2 ((k+1)° = (k+ 1) [ ((k+1)* = j2).
j=3¢=2 j=2

Jj=2

It induces a positive lower bound

xiinEfT{|det(M1)($i)|7 |det (M) (z;)|} = %\/ﬁ
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Therefore, the grid for {a; ?f{l induces a grid for (A1, B1, -, Akt1, Br+1) which contains
as many as My[d~ (FHDER+D+ 2kp+1] (2k + 2)-dimensional strips (M4 > 0 is independent of d),
denoted by s;; with j € J;. Each S;; is mapped onto C;; by (2.4).

Given certain parameter A € [0, 1], if there exist Taylor coefficients {a, }

2k+1
)

i which determine

a perturbation V' such that

Oscy, (Fa(z) = V(x)) < Md*+2,

then for any other Taylor coefficients {a;}?g'l satisfying the condition
/
lag —aq|  lag — ab) |ask — aby| |agks1 — agyy,|
max 2k+1-1" 2k—17 2-1 7 1-1 21,
Mld P Mld P Mld P Mld P

which determines another perturbation V', one obtains from the formula (2.3) that
Oscr, (F\(z) — V'(x)) > 2Md***2. (2.5)

Under the map defined by (2.4), the inverse image of a cuboid €; with the size
My d?* 18 x 2Myd®FTE x - x 2Myd? T x 2Myd e
is a strip in the parameter space of (A1, B1, A2, B, -, Agt1, Biy1), denoted by 8;(X), with
2k+1

the Lebesgue measure as small as N?:l[d(k"’l)(%*‘l)_ 3 ]. If the cuboid C; is centered at
(a1j, a2, ,ask+1,5), then for (af;, a5, -+ ay, ;) ¢ €j, (2.5) holds. In other words, if
(Allv Bia A/Qa Bév T A;chlv B;chl) ¢ Sja (25) holds.

Splitting the interval [0, 1] equally into small sub-intervals E, with the size |E,| = Mgld%a_ﬂ,

we obtain as many as [M5d_2kai] small intervals. As the function F) is a-Holder continuous

in A, suitably large positive number My can be chosen so that
max |Fy(z) — Fx (2)] < %Mcl%"'z7 VAN € By
Therefore, for V'€ U with (Aq, B1, A2, Ba, - -+, Agt1, Bi+1) € Sj, one has
Oscy, (Fx(z) — V(z)) > Md**2, (2.6)

Picking up one parameter ¢ in each small interval Fy, we obtain [M5d_#] strips S;(A¢). By

considering all small intervals I; with ¢ =0,1,--- , N — 1, we find

meaS(USj(A[)) < Ngld(k+1)(2k+1)—2kp+lM5d_2k:1d_1 = MsN;'d?,
3.t

where

T:(2k+2)(k—§)+<k—2k;1) )

if we choose p = 2k + 2 and set
k= E(%+1+ (%4—1)2—1—16)} .y
Letting
S*=r*\s; (M),

J:t
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we obtain the Lebesgue measure estimate
meas(sc) >1— M5N§1dT —1 as d—0.

Obviously, for any (A1, By, A, By, -+, Apy1, Bey1) €S, A €[0,1] and i = 0,1,2,-- -,
N —1, (2.6) holds. It implies the density that all global minimal points of Fy(-) satisfy the
following property: There is

92 (Fy — V)
ax%

Letting o = 1, one immediately obtains the first part of the theorem.

1<0<Fk, > 0.
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