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Gradient Estimates for a Nonlinear Parabolic Equation
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Abstract The authors obtain some gradient estimates for positive solutions to the fol-
lowing nonlinear parabolic equation:

ou -
Frie Au —b(z, t)u

on complete noncompact manifolds with Ricci curvature bounded from below, where 0 <
o < 11is a real constant, and b(z,t) is a function which is C? in the z-variable and C* in
the t-variable.
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1 Introduction

In this paper, we study the following nonlinear parabolic equation:

ou -
Fri Au— bz, t)u (1.1)

on complete noncompact manifolds M with Ricci curvature bounded from below, where 0 <
o < 11is a real constant, and b(z,t) is a function which is C? in the x-variable and C! in the
t-variable.

Gradient estimates play an important role in the study of the PDE, especially the Laplacian
equation and the heat equation. Li and Yau [5] developed the fundamental gradient estimate,
which is now widely called the Li-Yau estimate, for any positive solution w(z,t) to the heat
equation on a Riemannian manifold M, and showed how the classical Harnack inequality can
be derived from their gradient estimate. Later, Hamilton [3] got the matrix Harnack estimate
for the heat equation.

Let (M™, g) be an n-dimensional complete noncompact Riemannian manifold. For a smooth
real-valued function f on M™", the drifting Laplacian is defined by

Ap=NA-Vf-V.
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There is a naturally associated measure du = e~ /dV on M”™ which makes the operator A ¥
self-adjoint. The N-Bakry-Emery Ricci tensor is defined by

1
Ric} :Ric+V2f—Ndf®df

for 0 < N < oo and N = 0 if and only if f = 0. Here V? is the Hessian operator and Ric is the
Ricci tensor. Huang and Li [4] considered the generalized equation

up = Agpu®

on Riemannian manifolds and got some interesting gradient estimates. Wu [6] gave a local Li-
Yau-type gradient estimate for the positive solutions to a general nonlinear parabolic equation

uy = Aju—aulogu — qu

in M x [0,7], where a € R, ¢ is a C%-smooth function and ¢ = ¢(z,t) is a function which
generalizes many previous well-known results about gradient estimates. Zhang and Ma [7]
considered gradient estimates on positive solutions to the following nonlinear equation:

Aju+cu =0, a>0 (1.2)

on complete noncompact manifolds, and the authors got a gradient estimate for positive so-
lutions of the above equation (1.2) when N is finite and the N-Bakry-Emery Ricci tensor is
bounded from below.

Theorem 1.1 (see [7]) Let (M™,g) be a complete noncompact n-dimensional Riemannian
manifold with the N-Bakry-Emery Ricci tensor bounded from below by the constant —K =:
—K(2R), where R > 0 and K(2R) > 0 in the metric ball B,(2R) around p € M. Let u be a
positive solution to (1.2). Then

(1) if ¢ > 0, we have

Vul? ey o WA (N4n+2)ct (N +n)[((N+n—1)c +c
e et < R2 + R2
n (N +n)y/(N+n)Kc
R

+2(N +n)K;

(2) if ¢ < 0, we have

[Vul?
ez

),a,l N (N+n)[(N+n—1)c1 + ¢

cu_(“+1)§(A+\/Z)|c|( inf =

B,(2R)

N (N+n)c%(n+N+2+n+N)+ (N +n)/(N +n)Kec;
R2 2V/A R

+ (2 + \/LZ)(n +N)K,

where A = (N +n)(a+ 1)(a+ 2).

Recently, Zhu [8] investigated the nonlinear parabolic equation

up = Au+ M, Hu®(z, t), (1.3)
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where 0 < a < 1, and A(w,t) is a function defined on M x (—o0,0], which is C! in the
first variable and C° in the second variable. The author got a Hamilton-type estimate and a
Liouville-type theorem for positive solutions to (1.3).

Theorem 1.2 (see [8]) Let (M™,g) be a Riemannian manifold of dimension n > 2 with
Ric(M) > —k for some k > 0. Suppose that u is a positive solution to (1.3) in Qrr =
B(zo, R) x [to — T, to] € M x (—00,00). Suppose also that u < M and @ <0 in Qrr. Then
there exists a constant C' = C(a, M), such that

|VU| <CM170¢ — +

11 L
_ o)
— < ( \/TJF\/E) +COT M3

m Qgg

In this paper, we will study the interesting Li-Yau type estimate for the positive solutions
to (1.1).

Motivated by the above work, we present our main results about (1.1) as follows.

Theorem 1.3 Let (M™,g) be a complete noncompact n-dimensional Riemannian manifold
with Ricci curvature bounded from below by the constant —K =: —K(2R), where R > 0 and
K(2R) > 0 in the metric ball By(2R) around p € M. Assume that |b] < A(2R), Ab < §(2R)
and |Vb| < v(2R) in B,(2R) x [0,T) for some constants A(2R),0(2R) and v(2R). Let u be a
positive solution to (1.1) with uw < My. Then for any constant 0 < 8 < 1, if f < o < 1, we have

|Vul? o Uy n ((n—1)1+VKR) + 23 o
B 2 —bu 1—E§ﬁ( R2 ! 1—)\(0'—1)M1 !
e 1 3n% /nM (1 — B)2\ %
rma—ge o) U (T )
n? M{ Ao —1)(3 - o) 2
+ AR 2 +K)

[N

n

+ 35

[M7720+ 21 = )My}

where ¢1 and co are positive constants and € € (0,1).

Let R — oo, and we can get the global Li-Yau type gradient estimates for the nonlinear
parabolic equation (1.1).

Corollary 1.1 Let (M™, g) be a complete noncompact n-dimensional Riemannian manifold
with Ricci curvature bounded from below by the constant —K, where K > 0. Assume that
[b] < A(M™), Ab < O(M™) and |Vb| < v(M™) in M™ x [0,T) for some constants A, 6 and
~. Let u be a positive solution to (1.1) with u < My. Then for any constant 0 < § < 1, if
b < o<1, we have

| } U’|2 o—1 Ut n o—1 1
— B _ Z
15} 5 bu " 5 (/\(o M7 + t) + N,
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where
_ 302 M7 (1 - B)2N n’ M7\ = 1)(8 - o) 2
N*{%< 4e34 ) +86(1—6)2(1—e)< 20 +K)
+ g5 MITO A )My}

c1 and co are positive constants and € € (0, 1).
As an application, we get the following Harnack inequality.

Theorem 1.4 Let (M™,g) be a complete noncompact n-dimensional Riemannian manifold
with Ric(M™) > —K, where K > 0. Assume that b is a nonpositive constant and [b] < A(M™).
Let u(x,t) be a positive smooth solution to the equation

uy = Au — bu?®

on M™ x [0,400). Then if 8 < o < 1, for any points (x1,t1) and (x2,t2) on M™ x [0, +00) with
0 <ty < ta, we have the following Harnack inequality:

toN 25 -
u(xy,t1) < U($27t2)(t_2) P et matta) +N (t—t),
1

where ¢(x1, 2,11, t9) = inf [* L|5[2dt and
v

t1 48
v n’ M7~ Mo —1)(B - 0) 2
_{85(1—5)2(1—6)( 25 +K)
+ %[m —o) My} + %A(a — 1My,

2 Proof of Theorem 1.3

Let u be a positive solution to (1.1). Set w = Inwu. Then w satisfies the equation

wy = Aw + |Vw|? — belo=Dw, (2.1)

Lemma 2.1 Let (M™,g) be a complete noncompact n-dimensional Riemannian manifold
with Ricci curvature bounded from below by the constant —K =: —K(2R), where R > 0 and
K > 0 in the metric ball B,(2R) around p € M". Let w be a positive solution to (2.1). Then

9 25 2 (o—1)w 2
(A—&)Fz —2Vw-VF+t{7(|Vw| — be — wy)

+ (o — 1)(3 — 0)e" V| Vw|? +2(3 — 0)el " VU VwVb
F

- e("‘l)“’Ab} +b(o = el ™F - =,

where
F =t(B|Vw|? — be D —w,),

and (3 is any constant satisfying 0 < g < 1.
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Proof Define
F = t(8|Vw|?* — bel@Dv — ).

By the Bochner formula, we have
2
A|Vw|? > E|Aw|2 + 2VwV (Aw) — 2K |Vw|?.
Noticing that

Awt = (A’U})t = —QVU)VU)t + bte(a_l)w + b(O' — 1)6(0_1)wwt —+ Wyt

and
Aw = —|Vw|? 4 bel@™ DY 4,
=(1- %)(be@'*l)w + wy) — %
= (- DIVl - 7,
we know

AF = t(BA|Vw|? — A(be™ D) — Awy).

By (2.2)-(2.3), we obtain

BAVw|? > % ((ﬁ —1)|Vw|? — ?)2 +28VwV (Aw) — 26K |Vw|?
= % ((ﬁ —1)|Vw]?* - ?)2
+26vuv|(1- %) (el 4 w;) - %]

— 28K |Vwl|?
= 2_ ((ﬁ _ 1)|Vw|2 o ?)2 I 2(5 _ 1)e(a_1)wVwa

n
+20(8 = 1o = el V2|Vl +2(3 - )VuTu,

- %vaF — 28K |Vwl|?

and

Abel7= D) = DU Ap 4 2(0 — 1)el VU TwVb + b(o — 1)2el7~ VY| Vw|?

+b(o —1)el"HDv Aw

=T VUAY 4+ 2(0 — 1)V TwVb 4 b0 — 1)2e D |Viw|?

F
+b(o — 1) Vv (3 - 1)|Vw|* — nlt

61

(2.2)

(2.3)
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So, we have

AF > t{%uvw — bl DY _ )2 4 2(8 — 1)el" DUV
n
+26(3 —1)(0 — 1)l V| Vw|? + 2(8 — 1)VwVu;
2
= ZVwVF - 26K |Vw|? — el DAL — 2(0 — 1)el® "DV TwVh
2 (c—1)w 2 (c—1)w 2 F
—bo—1)% IVw|? — b(o — 1)e [(5—1)|Vw| - ﬂ
— (—2VwVw; + bl V% 4 p(o — 1)el7 Dy, + wtt)}
and
F (c—1)w (c—1)w
Ft = ? + t(Qb’Vwth - bte - b(O' - l)e wt — wtt)~
This implies that

(A - 2)F > —9Vw-VF + t{%qwﬁ — be@=Dw _ g2
n

ot
+b(0 —1)(B - 0)el" V| Vw|? + 2(6 — 0)e "V TwVh
F

—ele=Dwap 25K|Vw|2} +b(o = D)el7™F — =,

We complete the proof of Lemma 2.1.

Proof of Theorem 1.3 We take a C? cut-off function @ defined on [0,00), such that
o(r)=1forr €[0,1], p(r) =0 for r € [2,00), and 0 < @(r) < 1. Furthermore, ¢ satisfies

~
- fl(r) <c
Pz (r)
and
§'(r) = —c

for some absolute constants ¢1,c2 > 0. Denote by r(z) the distance between x and p in M. Set

p(r) = 6(%)

Using an argument of Cheng and Yau [2], we can assume p(z) € C?(M) with support in
B,(2R). Direct calculation shows that on B,(2R),

2 2
% < %. (2.4)
By the Laplacian comparison theorem in [1],
—1)(1+VKR)AE
As02_(71 )1+ VER)C + o (2.5)

R2
For T > 0, let (xg,t9) be a point in Bag(p) x [0,t] at which ¢F attains its maximum value P.
We assume that P is positive (otherwise the proof is trivial). At the point (zo,tp), we have

V(pF) =0, A(pF)<0, F,>0. (2.6)
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It follows that
@AF + FAp —2Fo ! |Ve|? <0.

This inequality together with the inequalities (2.4)—(2.5) yields
oAF < HF,
where

n—1)(1+VEKR) + co +2¢3

(
H= e

At (xo0,10), by Lemma 2.1 and (2.6), we have

0>@AF —HF
F
>—-HF + <,0{ -3 +b(0 —1)el" Vv R
0
28t
n
+ bto(o — 1)(8 — 0)el " V| Vw|? + 2t(8 — 0)el" " V*TVwVh
— toel® DY AD 4 tob(o — 1)el7 D — 26t0K|Vw|2}

23t
> —HF — oty 'F + 2FVwVep + %¢(|Vw|2 —bel77 D _qp,)?

+ ([Vw|? — bl v _4)2 — 2Vw - VF

+ (0 — 1) VUGF 4 btgp(o — 1)(8 — 0)el V| Tw|?
— toe VY Ab 4+ toob(o — 1)el" DY 4 2tip(8 — 0)e"VUVwVb — 280t K |[Vw|?

23t
> —HF — oty 'F + 2FVwVep + ﬁgpuvw —bel7 D )2
n
+ Mo = )M oF — Mogp(o — 1)(8 — o) MY~ [V

—topM{ 10 + topA (o — 1)MT ™ + 2top(8 — o) MY |Vw|y — 26pto K |Vw|?.
Multiplying both sides of the above inequality by oy, and noting the fact that 0 < ¢ < 1,
we have
0> —HtopF — oF 4 2topFVwVp + Ao — 1) M7 topF
232 _
- %@2(|Vw|2 — bl DY _ )2 — M2 (o — 1)(8 — o) MI L | Vw|?
= M{TU0t5 = A1 — o) MY + 24307 (8 — 0) M7 |[Vwly — 2B8p* 5 K [Vuw?
2
> _HigpF — oF — %twﬂvmw% + Mo — 1)MI Yoo F

2012 nA(o — 1)(3 —o)M{ !
+ _

n 26
= M0t — M1~ o) M7 + 21501 (8 — o) M7 [Vuly — 285K |Vl

902 (|vw|2 . be(a—l)w . wt)Q o |Vw|2}

Let
y=o|Vwl?, z=pbe" D" ).
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It follows that

261

0> @F(—Hto+ Mo — 1)M? g — 1) — §t0F|Vw|<p%

20t2
+ﬁ
n

g
g

_ — o—1
w)? — (N)\(U 1B )M

2 2 _ pa(o=Dw _
{go (IVw|* — be 25

+ ;Uan*Hthgo%} — M0t — N1 — o) M7

> @F(—Hto+ Mo — 1)M{ 'ty — 1)

208

n
ﬁ_
B

{(y e (M(U - 1)(256— o)My !

nM” Lyys } — M7 — N1 — o) M7 MR

B

Following the method in [5, pp. 161-162], we know

1

(y—2)” —nei Ry (y — az) — nKy — n(a — 1)yy?
2
>a % (y —az)? — %C%QQ((J& ~1)'R%(y — az)

2
—Sainita 10’ ) - 1 -9 e - 1) %

=]

for any 0 < e < 1.

Therefore, in

(y—Z)Q—(

> (y—2)?—naR'y? (y - %Z) - n(

our case, we have

nA(o = 1)(8 — o) M{ "

B

el Ry (y B %z) B n<>\(0 ~1)(B—o)M{? . K)y .

26
Mo = 1)(B— )My~
26

+ K)y—_CIR y? (ﬁy—z)+ﬁ_
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+ nK) ©?|Vwl|?

+ nK)y — EclR_lyé(ﬁy —z)

2[?2

LMy~ yys

B
- 6 o—1

o }
7Y
E

—|—K)y—n(l — 1)Mf71'yy%

g

3 2 1%
4 3 )<
n? .71 -2 ,1\2 A(U—l)(ﬁ—a)M”’l 2
a0 () () I g
Noticing that
pF
ﬂy_fz:T,
we obtain
0> oF(—Hito + Mo — DMIYg — 1) + 2L (pop) — — "Ml oy
=@ 0 1 0 n 2 46(1_6)}%2 2

P Sfar(S-1) () ]

4 &4 B

1 1)*2<1)2<>\(J ~1)(B—o)M{

B 23

n
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where
ncity

¢:Ht0—)\(0—1)Mf_1to+m+l

and
o= et forr (3o (')

() Ty (e

B
+ M7+ N1 — o) M7t

B—o)My
20

From the inequality Az? — 2Bz < C, we have z < 28 4+ \/7 .

We can get

no\z

F — .
(PF)(wo, to) < 556+ (M)

Notice that for all ¢ € [0, T,

sup T[B|Vw[* = bV —wy] < (oF)(xo, to).
B, (2R)

We complete the proof of Theorem 1.3.

Proof of Theorem 1.4 For any points (z1,%1) and (z2,%2) on M x[0, +00) with 0 < t; < tg,
we take a curve 7(t) parameterized with v(t1) = x1 and y(t2) = z2. One gets from Corollary

1.1 that

to
logu(xa,ta) —logu(xy, t1) = / ((logu): + (Vogu,~))dt
ty

to -
2/ (BIVtoguf? - 7~ but K [V ogal 3] )t

ty

to 1
> — (—'2+—+bu" 1+N)dt
/tl P+ 75

> _(/: ﬁ|"y|2dt+log (%)ﬁ + Ni(ts —t1))7

which means that

n

u(xlvtl) ‘/t2 1 .12 tg 23 ~
log ————= < —|4]7dt + 1o (—) + Nty —t1).
8 (warta) ; 4ﬁ|7| (7 (t2 —t1)

Therefore,
to

u(q}l, tl) < u(m27t2)(t ) 28 e¢5(961796271517152)-i-1§/(152—t1)7

1

where ¢(z1, 2, t1,t2) 1nf ftz L |’y|2dt and

N =

n> {Fl o— —0 2
{85(1_5)2(1_6)(M . 251)(5 )+K)

+ 51— o)M7 ) L CER T
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