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Abstract Let n = p1p2 · · · pk, where pi (1 ≤ i ≤ k) are primes in the descending order
and are not all equal. Let Ωk(n) = P (p1 +p2)P (p2 +p3) · · ·P (pk−1 +pk)P (pk +p1), where
P (n) is the largest prime factor of n. Define w0(n) = n and wi(n) = w(wi−1(n)) for all
integers i ≥ 1. The smallest integer s for which there exists a positive integer t such that
Ωs

k(n) = Ωs+t
k (n) is called the index of periodicity of n. The authors investigate the index

of periodicity of n.
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1 Introduction

Let A3 be the set of all positive integers pqr, where p, q, r are primes and are not all equal.
For any integer n = pqr ∈ A3, we define a function w by w(n) = P (p + q)P (p + r)P (q + r),
where P (m) is the largest prime factor of m. Define w0(n) = n and wi(n) = w(wi−1(n)) for all
integers i ≥ 1.

In 2006, Goldring [4] proved that any element n ∈ A3 is w-periodic, i.e., there exists an
integer i ≥ 0, such that wi(n) = 20. Denote the smallest such integer i by ind3(n). Goldring [4]
proved that ind3(n) ≤ 4(π(P (n))− 3), where π(x) denotes the number of primes not exceeding
x. Later, Chen and Shi [1] improved Goldring’s result and proved that ind3(n) � (log P (n))2

for all n ∈ A3.
Let P be the set of all positive primes. An integer m is called a parent of n if w(m) = n.

Write

B3 = {p2
1p2 | p1 �= p2, p1, p2 ∈ P},

C3 = {p1p2p3 | p1, p2, p3 ∈ P and are pairwise distinct}.

Chen and Shi [2] proved that for any positive integer k, there are infinitely many elements
of B3 which have at least k parents in B3, and that there exist infinitely many elements of B3

which have no parents in B3.
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Later, Jia [5] studied parents of p1p2p3 ∈ B3 ∪ C3 and obtained some interesting results.

Recently, Chen, Shi and Wu [3] proved that there exist infinitely many n ∈ B3 which have
at least n1.1886 parents in B3.

For an integer n = p1p2 · · · pk, where pi (1 ≤ i ≤ k) are primes in the descending order and
are not all equal, define

Ωk(n) = P (p1 + p2)P (p2 + p3) · · ·P (pk−1 + pk)P (pk + p1).

Clearly, Ω3(n) = w(n). In [6], Shi generalized Goldring’s w function to the function Ωk. Define
Ω0

k(n) = n and Ωi
k(n) = Ωk(Ωi−1

k (n)) for all integers i ≥ 1. We call n a simple integer for Ωk if
there exists an integer i ≥ 0, such that Ωi

k(n) is a prime power. For integers k ≥ 3, let

Ak = {n ∈ Z+ | Ω(n) = k, n is not a simple integer for Ωk},

where Ω(n) is the total number of prime factors of n. If 2 � k, Ω(n) = k and n is not a prime
power, then Ωk(n) is also not a prime power. Otherwise, we have P (p1 + p2) = P (p2 + p3) =
· · · = P (pk + p1) = p, where p1p2 · · · pk = n and p, pi (1 ≤ i ≤ k) are primes. It follows that
p1 ≡ −p2 ≡ p3 ≡ · · · ≡ pk ≡ −p1 (mod p), and then p = 2 or p = p1. If p = 2, then, by
2p1 = (p1 + p2) − (p2 + p3) + · · · + (pk + p1), it follows that 2 | p1, and then p1 = p. Hence,
n = pk, a contradiction. Therefore, the definition of Ak is consistent with that of the previous
set A3.

An element n of Ak is Ωk-periodic if there exists a nonnegative integer s and a positive integer
t, such that Ωs

k(n) = Ωs+t
k (n). The smallest such integer s is called the index of periodicity

of n, denoted by indk(n). The array b1, b2, · · · , bt is called a circular array of Ak if t elements
b1, b2, · · · , bt ∈ Ak satisfy Ωk(bs) = bs+1 (s = 1, 2, · · · , t−1), Ωk(bt) = b1. In general, we regard
all arrays such as bi, bi+1, · · · , bt, b1, · · · , bi−1 (i = 1, 2, · · · , t) as an equal array, denoted by bΩk

i ,
where bi is an element in this circular array. An element n of Ak is said to lie in the circular
array bΩk

i ultimately, if there exists an integer j ≥ 0, such that Ωj
k(n) ∈ bΩk

i . The whole circular
array in Ak is denoted by AΩk

k .

In [6], Shi proved the following theorem.

Theorem A Every element of Ak is periodic and each lies in some circular array ultimately.
When k ≥ 5, AΩk

k = {(2a3b5c)Ωk | a + b + c = k, a ≥ 1, b ≥ 2, c ≥ 1, a, b, c ∈ Z}. In addition,
AΩ4

4 = {60Ω4, 90Ω4}.

In this paper, based on the method in [1], we prove the following result.

Theorem 1.1 Let k be an odd integer with k ≥ 4. For any integer n with k prime factors
not all equal, we have

indk(n) = Ok(log P (n))2.

Remark 1.1 If k is even, then the iteration of the arithmetic function Ωk may stop. For
example, k = 4, Ω4(3 × 7 × 13 × 17) = 54. Therefore, we only consider the odd case.
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2 Preliminary Lemmas

Lemma 2.1 Let X ≥ 3 be an integer and α be a real number with 0 < α < 1. For any
integer n with k (k ≥ 4) prime factors not all equal, let n = p1p2 · · · pk, where pi (1 ≤ i ≤ k)
are primes and p1 ≥ p2 ≥ · · · ≥ pk. If p1 ≤ X and p2 ≤ αX, then there exists an integer i with
1 ≤ i ≤ 3, such that

P (Ωi
k(n)) ≤ 3 + α

4
X + 4.

Proof If p1 ≤ αX , then P (Ωk(n)) ≤ αX+2 ≤ (3+α)X
4 +4. If p1 = 3 > αX , i.e., n = 3·2k−1,

then P (Ωk(n)) = 5 ≤ (3+α)X
4 + 4. If pk > 2, then P (Ωk(n)) ≤ (1+α)X

2 ≤ (3+α)X
4 + 4. Thus we

may assume that p1 ≥ 5, p1 > αX and pk = 2.
Now we consider the following two cases.
Case 1 p1 + 2 is composite.
By the definition of Ωk(n) and pk = 2, we have

Ωk(n) = P (p1 + p2)P (p2 + p3) · · ·P (pk−1 + 2)P (2 + p1).

If p2 = 2, then P (p1 + p2) ≤ X+2
3 ; if p2 ≥ 3, then P (p1 + p2) ≤ (1+α)X

2 . We also have
P (p1 + pk) ≤ X+2

3 .
For i = 2, 3, · · · , k−1, if pi+1 > 2, then P (pi +pi+1) ≤ αX ; if pi+1 = 2, then P (pi +pi+1) ≤

αX + 2.
Hence, we obtain

P (Ωk(n)) ≤ 3 + α

4
X + 4.

Case 2 p1 + 2 is prime.
Subcase 2.1 n = p1 · 2k−1. It follows that

Ωk(n) = (p1 + 2)2 · 2k−2, Ω2
k(n) = (p1 + 2)P 2(p1 + 4)2k−3.

Since p1 > 3, and p1, p1 + 2 are both primes, we have 3 | p1 + 4. Hence, P (p1 + 4) < p1 + 2 and

Ω3
k(n) = P (p1 + 2 + P (p1 + 4)) · P (P (p1 + 4) + 2) · P 2(p1 + 4) · 2k−4.

Clearly, we have

P (p1 + 4) ≤ X + 4
3

, P (P (p1 + 4) + 2) ≤ X + 4
3

+ 2

and

P (p1 + 2 + P (p1 + 4)) ≤ p1 + 2 + p1+4
3

2
≤ 2X + 5

3
.

Therefore,

P (Ω3
k(n)) ≤ 3 + α

4
X + 4.

Subcase 2.2 n = p1p2 · · · pi−12k−i+1, where 3 ≤ i ≤ k and pi−1 ≥ 3. Then

Ωk(n) = (p1 + 2) · P (p1 + p2) · · ·P (pi−2 + pi−1) · P (pi−1 + 2) · 2k−i.
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Let Ωk(n) = q1q2 · · · qk, where qi (1 ≤ i ≤ k) are primes and q1 ≥ q2 ≥ · · · ≥ qk. Clearly,
q1 = p1 + 2 ≤ X + 2 and for j = 2, 3, · · · , k,

qj ≤ max
{1 + α

2
X, αX + 2

}
≤ 1 + α

2
X + 2.

Since p1 > 3, and p1, p1 + 2 are both primes, we have 3 | q1 + 2. Thus, for j = 2, k, if
qj = 2, then P (q1 + qj) ≤ X+4

3 ; if qj ≥ 3, then P (q1 + qj) ≤ q1+qj

2 ≤ (3+α)X
4 + 2. We also have

P (qi + qi+1) ≤ q2 + 2 ≤ (1+α)X
2 + 4 for i = 2, 3, · · · , k − 1.

By Ω2
k(n) = P (q1 + q2) · · ·P (qk−1 + qk)P (qk + q1), it follows that

P (Ω2
k(n)) ≤ 3 + α

4
X + 4.

Therefore, by all the cases above, there exists an integer i with 1 ≤ i ≤ 3, such that

P (Ωi
k(n)) ≤ 3 + α

4
X + 4.

This completes the proof of Lemma 2.1.

Lemma 2.2 Let X ≥ 3, k ≥ 4 be integers and α < 1 be a positive real number. Let
n = p1p2 · · · pk, where pi (1 ≤ i ≤ k) are primes in the descending order and are not all equal.
If p1 ≤ X and pj ≤ αX for some integer j with 2 ≤ j ≤ k, then there exists a positive integer
i with 1 ≤ i ≤ 4j − 3, such that

P (Ωi
k(n)) ≤ 23j−4 − 1 + α

23j−4
X + 6j − 8.

Proof If p1 = 3, then n = 3s · 2k−s for some integer s with 1 ≤ s ≤ k − 1. By X ≥ 3 and
j ≥ 2, we have

P (Ωk(n)) = 5 <
23j−4 − 1 + α

23j−4
X + 6j − 8.

Thus we may assume that X ≥ p1 ≥ 5. We shall prove it by induction on j.
By Lemma 2.1, the result is true for j = 2. Now we suppose that it is true for j = l − 1,

where 2 ≤ l − 1 < k. That is, if p1 ≤ X and pl−1 ≤ αX , then there exists an integer i with
1 ≤ i ≤ 4(l − 1) − 3 = 4l − 7, such that

P (Ωi
k(n)) ≤ 23(l−1)−4 − 1 + α

23(l−1)−4
X + 6(l − 1) − 8 =

23l−7 − 1 + α

23l−7
X + 6l − 14.

Now we assume that p1 ≤ X and pl ≤ αX . We consider the following cases.
Case 1 pk ≥ 3.
For 1 ≤ s ≤ l−2, we have P (ps +ps+1) ≤ X . For l−1 ≤ s ≤ k−1, we have P (ps +ps+1) ≤

(1+α)X
2 . We also have P (p1 + pk) ≤ (1+α)X

2 .
Let Ωk(n) = q1q2 · · · qk, where qi (1 ≤ i ≤ k) are primes and q1 ≥ q2 ≥ · · · ≥ qk. Then

q1 ≤ X and ql−1 ≤ (1+α)X
2 .

By the induction hypothesis, there exists an integer i with 1 ≤ i ≤ 4l − 7, such that

P (Ωi
k(Ωk(n))) ≤ 23l−7 − 1 + 1+α

2

23l−7
X + 6l − 14 =

23l−6 − 1 + α

23l−6
X + 6l − 14.
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Hence, there exists an integer i with 1 ≤ i ≤ 4l − 6, such that

P (Ωi
k(n)) ≤ 23l−6 − 1 + α

23l−6
X + 6l − 14 ≤ 23l−4 − 1 + α

23l−4
X + 6l − 8.

Case 2 pk = 2 and pl ≥ 3.
If 1 ≤ s ≤ l − 2, then P (ps + ps+1) ≤ X + 2. If l − 1 ≤ s ≤ k − 1, then P (ps + ps+1) ≤

max{X+αX
2 , αX + 2} ≤ (1+α)(X+2)

2 . We also have P (p1 + pk) ≤ X + 2. Hence q1 ≤ X + 2.
Let Ωk(n) = q1q2 · · · qk, where qi (1 ≤ i ≤ k) are primes and q1 ≥ q2 ≥ · · · ≥ qk. Suppose

that ql−1 ≤ (1+α)(X+2)
2 . By the induction hypothesis, there exists an integer i with 1 ≤ i ≤

4l − 7, such that

P (Ωi
k(Ωk(n))) ≤ 23l−7 − 1 + 1+α

2

23l−7
(X + 2) + 6l − 14 ≤ 23l−6 − 1 + α

23l−6
X + 6l − 12.

Hence, there exists an integer i with 1 ≤ i ≤ 4l − 6, such that

P (Ωi
k(n)) ≤ 23l−6 − 1 + α

23l−6
X + 6l − 12 ≤ 23l−4 − 1 + α

23l−4
X + 6l − 8.

Subcase 2.1 p1 + 2 is composite.
It follows that P (p1 + pk) = P (p1 + 2) ≤ X+2

3 ≤ (1+α)(X+2)
2 . Hence ql−1 ≤ (1+α)(X+2)

2 , and
we are done with the proof.

Subcase 2.2 p1 + 2 is prime.
If ql−1 ≤ (1+α)(X+2)

2 , then we are done with the proof.
Now we assume that ql−1 > (1+α)(X+2)

2 .
Since pk = 2 and pl ≥ 3, there exists an integer t with l ≤ t ≤ k − 1, such that pt ≥ 3

and pt+1 = 2. Noting that P (pt + pt+1) ≤ (1+α)(X+2)
2 < ql−1 and q1 ≥ q2 ≥ · · · ≥ qk, we have

ql ≥ P (pt + pt+1) = P (pt + 2) ≥ 3. By p1 > 3, and since p1 and p1 + 2 are both primes, we
have that q1 + 2 = p1 + 4 is composite. Now we go back to Case 1 if qk ≥ 3 and Subcase 2.1
if qk = 2. The maximal upper bound in these two cases appears in Subcase 2.1. Hence, there
exists an integer i with 1 ≤ i ≤ 4l − 5, such that

P (Ωi
k(n)) ≤ 23l−6 − 1 + 1+α

2

23l−6
(X + 2) + 6l − 12 ≤ 23l−5 − 1 + α

23l−5
X + 6l − 10.

Case 3 pk = 2 and pl = 2.
In this case, we have Ωk(n) = P (p1 + p2) · · ·P (pl−1 + 2)P (p1 + 2)2k−l.

Subcase 3.1 At least one of pl−1 + 2 and p1 + 2 is composite.
Let p + 2 be composite, where p = p1 or pl−1. Then P (p + 2) ≥ 3 and P (p + 2) ≤ X+2

3 ≤
(1+α)(X+2)

2 . Let Ωk(n) = q1q2 · · · qk, where qi (1 ≤ i ≤ k) are primes and q1 ≥ q2 ≥ · · · ≥ qk. If
ql−1 ≤ (1+α)(X+2)

2 , then we use the induction hypothesis. Now suppose that ql−1 > (1+α)(X+2)
2 .

It follows that ql+1 = 2 < P (p+2) ≤ (1+α)(X+2)
2 < ql−1. Hence 3 ≤ P (p+2) = ql ≤ (1+α)(X+2)

2 .
If l = k, then qk ≥ 3 and we go back to Case 1. If l < k, then qk = 2 and we go back to Case 2.
The maximal upper bound in these two cases and the induction hypothesis appear in Subcase
2.2. Hence, there exists an integer i with 1 ≤ i ≤ 4l − 4, such that

P (Ωi
k(n)) ≤ 23l−5 − 1 + 1+α

2

23l−5
(X + 2) + 6l − 10 ≤ 23l−4 − 1 + α

23l−4
X + 6l − 8.
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Subcase 3.2 Both pl−1 + 2 and p1 + 2 are primes.
It follows that pl−1 ≥ 3, and then 2 | pi + pi+1 for i = 1, 2, · · · , l − 2.
Subcase 3.2.1 p1+p2

2 , p2+p3
2 , · · · , pl−2+pl−1

2 are not all primes.
We assume that pj+pj+1

2 is composite, where 1 ≤ j ≤ l − 2. Then

P
(pj + pj+1

2

)
≤ pj + pj+1

4
≤ X

2
.

Now Ωk(n) = (p1 + 2)(pl−1 + 2)P
(

p1+p2
2

) · · ·P (pl−2+pl−1
2

)
2k−l. Let Ωk(n) = q1q2 · · · qk, where

qi (1 ≤ i ≤ k) are primes and q1 ≥ q2 ≥ · · · ≥ qk. Clearly, ql+1 = 2 and q1 = p1 + 2 ≤ X + 2.
Suppose that P

(pj+pj+1
2

) ≥ 3. If ql �= P (pj+pj+1
2 ), then ql−1 ≤ P

(pj+pj+1
2

) ≤ X
2 , and we use

the induction hypothesis. If ql = P
(pj+pj+1

2

)
and l = k, then qk ≥ 3 and we go back to Case 1.

If ql = P (pj+pj+1
2 ) and l < k, then qk = 2 and we go back to Case 2. The maximal upper bound

in this two cases and the induction hypothesis appear in Subcase 2.2. Hence, there exists an
integer i with 1 ≤ i ≤ 4l − 4, such that

P (Ωi
k(n)) ≤ 23l−5 − 1 + 1

2

23l−5
(X + 2) + 6l − 10 ≤ 23l−4 − 1

23l−4
X + 6l − 8.

Now suppose that P
(pj+pj+1

2

)
= 2. Let Ωk(n) = q1q2 · · · ql−12k−l+1, where qi (1 ≤ i ≤ l−1)

are primes and q1 ≥ q2 ≥ · · · ≥ ql−1 ≥ 2. By p1 > 3, and since p1 and p1 + 2 are primes, we
have 3 | vp1 + 4. That is, 3 | q1 + 2. Noting that X ≥ 3, we have ql = 2 ≤ (1+α)(X+2)

2 . Hence,
by Subcase 3.1, there exists an integer i with 1 ≤ i ≤ 4l − 3, such that

P (Ωi
k(n)) ≤ 23l−5 − 1 + 1+α

2

23l−5
(X + 2) + 6l − 10 ≤ 23l−4 − 1 + α

23l−4
X + 6l − 8.

Subcase 3.2.2 p1+p2
2 , p2+p3

2 , · · · , pl−2+pl−1
2 are all primes.

(1) pl−1 = 3.
If 3

5 ≤ α < 1, then, by 5 ≤ p1 ≤ X , we have pl−1 = 3 ≤ αX . Thus, by the induction
hypothesis, the result is true. Now we assume that 0 < α < 3

5 . Noting that 2 ≤ αX , we have
pl−1 = 3 ≤ 3αX

2 < 9X
10 < X . By the induction hypothesis and α < 3

5 , there exists an integer i

with 1 ≤ i ≤ 4l − 7, such that

P (Ωi
k(n)) ≤ 23l−7 − 1 + 3

2α

23l−7
X + 6l − 14 <

23l−4 − 1 + α

23l−4
X + 6l − 8.

(2) pl−1 > 3.
Since p1 > 3, and p1 and p1 +2 are primes, we have p1 ≡ 2 (mod 3). Noting that p1+p2

2 is a
prime greater than 3 and p2 > 3, we have p2 ≡ 2 (mod 3). Otherwise, if p2 ≡ 1 (mod 3), then
3 | p1 + p2, a contradiction. Similarly, we have p1 ≡ p2 ≡ · · · ≡ pl−1 ≡ 2 (mod 3). It follows
that p1 + 2 ≡ 1 (mod 3), pl−1 + 2 ≡ 1 (mod 3) and pi+pi+1

2 ≡ 2 (mod 3) for i = 1, 2, · · · , l− 2.
Now we consider

Ωk(n) = (p1 + 2)
p1 + p2

2
· · · pl−2 + pl−1

2
(pl−1 + 2)2k−l.

For all i, j with 1 ≤ i, j ≤ l − 2, we have

pi + pi+1

2
+ p1 + 2 ≡ pj + pj+1

2
+ pl−1 + 2 ≡ 0 (mod 6).



Dynamics of a Function Related to the Primes 87

Hence, primes

P
(pi + pi+1

2
+ p1 + 2

)
, P

(pj + pj+1

2
+ pl−1 + 2

)
, P (p1 + 4)

are all odd, and none of them is more than X+4
3 ≤ (1+α)(X+2)

2 .
Let Ω2

k(n) = q1q2 · · · qk, where qi (1 ≤ i ≤ k) are primes and q1 ≥ q2 ≥ · · · ≥ qk. Then
ql+2 = 2 (if it exists) and there exist integers r, s with 1 ≤ r < s ≤ l + 1, such that 3 ≤ qr ≤
qs ≤ (1+α)(X+2)

2 . It follows that ql ≤ (1+α)(X+2)
2 . If ql = 2, then ql−1 ≤ qr ≤ (1+α)(X+2)

2 , and
we use the induction hypothesis. If ql ≥ 3, we go back to Case 1 when qk ≥ 3 and Case 2 when
qk = 2. Hence, there exists an integer i with 1 ≤ i ≤ 4l − 3, such that

P (Ωi
k(n)) ≤ 23l−5 − 1 + 1+α

2

23l−5
(X + 2) + 6l − 10 ≤ 23l−4 − 1 + α

23l−4
X + 6l − 8.

By all the cases above, Lemma 2.2 is true for j = l. That is, if pl ≤ αX and p1 ≤ X , then
there exists an integer i with 1 ≤ i ≤ 4l − 3, such that

P (Ωi
k(n)) ≤ 23l−4 − 1 + α

23l−4
X + 6l − 8.

This completes the proof of Lemma 2.2.

Lemma 2.3 Let k be an odd integer with k ≥ 4. Then for any integer n with k prime
factors not all equal, there exists an integer i with 1 ≤ i ≤ 2 log P (n) + 4k − 2, such that

P (Ωi
k(n)) ≤

(
1 − 1

23k−3

)
P (n) + 6k − 8.

Proof Suppose that n = p1p2 · · · pk, where pi (1 ≤ i ≤ k) are primes in the descending
order and are not all equal. Then

Ωk(n) = P (p1 + p2) · P (p2 + p3) · · ·P (pk−1 + pk) · P (pk + p1).

Now, we discuss the following cases.
Case 1 p1 ≥ p2 ≥ · · · ≥ pk ≥ 3.

Let
P :=

{p1 + p2

2
,

p2 + p3

2
, · · · ,

pk−1 + pk

2
,

p1 + pk

2

}
.

Subcase 1.1 At least one element of P is composite.
Since the largest prime factor of this composite element of P is less than p1

2 , by Lemma 2.2,
there exists an integer i with 1 ≤ i ≤ 4k − 2, such that

P (Ωi
k(n)) ≤ 23k−4 − 1 + 1

2

23k−4
p1 + 6k − 8 =

(
1 − 1

23k−3

)
p1 + 6k − 8.

Subcase 1.2 All elements of P are primes.
In this case, it is clear that every element of P is an odd prime. Now we arrange these k odd

primes in the descending order and denote them by p11 ≥ p12 ≥ · · · ≥ p1k. Then we consider

p11 + p12

2
,

p12 + p13

2
, · · · ,

p1k−1 + p1k

2
,

p1k + p11

2
.
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If all these numbers are odd primes, then we arrange them in the descending order and denote
them by p21 ≥ p22 ≥ · · · ≥ p2k. Continue this process until they are not all primes. Suppose
that for the (t+1)th time, there exists an integer s with 1 ≤ s ≤ k, such that pt+1,s is composite.

Since pti are odd primes for i = 1, 2, · · · , k, we have

pt1 ≡ pt2 ≡ · · · ≡ ptk (mod 2).

That is,
pt−1,1 + pt−1,2

2
≡ pt−1,2 + pt−1,3

2
≡ · · · ≡ pt−1,k + pt−1,1

2
(mod 2).

By 2 � k, it follows that

pt−1,1 ≡ pt−1,3 ≡ · · · ≡ pt−1,k ≡ pt−1,2 ≡ pt−1,4 ≡ · · · ≡ pt−1,k−1 (mod 22).

Thus

pt−1,1 ≡ pt−1,2 ≡ · · · ≡ pt−1,k (mod 22).

Continuing this argument, for all integers j with 1 ≤ j ≤ t, we have

pj1 ≡ pj2 ≡ · · · ≡ pjk (mod 2t+1−j).

Hence

p1 ≡ p2 ≡ · · · ≡ pk (mod 2t+1).

If 2t+1 > p1, then by p1 ≥ · · · ≥ pk ≥ 3, we have p1 = p2 = · · · = pk, a contradiction. So
2t+1 ≤ p1, and then t < 2 log p1. Since pt+1,s is composite and pt+1,s ≤ p1

2 , by Lemma 2.2,
there exists an integer i with 1 ≤ i ≤ 2 log P (n) + 4k − 2, such that

P (Ωi
k(n)) ≤ 23k−4 − 1 + 1

2

23k−4
p1 + 6k − 8 =

(
1 − 1

23k−3

)
p1 + 6k − 8.

Case 2 pk = 2.

If p1 = 3, then P (Ωi
k(n)) = 5 for i = 1 and the result is obviously true. Now we assume

that p1 ≥ 5. Then pk ≤ 2p1
5 . By Lemma 2.2, there exists an integer i with 1 ≤ i ≤ 4k− 3, such

that

P (Ωi
k(n)) ≤ 23k−4 − 1 + 2

5

23k−4
p1 + 6k − 8 ≤

(
1 − 1

23k−3

)
p1 + 6k − 8.

By all the cases above, for any integer n with k prime factors not all equal, there exists an
integer i with 1 ≤ i ≤ 2 log P (n) + 4k − 2, such that

P (Ωi
k(n)) ≤

(
1 − 1

23k−3

)
P (n) + 6k − 8.

This completes the proof of Lemma 2.3.
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3 Proof of Theorem 1.1

For any integer n with k prime factors not all equal, let n = p1p2 · · · pk, where pi (1 ≤ i ≤ k)
are primes in the descending order and are not all equal. Take i0 = 0, P (n) = p1 and Ωi0

k (n) = n.
By Lemma 2.3, there exist positive integers i1 < i2 < · · · , such that, for all integers t ≥ 1,

P (Ωit

k (n)) ≤ ck · P (Ωit−1
k (n)) + 6k − 8 (3.1)

and

it − it−1 ≤ 2 log(P (Ωit−1
k (n))) + 4k − 2, (3.2)

where
ck = 1 − 1

23k−3
.

By (3.1), we have

P (Ωit

k (n)) ≤ ck · P (Ωit−1
k (n)) + 6k − 8

≤ c2
k · P (Ωit−2

k (n)) + (6k − 8) · ck + 6k − 8

≤ · · ·
≤ ct

k · P (Ωi0
k (n)) + (6k − 8) · ct−1

k + · · · + (6k − 8) · ck + 6k − 8

< ct
kp1 + (6k − 8) · 23k−3. (3.3)

If p1 ≤ 7 · 11k−1 − (6k − 8) · 23k−3, then by Theorem A, indk(n) is bounded and the result
is true. Now we suppose that p1 > 7 · 11k−1 − (6k − 8) · 23k−3. Take a positive integer t0, such
that

t0 − 1 <
log(7 · 11k−1 − (6k − 8) · 23k−3) − log p1

log ck
≤ t0. (3.4)

Then
P (Ωit0

k (n)) < ct0
k p1 + (6k − 8) · 23k−3 ≤ 7 · 11k−1.

By Theorem A, for every element n ∈ Ak, there exists a positive integer in such that Ωin

k (n)
lies in some circular array (2a3b5c)Ωk ultimately.

Let
c0 = max{in |n ∈ Ak, P (n) ≤ 7 · 11k−1}.

Then there exists an integer j with 1 ≤ j ≤ c0, such that Ωit0+j(n) lies in some circular array
(2a3b5c)Ωk ultimately.

By (3.2)–(3.3), we have

it0 ≤ t0 · (2 log(p1 + (6k − 8)23k−3) + 4k − 2). (3.5)

Thus, by (3.4)–(3.5), we have

indk(n) ≤ it0 + c0 ≤ c1(log2 p1),
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where the constant c1 depends only on k.
Therefore,

indk(n) = Ok(log P (n))2.

This completes the proof of Theorem 1.1.
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