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Dynamics of a Function Related to the Primes*

Ying SHI! Quanhui YANG?

Abstract Let n = pip2---pk, where p; (1 <14 < k) are primes in the descending order
and are not all equal. Let Qi (n) = P(p1+p2)P(p2+p3) -+ P(pk—1+pr)P(pr +p1), where
P(n) is the largest prime factor of n. Define w°(n) = n and w'(n) = w(w* " *(n)) for all
integers ¢ > 1. The smallest integer s for which there exists a positive integer ¢ such that
Qi (n) = Q57 (n) is called the index of periodicity of n. The authors investigate the index
of periodicity of n.
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1 Introduction

Let Az be the set of all positive integers pqr, where p, ¢, r are primes and are not all equal.
For any integer n = pgr € As, we define a function w by w(n) = P(p+ ¢)P(p + r)P(q + ),
where P(m) is the largest prime factor of m. Define w’(n) = n and w'(n) = w(w*~1(n)) for all
integers ¢ > 1.

In 2006, Goldring [4] proved that any element n € As is w-periodic, i.e., there exists an
integer i > 0, such that w®(n) = 20. Denote the smallest such integer i by ind3(n). Goldring [4]
proved that inds(n) < 4(w(P(n)) — 3), where 7(z) denotes the number of primes not exceeding
x. Later, Chen and Shi [1] improved Goldring’s result and proved that indz(n) < (log P(n))?
for all n € As.

Let P be the set of all positive primes. An integer m is called a parent of n if w(m) = n.
Write

By = {pip2 | p1 # p2,p1,p2 € P},
Cs = {p1p2ps | p1,p2,p3 € P and are pairwise distinct}.

Chen and Shi [2] proved that for any positive integer k, there are infinitely many elements
of Bs which have at least k parents in Bz, and that there exist infinitely many elements of B3

which have no parents in Bs.
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Later, Jia [5] studied parents of p1paps € Bs UCs and obtained some interesting results.
Recently, Chen, Shi and Wu [3] proved that there exist infinitely many n € Bs which have

11886 pharents in Bs.

at least n
For an integer n = pyps - - - pr, where p; (1 <4 < k) are primes in the descending order and

are not all equal, define

Qr(n) = P(p1 + p2)P(p2 + p3) - - - P(pr—1 + pr) P(pr + p1).

Clearly, Q3(n) = w(n). In [6], Shi generalized Goldring’s w function to the function Q. Define
Q(n) = n and Qi (n) = Qx (" (n)) for all integers i > 1. We call n a simple integer for Qy if

there exists an integer ¢ > 0, such that Q} (n) is a prime power. For integers k > 3, let
A ={n € Z' | Q(n) = k, n is not a simple integer for 2},

where Q(n) is the total number of prime factors of n. If 21k, Q(n) = k and n is not a prime
power, then Q(n) is also not a prime power. Otherwise, we have P(p; + p2) = P(p2 + p3) =
<+ = P(pr + p1) = p, where p1ps---pr = n and p,p; (1 <i < k) are primes. It follows that
p1 = —py =p3 = = pr = —p1 (mod p), and then p = 2 or p = p;. If p = 2, then, by
2p1 = (p1 + p2) — (p2 + p3) + -+ (. + p1), it follows that 2 | py, and then p; = p. Hence,
n = p¥, a contradiction. Therefore, the definition of Ay, is consistent with that of the previous
set As.

An element n of Ay, is Qi-periodic if there exists a nonnegative integer s and a positive integer

t, such that Qf(n) = Q;"(n). The smallest such integer s is called the index of periodicity

of n, denoted by indg(n). The array by, ba, - ,b; is called a circular array of Ay, if ¢ elements
b1,ba, - by € Ay satisfy Qi (bs) = bsy1 (s =1,2,--- ;t—1), Qx(bs) = by. In general, we regard
all arrays such as b;, b1, , by, b1, -+ ,b;—1 (1 =1,2,--- ,t) as an equal array, denoted by b?’“,

where b; is an element in this circular array. An element n of Ay is said to lie in the circular
array b?’“ ultimately, if there exists an integer j > 0, such that ch(n) € b?k The whole circular
array in Ay, is denoted by A,?’“.

In [6], Shi proved the following theorem.

Theorem A FEvery element of Ay, is periodic and each lies in some circular array ultimately.
When k > 5, A?’“ ={(223%5) % | a+b+c=k, a>1,b>2 c>1, a,b,c€Z}. In addition,
Al = {609,909}

In this paper, based on the method in [1], we prove the following result.

Theorem 1.1 Let k be an odd integer with k > 4. For any integer n with k prime factors

not all equal, we have

indy(n) = Oy (log P(n))%.

Remark 1.1 If k£ is even, then the iteration of the arithmetic function € may stop. For

example, k = 4, Q4(3 x 7 x 13 x 17) = 5%. Therefore, we only consider the odd case.
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2 Preliminary Lemmas

Lemma 2.1 Let X > 3 be an integer and « be a real number with 0 < o < 1. For any
integer n with k (k > 4) prime factors not all equal, let n = p1ps---pi, where p; (1 < i < k)
are primes and py > pa > -+ > pi. If p1 < X and pa < aX, then there exists an integer i with

1 <1i <3, such that
- 3+«

X +4.

P(Q(n))

Proof Ifp; < aX,then P(Q(n)) < aX+2 < W—I—Zl. Ifp; =3>aX,ie,n=2321
then P(Q(n)) =5 < % +4. If p > 2, then P(Qx(n)) < (1+§)X < (3+2)X + 4. Thus we
may assume that p; > 5, p; > aX and pp = 2.

Now we consider the following two cases.
Case 1 p; + 2 is composite.
By the definition of Qi (n) and px = 2, we have

Qr(n) = P(p1 +p2)P(p2 +p3) - - P(pr—1 +2)P(2+ p1).

If po = 2, then P(p1 + p2) < %; if po > 3, then P(p1 + p2) < % We also have
P(p1 +pi) < %

Fori=2,3,--- ,k—1,if p;11 > 2, then P(p; +pi+1) < aX; if pir1 = 2, then P(p; +pir1) <
aX + 2.

Hence, we obtain

P(Q4(n)) < ?’TTOCX 4.

Case 2 p; + 2 is prime.
Subcase 2.1 n = p; - 2¥~1. It follows that

Q(n) = (p1 +2)*- 272, Qi(n) = (p1 +2)P?(p1 +4)2° 2.
Since p1 > 3, and p1, p1 + 2 are both primes, we have 3 | p; +4. Hence, P(p1 +4) < p1 +2 and
Q(n) = Plpy +2+ P(p1 +4)) - P(P(py +4) +2) - PR(py +4) - 25

Clearly, we have

X +4 X +4
Plp1+4) < ==, P(P(p1+4)+2) < —5— +2
and -
+24+B= 2X +5
P(p1+2+ P(p +4)) < 2 =
Therefore,
P@n) < 2% 14

!
Subcase 2.2 n = pips2 - - - pi—12F !, where 3 < i < k and p;_1 > 3. Then

Q(n) = (p1 +2)- P(p1 +p2) -+ P(pi—2 + pi-1) - P(pi—1 +2) - 257",
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Let Qr(n) = ¢qig2 - - - qx, where ¢; (1 < ¢ < k) are primes and ¢ > ¢2 > --- > ¢q. Clearly,
g =p1+2<X+2andforj=23,--k,

1 1
q;j < maX{%X7 aX—l—Z} < %X—FZ.

Since p1 > 3, and p1, p1 + 2 are both primes, we have 3 | g1 + 2. Thus, for j = 2,k, if
qj =2, then P(q1 +¢q;) < &2, if ¢; > 3, then P(q1 + ¢;) < % < W + 2. We also have
P(Qz+Qz+1)§q2+2§ %"_4&)1'@:273; ak_]-

By Q(n) = P(q1 + q2) - - - P(qx—1 + qx) P(qx + 1), it follows that

P(Q2(n)) < ?’TTOCX 4.

Therefore, by all the cases above, there exists an integer ¢ with 1 <4 < 3, such that

P(QL(n)) < ?’TTOCX 4.

This completes the proof of Lemma 2.1.

Lemma 2.2 Let X > 3, k > 4 be integers and o < 1 be a positive real number. Let
n = pipa - pi, where p; (1 <i < k) are primes in the descending order and are not all equal.
If p1 < X and p; < aX for some integer j with 2 < j < k, then there exists a positive integer
1 with 1 <7 <45 — 3, such that

. 23]'—4 -1
P((n)) < =11

< g X 6 -8,

Proof If p; = 3, then n = 3° - 275 for some integer s with 1 < s <k — 1. By X > 3 and

j > 2, we have '
2574 1+«

P(u(n) =5 < —55

X +6j—8.

Thus we may assume that X > p; > 5. We shall prove it by induction on j.

By Lemma 2.1, the result is true for j = 2. Now we suppose that it is true for j =1 — 1,
where 2 <[ —1 < k. That is, if p; < X and p;—1 < aX, then there exists an integer ¢ with
1<i¢<4(l—1)—3=41l—17, such that

23(=D—4 _ 1 4 2T _ 14«

23(1—1)—4 X+6(1-1)-8= TX + 6] — 14.

P(Q(n)) <

Now we assume that p; < X and p; < aX. We consider the following cases.
Case 1 pi > 3.

For 1 <s<1[1—2, we have P(ps+pst1) < X. Forl—1< s <k—1, we have P(ps+pst1) <

%. We also have P(p; + pi) < %

Let Qx(n) = qig2 - - - g, where ¢; (1 < i < k) are primes and ¢; > ¢2 > -+ > q. Then
X
g1 <X and g1 < %
By the induction hypothesis, there exists an integer ¢ with 1 <1 < 4l — 7, such that

287 ] 4 e 2316 140

P(QZ(Qk(N))) < TﬂX—I—Gl —14 = TX + 6l — 14.
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Hence, there exists an integer ¢ with 1 <+ < 4] — 6, such that

23[—6_1+a 23l—4_1+a

X+6l-14< —X +6[—-8.

P(QZ(n)) < 931—4

=7 931-6
Case 2 pr =2 and p; > 3.
If1<s<1l—2 then P(ps + pst1) < X +2. If Il —1<s < k-1, then P(ps + ps41) <

maX{%,ozX +2} < w We also have P(p1 + pr) < X +2. Hence ¢ < X + 2.
Let Qr(n) = qi1g2 - - - qr, where ¢; (1 < i < k) are primes and ¢; > g2 > -+ > qx. Suppose

that ¢;_1 < (HQ)QM By the induction hypothesis, there exists an integer ¢ with 1 < ¢ <

41 — 7, such that

. 237 1 4 Ha 2876 —14a
P(25.(2k(n))) < Tﬂ(X +2)4+60l—-14< TX + 61 —12.
Hence, there exists an integer ¢ with 1 < ¢ < 4l — 6, such that
. 23[—6_1+a 23l—4_1+a
P(Q.(n)) < TX +6l—12< TX_‘_GZ — 8.

Subcase 2.1 p; + 2 is composite.

It follows that P(p1 + pg) = P(p1 +2) < X42 < U2 gence g,y < LEOXHED) g
we are done with the proof.

Subcase 2.2 p; + 2 is prime.

Ifq < (Ha)zﬂ, then we are done with the proof.

> (ta)(X+2)

Since pr = 2 and p; > 3, there exists an integer ¢ with [ < t < k — 1, such that p; > 3
and p;+1 = 2. Noting that P(p; + piy1) < w < q-1and g1 > q2 > --- > q, we have

Now we assume that g;_

@ > P(pt + pry1) = P(pt +2) > 3. By p1 > 3, and since p; and p; + 2 are both primes, we
have that ¢; + 2 = p; + 4 is composite. Now we go back to Case 1 if ¢ > 3 and Subcase 2.1
if g = 2. The maximal upper bound in these two cases appears in Subcase 2.1. Hence, there

exists an integer ¢ with 1 <4 < 4[] — 5, such that

28176 1 4 Lpa 2275 —1+a

sie (X +2) +60 - 12 < 5 — X 4 61 - 10.

P(Q4(n)) < 2315

Case 3 pr =2 and p; = 2.

In this case, we have Qi (n) = P(p1 + p2) -+ P(pi—1 + 2)P(p1 + 2)2~ L.

Subcase 3.1 At least one of p;_1 + 2 and p; + 2 is composite.

Let p + 2 be composite, where p = py or pj—1. Then P(p+2) > 3 and P(p+2) < % <
%ﬂ. Let Qr(n) = q1g2 - - - gk, where ¢; (1 < i < k) are primes and ¢1 > g2 > -+ > q. If
Gi—1 < w, then we use the induction hypothesis. Now suppose that ¢;_1 > %ﬂ
It follows that ;11 = 2 < P(p+2) < w < qi—1. Hence 3 < P(p+2)=¢q < (H—aéﬁ
If I = k, then g, > 3 and we go back to Case 1. If I < k, then g = 2 and we go back to Case 2.
The maximal upper bound in these two cases and the induction hypothesis appear in Subcase
2.2. Hence, there exists an integer ¢ with 1 < ¢ < 4[] — 4, such that

285 1 4 Lo 2874 — 1 4 o

2 (X 4+2)4+6l-10< —pn—"—X +6]—8.

P@}n) < —

= 231—5
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Subcase 3.2 Both p;_1 + 2 and p; + 2 are primes.
It follows that p;—; > 3, and then 2 | p; + p;yq for i =1,2,--- 1 — 2.

Subcase 3.2.1 fez Padps ... p"2;rp"‘1 are not all primes.
t Ritpit
2

We assume tha is composite, where 1 < j7 <[ — 2. Then

P(pj +pj+1) < PitPin1 X

2 - 4 -2
Now Qi(n) = (p1 + 2)(pi—1 + 2)P(2422) ... p(B=2FPiyok—l Lot Q) (n) = qig2 - - - qi, Where
¢i (1 <i<k)areprimes and q1 > g2 > -+ > q. Clearly, g1 =2 and s =p1 +2 < X + 2.

Suppose that P(%) >3 Ifq # P(pﬁ#), then g1 < P(%) < 3, and we use
the induction hypothesis. If ¢; = P(%) and [ = k, then ¢, > 3 and we go back to Case 1.
If ¢ = P(%) and | < k, then ¢y = 2 and we go back to Case 2. The maximal upper bound
in this two cases and the induction hypothesis appear in Subcase 2.2. Hence, there exists an
integer ¢ with 1 <14 < 4] — 4, such that

931-5 _ 1 4 1 93l—4 _

2(X+2)4+6l—10< Z——— X + 6] —8.

P(Qi(n)) < —

= 231—5

Now suppose that P(%) =2. Let Qx(n) = q1q2 - - - q1—12" "1, where ¢; (1 <i <1-1)
are primes and q; > g2 > -+ > q—1 > 2. By p1 > 3, and since p; and p; + 2 are primes, we
have 3 | vp; + 4. That is, 3| ¢1 + 2. Noting that X > 3, we have ¢ =2 < w Hence,
by Subcase 3.1, there exists an integer ¢ with 1 < i < 4] — 3, such that

23l—5_1+1+_0( 23l74_1+a

2 (X +2)+6l—-10< —"——X+6]-38.

P(@}(n) < —

— 231—5

Subcase 3.2.2 trz Padps .. p’”;p“l are all primes.

(1) p—1 = 3.

If % < a < 1, then, by 5 < p; < X, we have pj—; = 3 < aX. Thus, by the induction
hypothesis, the result is true. Now we assume that 0 < o < % Noting that 2 < aX, we have
pr-1 =3 < % < % < X. By the induction hypothesis and o < %, there exists an integer @

with 1 <1 <4l — 7, such that

23l—7 -1 3 23l74 -1
¢X+61—14< 7MX+61—8.

P(Qz(n)) < 2317 931—4

(2) pr—1 > 3.
Since p; > 3, and p; and p; + 2 are primes, we have p; =2 (mod 3). Noting that pl;rpz isa

prime greater than 3 and py > 3, we have po = 2 (mod 3). Otherwise, if po =1 (mod 3), then
3| p1 + p2, a contradiction. Similarly, we have p; = p2 = -+ = p;—1 = 2 (mod 3). It follows
that p1 +2 =1 (mod 3), pr_1 +2 =1 (mod 3) and ZFL=+L = 2 (mod 3) fori = 1,2, ,1 - 2.
Now we consider

Prtp2  pi—2tpi-1

14 2)2k
5 B) (pl 1+ )

Qk(n) = (p1 +2)

For all 4,5 with 1 <4,5 <[ — 2, we have

Pi + Pit1 fp42= Pj +DPji+1

5 5 +p—1+2=0 (mod 6).
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Hence, primes

P+ Pji+1
2

X4 o (14+a)(X+2)
3 = 2 ‘

P(Pi + Dit1

@, P(
5 +p1 +

+pky+ﬂ, P(p1 +4)

are all odd, and none of them is more than

Let Q2(n) = q1q2 - - - qx, where ¢; (1 < i < k) are primes and q; > g2 > -+ > g. Then
qi+2 = 2 (if it exists) and there exist integers r, s with 1 <r < s <1+ 1, such that 3 < ¢, <
qs < (HQ)QM It follows that ¢; < (HQ)QM If ¢ = 2, then ¢ < ¢, < w, and
we use the induction hypothesis. If ¢; > 3, we go back to Case 1 when g, > 3 and Case 2 when
qr = 2. Hence, there exists an integer 7 with 1 < i < 4] — 3, such that

23l—5_1+1+_0‘ 23l—4_1+a

2
S5 (X +2)4+6l—10< —— "X +61—8.

P(Q}(n)) < S

By all the cases above, Lemma 2.2 is true for j = [. That is, if p; < aX and p; < X, then
there exists an integer ¢ with 1 <4 < 4] — 3, such that

) 23l74 -1
P(Qi(n) < Wfo‘x + 60— 8.

This completes the proof of Lemma 2.2.

Lemma 2.3 Let k be an odd integer with k > 4. Then for any integer n with k prime
factors not all equal, there exists an integer i with 1 < i < 2log P(n) + 4k — 2, such that

P@jm)) < (1~ ZT{?,)P(n) +6k—8.

Proof Suppose that n = pips---pg, where p; (1 < ¢ < k) are primes in the descending

order and are not all equal. Then

Q(n) = P(p1 +p2) - P(p2 +p3) -~ P(pr—1 + pr) - P(pr + p1).

Now, we discuss the following cases.
Case 1l p1 >p2 > 2>pr=>3.
Let

p,:{Pl‘FPz p2+ps  Pk-1+ Dk p1+pk}

2 2 ’ 2 ’ 2
Subcase 1.1 At least one element of P is composite.
Since the largest prime factor of this composite element of P is less than BL by Lemma 2.2,
there exists an integer ¢ with 1 <14 < 4k — 2, such that

3k—4 1
93k—4 _ 141

@) < 5

1
1n+6k—8:(1—5§3)m+ﬁk—&

Subcase 1.2 All elements of P are primes.
In this case, it is clear that every element of P is an odd prime. Now we arrange these k odd
primes in the descending order and denote them by py; > Py > -+ > Dy. Then we consider

D11 +Pi2 P12 +Dis Dik—1 +Dix DPir T P11
2 ) 9 s Ty 2 ) 2 .
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If all these numbers are odd primes, then we arrange them in the descending order and denote
them by Py > Doy > -+ > Py, Continue this process until they are not all primes. Suppose
that for the (¢+1)th time, there exists an integer s with 1 < s < k, such that p, ; ; is composite.

Since p,; are odd primes for i =1,2,--- , k, we have
Dy =Ppp = =Dy, (mod 2).
That is,
Di—110 T P12 _ DPi—12+tDPi—13 . _ Pi—1k TPi—11
= == (mOdZ)-
2 2 2
By 2t k, it follows that
P11 =D113="" =D 1p =Pt-12=Dt-14="""=Di_1 -1 (mod 2%).
Thus
Pr11=DP12="""=D;_1) (mod 22).
Continuing this argument, for all integers j with 1 < j < ¢, we have
Pj1=Pjp =" =Dpj, (mod 20H177).
Hence
pr=p2=---=p, (mod 2.
If 2841 > py, then by p1 > -+ > pp > 3, we have p; = pa = -+ = pg, a contradiction. So

2141 < py, and then ¢ < 2logp;. Since Ty, , is composite and P, ,; , < B, by Lemma 2.2,
there exists an integer ¢ with 1 <4 < 2log P(n) 4+ 4k — 2, such that

3k—4 1
93— _ 141

POL) <

1
pr+ 6= 8= (1= g5 )1 + 6k =8,
Case 2 pp = 2.
If p; = 3, then P(Q%(n)) =5 for i = 1 and the result is obviously true. Now we assume

that p; > 5. Then p; < 25&. By Lemma 2.2, there exists an integer ¢ with 1 < i < 4k — 3, such

that
3k—4 2

@) <

1
P+ 6k =8 < (1= o5 o1 + 6k =8,

By all the cases above, for any integer n with k prime factors not all equal, there exists an
integer ¢ with 1 < i < 2log P(n) + 4k — 2, such that

p@ﬁmng(1—5§3)Pmy+M-x.

This completes the proof of Lemma 2.3.
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3 Proof of Theorem 1.1

For any integer n with k prime factors not all equal, let n = p1ps - - - px, where p; (1 <i < k)

are primes in the descending order and are not all equal. Take iy = 0, P(n) = p; and Qi (n) = n.

By Lemma 2.3, there exist positive integers i1 < is < ---, such that, for all integers ¢t > 1,
P(Qi(n)) < e - P(Q) " (n)) + 6k — 8 (3.1)
and
i — i1 < 2log(P(Q) " (n))) + 4k — 2, (3.2)
where
1
Ck 1-— —23k—3'

By (3.1), we have

P(Q)(n)) < e - P4 (n)) + 6k — 8
< ¢t P(Q)*(n)) + (6k — 8) - ¢, + 6k — 8

IN

IN

ch - P(Q(n)) + (6k —8) -l + -+ (6k — 8) - ¢, + 6k — 8
< chpy + (6k —8) - 23873, (3.3)
If py <7-11%1 — (6k — 8) - 23*=3_ then by Theorem A, indy(n) is bounded and the result

is true. Now we suppose that p; > 7-11%=1 — (6k — 8) - 2373, Take a positive integer ¢, such
that

log(7 - 115~ — (6k — 8) - 23%=3) —log py -

to—1< <tp. (34)

log ¢y,
Then
P() (n)) < clopy + (6k —8) - 273 < 7. 1151,

By Theorem A, for every element n € Ay, there exists a positive integer i,, such that QZ (n)
lies in some circular array (223°5°) ultimately.
Let
co = max{i, |n € Ay, P(n) <7 11871}

Then there exists an integer j with 1 < j < g, such that Qi 7(n) lies in some circular array
(223b5¢)% ultimately.
By (3.2)-(3.3), we have

i, < to - (2log(py + (6k — 8)23%73) + 4k — 2). (3.5)
Thus, by (3.4)-(3.5), we have

indy(n) < i, + co < c1(log? pr),
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where the constant ¢; depends only on k.

Therefore,
indy,(n) = Oy (log P(n))?.

This completes the proof of Theorem 1.1.
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