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Abstract Let M be a connected orientable compact irreducible 3-manifold. Suppose
that ∂M consists of two homeomorphic surfaces F1 and F2, and both F1 and F2 are
compressible in M . Suppose furthermore that g(M, F1) = g(M) + g(F1), where g(M,F1)
is the Heegaard genus of M relative to F1. Let Mf be the closed orientable 3-manifold
obtained by identifying F1 and F2 using a homeomorphism f : F1 → F2. The authors
show that if f is sufficiently complicated, then g(Mf ) = g(M, ∂M) + 1.
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1 Introduction

All manifolds in this paper are assumed to be compact and orientable, unless otherwise
stated.

Let M be a connected irreducible 3-manifold, and suppose that ∂M consists of two homeo-
morphic surfaces F1 and F2. Let Mf be the closed 3-manifold obtained by identifying F1 and
F2 using a homeomorphism f : F1 → F2. By the construction of self-amalgamation of Heegaard
splitting, we have g(Mf) ≤ g(M, ∂M) + 1. So a natural and interesting question is:

Question 1.1 When does g(Mf) = g(M, ∂M) + 1?

In [2], Du and Qiu proved that when M is sufficiently complicated, the equality holds.
In [3], Guo and Zou proved that when M is irreducible and ∂-irreducible, and satisfies some
conditions, and if the gluing map is sufficiently complicated, the equality holds. In this paper
we consider the case that M has two compressible boundary components. Here is our result.

Theorem 1.1 Let M be a connected orientable compact irreducible 3-manifold, and ∂M
consist of two homeomorphic surfaces F1 and F2 which are both compressible. Suppose that
g(M, F1) = g(M) + g(F1), where g(M, F1) is the Heegaard genus of M relative to F1. Let Mf

be the closed orientable 3-manifold obtained by identifying F1 and F2 through a homeomorphism
f : F1 → F2. Then there is a function defined for all such Mf , such that if d(Mf ) > 2g(M),
then g(Mf ) = g(M, ∂M) + 1.

Remark 1.1 g(M, F1) is defined as in Definition 2.2, and d(Mf ) is defined as in Definition
2.5.
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Note that the irreducibility of M and compressibility of F1 and F2 imply that g(F1) =
g(F2) ≥ 2.

The proof of our main result is a bit similar to that in [6], but the case that we deal with is
a bit harder.

2 Preliminaries

Let M be a 3-manifold. First let us review some notions about Heegaard splittings.

Definition 2.1 Suppose that S is a properly embedded closed surface in M , which separates
M into two compression bodies V and W such that S = ∂+V = ∂+W . Then we say that V

⋃
S

W

is a Heegaard splitting of M , and call S a Heegaard surface and g(S) the genus of this Heegaard
splitting. If g(S) is minimal among all the Heegaard surfaces of M , then g(S) is called the
Heegaard genus of M , denoted by g(M).

Definition 2.2 Suppose that ∂1M (maybe empty) is a collection of components of ∂M .
If M = V

⋃
S

W is a Heegaard splitting such that ∂1M = ∂−V (or ∂W−), then we say that

M = V
⋃
S

W is a Heegaard splitting of M relative to ∂1M . If g(S) is minimal among all

Heegaard splittings of M relative to ∂1M , then g(S) is called the Heegaard genus of M relative
to ∂1M , denoted by g(M, ∂1M).

Definition 2.3 Suppose that F is a properly embedded surface in a 3-manifold M , and F
splits M into two submanifolds M1 and M2. We say that F is strongly irreducible if F has
compressing disks on both sides, and each compressing disk in M1 meets each compressing disk
in M2. We say that F is ∂-strongly irreducible if

(1) every compressing and ∂-compressing disk in M1 meets every compressing and ∂-
compressing disk in M2, and

(2) there is at least one compressing or ∂-compressing disk on each side of F .

Definition 2.4 Let F be a connected closed surface with g(F ) > 1. The curve complex of
F is the complex whose vertices are the isotopy classes of essential simple closed curves on F ,
and k + 1 vertices in this complex determine a k-simplex if they can be represented by pairwise
disjoint curves. We denote the curve complex of F by C(F ) and denote its 0-skeleton by C(0)(F ).

For α, β ∈ C(0)(F ), we define

dC(F )(α, β) = min{n; there exists a sequence of essential simple closed curves c0, · · · , cn,

such that [c0] = α, [cn] = β and ci ∩ ci+1 = ∅ for any 1 ≤ i ≤ n}.

For two subsets U1, U2 of C(0)(F ), we define

dC(F )(U1, U2) = min{dC(F )(α, β); α ∈ U1, β ∈ U2}.
In this paper, we do not distinguish a vertex in C(F ) from a simple closed curve in F

representing this vertex, unless otherwise stated.

Definition 2.5 Let F be a properly embedded closed bicompressible surface in M . Define

dM (F ) = min{dC(F )([α], [β]); α bounds an essential disk on one side of F

and β bounds an essential disk on the other side}.
Suppose that M is connected and ∂M consists of two boundary components F1 and F2

with g(F1) = g(F2). Let Mf be the closed orientable 3-manifold obtained by identifying F1

and F2 via a homeomorphism f : F1 → F2, and let F be the surface in Mf which is the



A Note on Heegaard Genus of Self-amalgamated 3-Manifold 53

image of F1 and F2 after gluing. It is often helpful to view M as a sub-manifold of Mf , i.e.,
M = Mf − int(N(F )), where N(F ) = F × [1, 2] is a closed small regular neighborhood of F in
Mf , and Fi can be viewed as F × {i} (i = 1, 2).

Definition 2.6 Let M, F1, F2, f and Mf be as above. Suppose that F1 and F2 are both
compressible, and let Ui = {[α] ∈ C(Fi); α bounds a disk in M}. By projection F × [1, 2] to F ,
we may view U1 and U2 as subsets of C(F ). Then we define d(Mf ) = dC(F )(U1, U2).

Definition 2.7 Let P and Q be two closed bicompressible separating surfaces in an irre-
ducible and ∂-irreducible 3-manifold M . Maximally compressing P on both sides and deleting
all resulting 2-sphere components, we get

M = N1

⋃
F P

1

HP
1

⋃
P

HP
2

⋃
F P

2

N2,

where HP
i is a compression body with ∂+HP

i = P , and FP
i is a collection (may be empty) of

close surfaces of genus more than zero for i = 1, 2. In this case, P is a Heegaard surface of the
manifold HP

1

⋃
P

HP
2 . Similarly we define HQ

1

⋃
Q

HQ
2 . P and Q are said to be well separated in

M if we can have isotopy HP
1

⋃
P

HP
2 so that it is disjoint from HQ

1

⋃
Q

HQ
2 .

3 Some Lemmas

Lemma 3.1 (see [4, 7]) If S is a Heegaard surface of a 3-manifold M , and (Q, ∂Q) ⊂
(M, ∂M) is an essential connected surface, then dM (S) ≤ 2 − χ(Q).

Lemma 3.2 (see [9]) If P and Q are both strongly irreducible connected closed separating
surfaces in a 3-manifold M , then one of the following holds:

(1) P and Q are well separated, or
(2) P and Q are isotopic, or
(3) dM (P ) ≤ 2g(Q).

Lemma 3.3 (see [1]) Let M be an irreducible 3-manifold with ∂M incompressible, if non-
empty. Suppose M = V

⋃
S

W , where S is a strongly irreducible Heegaard surface. Suppose

that M contains an incompressible closed non-boundary parallel surface Q. Then one of the
following holds:

(1) S may be isotopied to be transverse to Q, with every component of S−η(Q) incompressible
in the respective sub-manifold of M − η(Q);

(2) S may be isotopied to be transverse to Q, with every component of S−η(Q) incompressible
in the respective sub-manifold of M−η(Q), except for exactly one strongly irreducible component;

(3) S may be isotopied to be almost transverse to Q (i.e., S is transverse to Q except for one
saddle point), with every component of S − η(Q) incompressible in the respective sub-manifold
of M − η(Q).

In each case, η(Q) is a suitable (open) regular neighborhood of F in M .

Lemma 3.4 (see [2, 5]) Let M be an irreducible 3-manifold, and let V
⋃
S

W be a Heegaard

splitting of M . Suppose that Q is a properly embedded strongly irreducible surface in M and
∂Q �= ∅. Then either dM (S) ≤ 2 − χ(Q) or Q lies in an I-bundle of one component of ∂M .

Lemma 3.5 Let V
⋃
S

W be a Heegaard splitting of a connected 3-manifold M . If V
⋃
S

W is
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the amalgamation of
(
V0

⋃
P0

W0

) ⋃
H1

(
V1

⋃
P1

W1

)
, then

g(S) = g(P0) + g(P1) − |P0| − |P1| − g(H1) + |H1| + 1.

Generally, if V
⋃
S

W is the amalgamation of
(
V0

⋃
P0

W0

) ⋃
H1

· · · ⋃
Hn

(
Vn

⋃
Pn

Wn

)
, then

g(S) =
n∑

i=0

g(Pi) −
n∑

i=0

|Pi| −
n∑

i=1

g(Hi) +
n∑

i=1

|Hi| + 1.

Proof We only prove the final result and the first result is a special case of the final result.
By the construction of amalgamation, we can see that

∂−V = ∂−V0 ∪
( n⋃

i=1

(∂−Vi − Hi)
)

=
( n⋃

i=0

∂−Vi

)
−

( n⋃
i=1

Hi

)
.

Then V is obtained by attaching 1-handles to N(∂−V ), where N(∂−V ) is a closed neighborhood
of ∂−V in M if ∂−V �= ∅, or N(∂−V ) is a 3-ball if ∂−V = ∅. Let N be the number of 1-handles
attached to N(∂−V ), and then

g(S) = g(∂−V ) + N − (|∂−V | − 1).

Note that every Vi

⋃
Pi

Wi provides (g(Pi)− g(∂Vi)− + |∂−Vi| − |Pi|) 1-handles attached to ∂−V ,

so

N =
n∑

i=0

(g(Pi) − g(∂−Vi) + |∂−Vi| − |Pi|).

Hence

g(S) =
( n∑

i=0

g(∂−Vi) −
n∑

i=1

g(Hi)
)

+ N −
(( n∑

i=0

|∂−Vi| −
n∑

i=1

|Hi|
)
− 1

)

=
n∑

i=0

g(Pi) −
n∑

i=0

|Pi| −
n∑

i=1

g(Hi) +
n∑

i=1

|Hi| + 1.

As an application of the above lemma, we prove the following result which will be used in
the proof of Theorem 1.1.

Lemma 3.6 Suppose M = V
⋃
S

W = N0

⋃
H1

· · · ⋃
Hn−1

Nn =
(
V0

⋃
P0

W0

) ⋃
H1

· · · ⋃
Hn−1

(
Vn

⋃
Pn

Wn

)
.

Suppose that F is a component of Pk for some k and F is non-separating in M . Let M ′ =
M − int(N(F )), where N(F ) is a product neighborhood of F in M . Denote two copies of F in
M ′ by F1 and F2, and then g(M ′; F1) ≤ g(S) + g(F ) − 1.

Proof Denote the component of Nk which contains F by N1
k , and write N2

k = Nk −
N1

k . Without loss of generality, we assume that N(F ) is contained in int(N1
k ). Then M ′ =

N0

⋃
H1

· · · ⋃
Hk−1

(Nk − int(N(F ))
⋃
Hk

· · · ⋃
Hn−1

Nn. Write V i
k = Vk ∩ N i

k, W i
k = Wk ∩ N i

k, and P i
k =

Pk ∩ N i
k for i = 1, 2. Then F = P 1

k and Nk − int(N(F )) = (N1
k − int(N(F )) 
 N2

k
∼= V 1

k 

W 1

k 
 N2
k . Since V 1

k is a compression body, V 1
k

∼= V 1
k ∪ (∂+V 1

k × I). For the same reason,
W 1

k
∼= (∂+W 1

k × I) ∪ W 1
k . Hence

M ′ = N0

⋃
H1

· · ·
⋃

Hk−1

(V 1
k 
 W 1

k 
 N2
k )

⋃
Hk

· · ·
⋃

Hn−1

Nn

=
(
V ′

0

⋃
P ′

0

W ′
0

) ⋃
H1

· · ·
⋃

Hn−1

(
V ′

n

⋃
P ′

n

W ′
n

)
,
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where V ′
i = Vi, W

′
i = Wi, P

′
i = Pi for i �= k, and V ′

k
∼= V 1

k 
(∂+W 1
k ×I)
V 2

k , W ′
k
∼= (∂+V 1

k ×I)

W 1

k 
W 2
k . So g(P ′

i ) = g(Pi) for i �= k, and g(P ′
k) = g(∂+V 1

k )+g(∂+W 1
k )+g(P 2

k ) = g(F )+g(Pk).
Amalgamating

(
V ′

0

⋃
P ′

0

W ′
0

) ⋃
H1

· · · ⋃
Hn−1

(
V ′

n

⋃
P ′

n

W ′
n

)
, and we get a Heegaard spitting of M rel-

ative to F1, denoted by S′. By Lemma 3.5,

g(S′) =
n∑

i=0

g(P ′
i ) −

n∑
i=0

|P ′
i | −

n∑
i=1

g(Hi) +
n∑

i=1

|Hi| + 1.

Note that P ′
i = Pi for i �= k, g(P ′

k) = g(∂+V 1
k ) + g(∂+W 1

k ) + g(P 2
k ) = g(F ) + g(Pk) and

|P ′
k| = |Pk| + 1. We get g(S′) − g(S) = g(F ) − 1. So g(M ′, F1) ≤ g(S′) = g(S) + g(F ) − 1.

4 Proof of Theorem 1.1

Proof of Theorem 1.1 The idea is as follows. Suppose that V̂
⋃
Ŝ

Ŵ is a minimal Heegaard

splitting of Mf . We will construct a Heegaard surface S of M (relative to F1) from Ŝ, such that
if g(Ŝ) < g(M)+1, then g(S) < g(M)+ g(F1) under the assumption d(Mf ) > 2g(M). Now we
suppose that g(Ŝ) < g(M) + 1. Since g(M, F1) = g(M) + g(F1), and g(M) = g(M, F1 ∪ F2) =
g(M, ∂M), g(Ŝ) ≤ g(M) = g(M, ∂M).

As in [8], the untelescoping of the Heegaard splitting gives a decomposition

Mf = V̂
⋃
Ŝ

Ŵ = N0

⋃
H1

· · ·
⋃

Hn−1

Nn =
(
V0

⋃
P0

W0

)⋃
H1

· · ·
⋃

Hn−1

(
Vn

⋃
Pn

Wn

)
,

where for each i, Vi

⋃
Pi

Wi is a strongly irreducible Heegaard splitting of Ni, and Hi is incom-

pressible in Mf . Furthermore, for each i, g(Hi) < g(Ŝ), g(Pi) ≤ g(Ŝ).
Let Qi (i = 1, 2) be the surface obtained by maximally compressing Fi in M and removing

all resulting 2-sphere components. Then Q1 
Q2 bounds a sub-manifold MF in M , and F is a
Heegaard surface of MF . Write MF = MF1

⋃
F

MF2 , where MFi contains Fi as in Figure 1. Since

F1 and F2 are compressible, we have that both MF1 and MF2 are nontrivial compression bodies.

Figure 1 MF1 and MF2

Recall that Ui = {[α] ∈ C(Fi); α bounds a disk in M}, and write U ′
i = {[α] ∈ C(F ); α bounds

a disk in MFi} ⊂ Ui, so then dMF (F ) = dC(F )(U ′
1, U

′
2) ≥ dC(F )(U1, U2) = d(Mf ) > 2g(M).
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Claim 4.1 Each Hi can be isotopied to be disjoint with F .

Proof If not, then Hi can not be made disjoint with MF for some i. Without loss of
generality, we assume that each component of Hi ∩MF is an essential surface of MF . Choosing
some component H ′ of Hi ∩ MF , we have χ(H ′) > χ(Hi) = 2 − 2g(Hi) > 2 − 2g(Ŝ), so
dMF (F ) ≤ 2−χ(H ′) < 2g(Ŝ) according to Lemma 3.1. But it is a contradiction since dMF (F ) >

2g(M) ≥ 2g(Ŝ).

By Claim 4.1, F ⊂ int(Nk) for some k. Denote the component of Nk containing F by
N1

k and denote N2
k = Nk − N1

k . For i = 1, 2, write V i
k = Vk ∩ N i

k, W i
k = Wk ∩ N i

k, P i
k =

Pk ∩ N i
k, Hi

k = Hk ∩ N i
k, Hi

k+1 = Hk+1 ∩ N i
k. Since ∂N1

k = H1
k ∪ H1

k+1 is incompressible in
M , any compressing disk for F can be isotopied into Nk. So after isotopying, we may assume
MF ⊂ N1

k . Then there are two possibilities for P 1
k and F :

Case 1 P 1
k can not be isotopied to be disjoint with F .

By Lemma 3.3, we can assume each component of P 1
k ∩ F is incompressible in MF except

for at most one strongly irreducible component. Furthermore, we assume that each component
is not ∂-parallel. Then by maximally ∂-compressing P 1

k ∩F , we will get at least one connected
surface which is either an essential surface or a strongly irreducible and ∂-strongly irreducible
surface, and we choose such a component, denoted by Q. Then by Lemma 3.1 and Lemma 3.4,
we have dMF (F ) ≤ 2− χ(Q) ≤ 2 − χ(Pk) = 2g(Pk) ≤ 2g(Ŝ) ≤ 2g(M), which is a contradiction
since dMF (F ) > 2g(M).

Case 2 We can have isotopy P 1
k such that P 1

k ∩ F = ∅.
Without loss of generality, we assume that F ⊂ V 1

k , and then F must separate V 1
k , so F

separates N1
k . Since P 1

k and F are obviously not well separated and dMF (F ) > 2g(P 1
k ), by

Lemma 3.2, P 1
k and F are isotopic. Without loss of generality, we assume P 1

k = F . Then by
Lemma 3.6, we get g(M, F1) ≤ g(Ŝ) + g(F1)− 1 < g(M)+ g(F1), which is also a contradiction.

From the above, we show that g(Ŝ) < g(M)+1 is impossible, so g(Mf) = g(Ŝ) = g(M)+1 =
g(∂M) + 1.
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