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Abstract The authors integrate two well-known systems, the Rössler and Lorentz systems,
to introduce a new chaotic system, called the Lorentz-Rössler system. Then, taking into
account the effect of environmental noise, the authors incorporate white noise in both
Rössler and Lorentz systems to have a corresponding stochastic system. By deriving the
uniform a priori estimates for an approximate system and then taking them to the limit,
the authors prove the global existence, uniqueness and the pathwise property of solutions
to the Lorentz-Rössler system. Moreover, the authors carried out a number of numerical
experiments, and the numerical results demonstrate their theoretic analysis and show some
new qualitative properties of solutions which reveal that the Lorentz-Rössler system could
be used to design more complex and more secure nonlinear hop-frequence time series.
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1 Introduction

The original Rössler system reads as

ẋ1 = x2 − x3,

ẋ2 = x1 + ax2, (1.1)

ẋ3 = b+ x3(x1 − c),

which contains only one quadratic nonlinear term x1x3 and was introduced by Rössler in 1976
(see [18]). In the recent years, this model has received increasing attention due to its theoretical
challenges and great potential applications in secure communications (see [2, 5, 9, 15]), chemical
reaction, biological systems and so on (see [1]). The Lorentz system, introduced by Lorentz [12]
in 1963,

ẋ1 = σ(x2 − x1),

ẋ2 = rx1 − x2 − x1x3, (1.2)

ẋ3 = x1x2 − βx3,
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is a well-known model, which has found a lot of applications in different fields, and for example,
we refer the reader to [16] on chaos, [7] on instabilities and lasers, [6] on thermospheres, [8] on
brushless DC motors, [4] on electric circuits, and [17] on chemical reactions.

Due to their wide applications, the systems (1.1)–(1.2), and in particular, the related non-
linear stochastic systems, have been intensively studied in the last decades in the literature (see
[3, 10–11, 13, 19–20]).

In this paper, we consider a more general model which includes the Rössler and Lorentz
systems and study the well-poseness of its corresponding stochastic system:

ẋ1 = σ(x2 − x1) − γ(t)(x2 − x3),

ẋ2 = rx1 − x2 − α1(t)x1x3 + x1 + ax2, (1.3)

ẋ3 = α2(t)x1x2 − βx3 + b+ α3(t)x1(x3 − c).

In fact, if we suitably take the coefficients in (1.3), then the system (1.3) reduces to (1.1)
or (1.2). Therefore, the main properties of the Rössler and Lorentz systems can be included in
this model. The following Figure 1 shows the attractor and the time series of (1.3) with the
initial data X0 = (8, 5, 30), where we have taken α3(t) = 0, b = 0, α1(t) = α2(t) = 1, a = −1,
such that (1.3) reduces to the Lorentz system (1.2).
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Figure 1 The attractor and the time series of the Lorentz system.

Let γ(t) = 1, α1(t) = α2(t) = 0, σ = 0, and appropriately choose other coefficients in (1.3).
Then one can obtain the attractor of the Rössler system and the time series of it are shown in
Figure 2.
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Figure 2 The behavior similar to the Rössler system (the initial value X0 = (3,−4, 2)).
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If we take σ = 9, γ(t) = −1, r = 27, a = b = c = 0, α1(t) = α2(t) = 2, α3(t) = 1, β = 8
3

in (1.3), then we obtain a Lorentz-Rössler system, the solution behavior of which is presented
in Figure 3 below.
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Figure 3 A Rössler-Lorentz system with initial value X0 = (1, 0.1, 1).

We can also consider the case of time-dependent coefficients in (1.3), and for example, if we take
σ = 10, γ(t) = 1

t2+10000 , r = 27, a = b = 0, c = 1, α1(t) = 2, α2(t) = 2
(cos(t2)+10) +10, α3(t) =

1, then the behavior of the solution is shown in Figure 4.
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Figure 4 The Rössler-Lorentz with time-dependent coefficients.

Remark 1.1 From Figures 1–4, we clearly see that upon different choices of the coefficients,
there are many diversified attractors given by the system (1.3). Since the structure of solutions
to our new system (1.3) is more complex than that of both Lorentz and Rössler systems, shown
for example in Figure 3, which have many good properties including nonlinear complexity,
non-periodicity, well-proportioned character and so on, the system (1.3) can be used in more
secure applications to design a more complex and more secure hop-frequency time series. If we
use these nonlinear time series to control the frequency hopping pattern, the communications
would become much more difficult to be disturbed.

In order to make the model (1.3) more widely applicable, we should take into account
the effect of environment noise, particularly, in secure outer communications (complex electric
circumstances), convulsed circuits communications, multi-level chemical reactions and so on.
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Thus we incorporate white noise in each equation of the system (1.3):

dx1 = [σ(x2 − x1) − γ(t)(x2 − x3)]dt+
3∑

i=1

u1i(x1, x2, x3)dBi(t),

dx2 = [rx1 − x2 − α1(t)x1x3 + x1 + ax2]dt+
3∑

i=1

u2i(x1, x2, x3)dBi(t), (1.4)

dx3 = [α2(t)x1x2 − βx3 + b+ α3(t)x1(x3 − c)]dt+
3∑

i=1

u3i(x1, x2, x3)dBi(t),

where uij represents the intensity of the noise at time t and Bi(t) is a standard white noise,
namely, Bi(t) is a Brownian motion defined on a complete probability space (Ω,F ,P). If we
consider the case of Figures 1–4 with environment noise, then the corresponding stochastic
system (1.4) can be illustrated by Figures 5–8, respectively.
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Figure 5 The attractor and time series of the Stochastic Lorentz system with a standard
irrelated white noise (uii = 1, uij,i�=j = 0, i, j = 1, 2, 3).
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Figure 6 The stochastic Rössler system, and the intensity of the noise: uii = 0.5, uij,i�=j =
0, i, j = 1, 2, 3.
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Figure 7 The stochastic Rössler-Lorentz system with the noise uii = 0.001, uij,i�=j =
0, i, j = 1, 2, 3.
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Figure 8 The time-dependent stochastic Rössler-Lorentz system with the noise uii =
0.01, uij,i�=j = 0, i, j = 1, 2, 3.

In the current paper, we shall mainly investigate the Rössler-Lorentz system (1.4), and
consider the case that γ(t) is not a constant but depends on the third variable and the coefficient
of the third interactive term α3(t), namely γ(t) = α3(t)x3(t).

Throughout this article, unless otherwise specified, we assume (Ω,F , {Ft}t≥0,P) to be a
complete probability space with filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is
right continuous and increasing while F0 contains all P-null sets). B(t) := (B1(t), B2(t), B3(t))T

denotes a three-dimensional Brownian motion defined on this probability space.
The rest of this paper is arranged as follows. In Section 2, we describe some fundamen-

tal conditions and notations, while in Section 3, the global existence and uniqueness for the
stochastic system (1.4) are established. Moreover, the pathwise property of solutions is ob-
tained. In Section 4, some numerical examples with inner random perturbations are presented,
which demonstrate the results of our theoretical analysis, and exhibit the various behaviors
with different inner perturbations. By the end of Section 4, we give some conclusions and
discussions.

2 Assumptions and Notations

We firstly split the system (1.4) into different parts and give some fundamental conditions.
In this paper, we consider the generalized system (1.4) only forward in time t ∈ [0,∞). Let
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X = (x1, x2, x3) ∈ R
3. The Rössler-Lorentz system can be rewritten as

dX = −[AX + C(X) − F ]dt+ U(X, t)dBt, 0 ≤ t < +∞, (2.1)

X(0) = X0, (2.2)

where the initial datum X0 = (x10, x20, x30)T is a fixed point independent of Ft for all t > 0.
The four parts of the drift for (2.1) are given by

A =

⎛
⎝ σ −σ 0
−(r + 1) 1 − a 0
−α3(t)c 0 β

⎞
⎠ , C(X) =

⎛
⎝ −α3(t)x3x2 + α3(t)x2

3

α1(t)x1x3

−α2(t)x1x2 − α3(t)x1x3

⎞
⎠ ,

F =

⎛
⎝0

0
b

⎞
⎠ , U(X, t) =

⎛
⎝u11(t) u12(t) u13(t)
u21(t) u22(t) u23(t)
u31(t) u32(t) u33(t)

⎞
⎠ ,

(2.3)

where U(X, t) : R
3 × [0,∞) → space of 3× 3-matrices is a noise term. For the system (2.1), we

assume:
(A1) The matrix A satisfies (AX,X) ≥ λ‖X‖2

2 for some constant λ > 0.
(A2) The constant b and the coefficients α1(t), α2(t), α3(t) are bounded. In addition, the

coefficients of the interactive terms satisfy α1(t) = α2(t) + α3(t).
(A3) The noise term U(X, t) satisfies a Lipschitz condition and a linear growth condition,

i.e.,

‖U(X, t)‖2
2 := trace(U(X, t)UT(X, t)) ≤ C1(1 + ‖X‖2

2).

(A4) (The alternative condition) Either C1 <
λ

p−1 or ‖U(X, t)‖2
2 ≤ C1.

Remark 2.1 If U(X, t) ≡ 0, then the Lorentz-Rössler system becomes a deterministic one.
As for deterministic equations, there are a number of methods to be used in the study of the
well-poseness. And in this paper, we mainly consider the stochastic system. It is important that
the system should keep a small variety in a weak noise environment, for example, outdoor-move
communications, airplane oscillating communications, and complex electromagnetic environ-
ment communications.

At the end of this section, we give some notations which will be frequently used throughout
the paper. For any real matrix R = [rij ] ∈ R

d×m, we define

‖R‖2
2 = trace(RTR) = trace(RRT) =

∑
i,j

r2ij .

For any p ∈ N even and X ∈ R
3, we denote ‖X‖p

2 = (x2
1 + x2

2 + x2
3)

p
2 . For any two variables

X,Y ∈ R
3, (X,Y ) stands for the usual inner product. Ci (i = 1, 2, · · · ) will denote generic

constants which vary from line to line and depend on some parameters.
We remark that the condition (A3) can be easily satisfied. For example,

Ui(X, t) = xi(t)
3∑

j=1

σij(t)dBj(t) or Ui(X, t) =
3∑

j=1

σij(t)dBj(t)

satisfies (A3) when all the σij(t) are bounded on R+.
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3 Global Existence and Pathwise Property

In this section, we shall show a global existence result and a pathwise property for the
stochastic system (1.4) with initial data X(0) = X0 = (x10, x20, x30)T ∈ R

3 and U(X, t) 	= 0.
In order to guarantee the existence of a unique global solution for any given initial data, we
require in general that the terms of the system (1.4) satisfy the linear growth and uniform
Lipschitz continuity conditions. For the system (2.1), the terms −A(t)X , F , U(X, t) satisfy
these two conditions. However, the term C(X, t) does not satisfy both the linear growth and
uniform Lipschitz continuity conditions. To circumvent this difficulty, we first introduce a
modified system, which is solvable, by truncating C(X, t) appropriately. Then, uniform priori
estimates for the modified system enable us to show that the modified system converges to the
original one as the truncation level goes to infinity, and thus we obtain a solution to (1.4).

Our modified system is given in the following lemma.

Lemma 3.1 Let χN ∈ C1(R3,R) with χN (X) = 1 for ‖X‖2 ≤ N and χN (X) = 0 for
‖X‖2 ≥ N + 1. Define CN (X) := χN(X)C(X), and consider the modified system:

dXN = −(AXN + CN (XN ) − F )dt+ U(XN )dBt, t ∈ [0,∞), XN (0) = X0, (3.1)

where XN = (xN1, xN2, xN3). Assume that the initial data is independent of {Ft}t>0 and
satisfies E‖X0‖2

2 < ∞. Then for any fixed N > 0, the modified system (3.1) possesses a
continuous almost sure unique and global solution that is {Ft} measurable.

Proof It is easy to see that CN (XN ) is bounded and satisfies a linear growth condition.
To show that CN (XN ) is uniformly Lipschitz continuous for any fixed N > 0, we observe for
XN , XN ∈ R

3 that

‖CN (XN ) − CN (XN )‖2
2

=

∥∥∥∥∥∥∥∥

⎛
⎜⎜⎝
α3(t)(−χN (XN )XN3XN2 + χN (XN )XN3XN2 + χN (XN )X2

N3 − χN (XN )X
2

N3)
α1(t)(χN (XN )XN1XN3 − χN (XN )XN1XN3)

α2(t)(−χN (XN )XN1XN2 + χN (XN )XN1XN2) − α3(t)(χN (XN )XN1XN3

+χN (XN )XN1XN3)

⎞
⎟⎟⎠

∥∥∥∥∥∥∥∥

2

2

.

We consider three cases for the right-hand side of the above identity.
Case 1 If both ‖XN‖2 ≥ N + 1 and ‖XN‖2 ≥ N + 1, then obviously, the uniform Lipschitz

continuity of CN (XN ) can be ensured.
Case 2 If either ‖XN‖2 ≥ N +1 and ‖X‖2 < N +1, or ‖XN‖2 < N +1 and ‖X‖2 ≥ N +1,

we have (without loss of generality, let ‖XN‖2 ≥ N + 1 and ‖XN‖2 < N + 1, which implies
‖XN −XN‖2

2 	= 0):

‖CN (XN ) − CN (XN‖2
2

=

∥∥∥∥∥∥
⎛
⎝ α3(t)χN (XN )(−XN3XN2 +X2

N3)
χN (XN )α1(t)XN1XN3

−χN (XN )(α2(t)XN1XN2 + α3(t)XN1XN3)

⎞
⎠

∥∥∥∥∥∥
2

2

≤ (
4N max

i
sup{α1(t), α2(t), α3(t)}(N + 1)

)2‖XN‖2
2 ≤ Cα‖XN −XN‖2

2,

where Cα is dependent on N , the boundary of α1(t), α2(t), α3(t) and the assumption of Case 2.
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Case 3 If ‖XN‖2 ≤ N + 1 and ‖X‖2 ≤ N + 1, we first find that

α3(t)(χN (XN )XN3XN2 − χN (XN )XN3XN2)

≤ sup
t∈[0,∞)

|α3(t)|(|χN (XN )||XN2 −XN2| + |(χN (XN )XN3 − χN (XN )XN3)XN2|)

≤ sup
t∈[0,∞)

|α3(t)|(|χN (XN )||XN2 −XN2| + |χN (XN ) − χN (XN )|XN2XN3

+ χN (XN )XN2|XN3 −XN3|)
≤ C3‖XN −XN‖2,

where C3 is dependent on sup
t∈[0,∞)

α3(t), N and the continuous coefficients of the function χ. We

can employ a similar argument to deal with all the other terms of CN (XN ) − CN (XN ), and
thus derive that

‖CN(XN ) − CN (XN )‖2
2 ≤ C5‖XN −XN‖2

2.

On the other hand, all other coefficients in (1.4) obviously satisfy a linear growth as well as
the uniform Lipschitz continuity condition. Thanks to the truncation function χN ∈ C1(R3,R),
the modified nonlinear term CN (XN ) remains differentiable, and its derivatives are continuous
and have compact supports. Thus, Lemma 3.1 follows from the usual existence and uniqueness
theorem.

To get the uniform a priori estimates of the solution to the system (3.1), we first deal with
the Itô derivatives of the Lyapunov functions.

Lemma 3.2 Let the assumptions (A1) and (A2) hold. Then we have

d‖XN‖p
2 = −pλ

2
‖XN‖p

2dt+ ‖XN‖p−2
2

pb2

2λ
dt+

p

2
(p− 1)‖XN‖p−2

2 ‖U(XN)‖2
2dt

+ p‖XN‖p−2
2 XT

N U(XN )dBt + φ(t)dt, (3.2)

where φ(t) ≤ 0 is an adapted process.

Proof Denoting the Lyapunov function

V (X) = (x2
1 + x2

2 + x2
3)

p
2 = ‖X‖p

2,

we use the Itô formula with respect to V (XN ) for p ∈ N even to evaluate the Itô derivatives of
the Lyapunov function of the solution to the modified system (3.1) as follows:

dU(XN ) =
3∑

i=1

p

2
(x2

N1 + x2
N2 + x2

N3)
p
2−12xNidxNi

+
1
2

3∑
i,j=1

p

2

(p
2
− 1

)
(x2

N1 + x2
N2 + x2

N3)
p
2−22xNi2xNjdxNidxNj

+
1
2

3∑
i=1

p

2
(x2

N1 + x2
N2 + x2

N3)
p
2−12dxNidxNi

= p‖XN‖p−2
2 (dXN , XN ) + p

(p
2
− 1

)
‖XN‖p−4

2

3∑
i,j=1

xNidxNixNjdxNj
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+
p

2
‖XN‖p−2

2

3∑
i=1

dxNidxNi

= p‖XN‖p−2
2 {−[(AXN , XN) + (χN (XN )C(XN ), XN ) − (F,XN )]}dt

+ p
(p

2
− 1

)
‖XN‖p−4

2 trace(XNX
T
NU(XN)UT(XN ))dt

+
p

2
‖XN‖p−2

2 trace(U(XN )UT(XN ))dt+ p‖XN‖p−2
2 XT

NU(XN )dBt. (3.3)

We have to control every term on the right-hand side of (3.3). To this end, we first need the
following estimates.

Lemma 3.3 For any real matrix R ∈ R
m×n, Q ∈ R

n×m, the following inequalities hold:

‖RQ‖2 ≤ ‖R‖2‖Q‖2, |trace(RQ)| ≤ ‖R‖2‖Q‖2.

In fact, recalling the definition of the trace operator and Hölder’s inequality, we easily see that
Lemma 3.3 follows from the following inequalities:

‖RQ‖2
2 =

∑
ij

(∑
k

rikqkj

)2

≤
∑
i,j

(∑
k

r2ik
∑

l

q2lj

)
=

∑
i,j,k,l

(r2ikq
2
lj) =

∑
i,k

r2ik
∑
j,l

q2lj = ‖R‖2
2‖Q‖2

2,

|trace(RQ)|2 =
(∑

i,j

rijqji

)2

≤
∑
i,j

r2ij
∑
i,j

q2ji = ‖R‖2
2‖Q‖2

2.

Hence, by Lemma 3.3, we have that

trace(XNX
T
NU(XN )UT(XN )) ≤ ‖XNX

T
N‖2‖U(XN)UT(XN )‖2 ≤ ‖XN‖2

2‖U(X)‖2
2. (3.4)

Recalling the assumption (A1) and Hölder’s inequality, we deduce that

−(AXN , XN ) + (F,XN ) ≤ −λ
2
‖XN‖2

2 +
b2

2λ
, (3.5)

while from (A2) we get

(χN (XN )C(XN ), XN ) =

⎛
⎝χN (XN )

⎛
⎝ −α3(t)xN3xN2 + α3(t)x2

N3

α1(t)xN1xN3

−α2(t)xN1xN2 − α3(t)xN1xN3

⎞
⎠ ,

⎛
⎝xN1

xN2

xN3

⎞
⎠

⎞
⎠

= χN (XN )(−α3(t)xN3xN2xN1 + α3(t)x2
N3xN1

+ α1(t)xN1xN3xN2 − α2(t)xN1xN2xN3 − α3(t)xN1x
2
N3)

≡ 0. (3.6)

Using Lemma 3.3 again, and putting together the estimates (3.4)–(3.6), we conclude that

d‖XN‖p
2 = −pλ

2
‖XN‖p

2dt+ p‖XN‖p−2
2

b2

2λ
dt+ 0 + p

(p
2
− 1

)
‖XN‖p−2

2 ‖U(XN)‖2
2dt

+
p

2
‖XN‖p−2

2 ‖U(XN)‖2
2dt+ p‖XN‖p−2

2 XT
NU(XN)dBt + φ(t)dt,

where φ(t) ≤ 0 is an adapted process, which compensates all the above computations. Thus,
the proof of Lemma 3.2 is complete.

Next, we derive uniform a priori estimates for XN (t). We begin with the following lemma.
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Lemma 3.4 Assume that the assumptions (A1)–(A4) hold, and let p ∈ N be even and fixed,
and the initial expectation E‖X0‖p

2 <∞. Then,

sup
t∈[0,∞)

E‖XN(t)‖p
2 ≤ Cp, (3.7)

where the constant Cp > 0 depends only on E‖X0‖p
2, p, λ, C1, b, but not on N .

Proof First, we introduce the stopping time. For any D ∈ N, let

τD = inf{t ∈ [0,∞) : ‖XN(t)‖2 ≥ D}. (3.8)

In view of the assumption (A4), we consider the following two cases, respectively.

Case 1 If ‖U(XN)‖2
2 ≤ C1, then (3.2) becomes

d‖XN‖p
2 ≤ −pλ

2
‖XN‖p

2dt+ ‖XN‖p−2
2

pb2

2λ
dt+

p

2
(p− 1)C1‖XN‖p−2

2 dt

+ p‖XN‖p−2
2 XT

N t+ p‖XN‖p−2
2 XT

NU(XN )dBt.

Integrating the above inequality from 0 to t ∧ τD and taking the expectation, we obtain

E‖XN(t ∧ τD)‖p
2 ≤ E(‖X0‖p

2) + E

∫ t∧τD

0

(
− pλ

2

)
E‖XN(s)‖p

2ds

+
∫ t∧τD

0

(pb2
2λ

+
C1p(p− 1)

2

)
E‖XN(s)‖p−2

2 ds+ 0.

In particular, we take p = 2 and use the Gronwall inequality to infer that

E‖XN(t ∧ τD)‖2
2

≤ E‖X0‖2
2 +

(pb2
2λ

+
C1p(p− 1)

2

)
(t ∧ τD)

− pλ

2

∫ t∧τD

0

exp
[
− pλ

2
(t ∧ τD − s)

][
E‖X0‖2

2 +
(pb2

2λ
+
C1p(p− 1)

2

)
s
]
ds

= E‖X0‖2
2 exp

[
− pλ

2
(t ∧ τD)

]
+

[pb2
2λ

+
C1p(p− 1)

2

] 2
pλ

{
1 − exp

[
− pλ

2
(t ∧ τD)

]}

≤ C
(1)
2 := E‖X0‖2

2 +
b2

λ2
min

+
C1(p− 1)

λ
,

where C(1)
2 is independent of t. Computing recursively, we obtain for any finite p ∈ N even that

E‖XN (t ∧ τD)‖p
2

≤ E‖X0‖p
2 +

∫ t∧τD

0

(
− pλ

2

)
E‖XN (s)‖p

2ds+
∫ t∧τD

0

[pb2
2λ

+
C1p(p− 1)

2

]
C

(1)
p−2ds

= E‖X0‖p
2 +

[pb2
2λ

+
C1p(p− 1)

2

]
C

(1)
p−2(t ∧ τD)

∫ t∧τD

0

(−pλ
2

)E‖XN (s)‖p
2ds.
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If we apply the Gronwall inequality again, we get

E‖XN(t ∧ τD)‖p
2

≤ E‖X0‖p
2 +

[pb2
2λ

+
C1p(p− 1)

2

]
C

(1)
p−2(t ∧ τD)

+
∫ t∧τD

0

(
− pλ

2

)
exp

[
− pλ

2
(t ∧ τD − s)

]{
E‖X0‖p

2 +
[pb2

2λ
+
C1p(p− 1)

2

]
C

(1)
p−2s

}
ds

= E‖X0‖p
2 exp

[
− pλ

2
(t ∧ τD)

]
+

[pb2
2λ

+
C1p(p− 1)

2

]
C

(1)
p−2

2
pλ

{
1 − exp

[
− pλ

2
(t ∧ τD)

]}

≤ C(1)
p := E‖X0‖p

2 +
[ b2

λ2
min

+
C1(p− 1)

λ

]
C

(1)
p−2,

where C(1)
p , C

(1)
p−2, · · · , C(1)

2 are independent of t ∧ τD.
Therefore, for any finite p ∈ N even, we have

sup
t∈[0,∞)

E‖XN(t ∧ τD)‖p
2 ≤ C(1)

p . (3.9)

Case 2 If C1 <
λ

p−1 , then (3.2) becomes

d‖XN‖p
2 ≤

(C1p(p− 1)
2

− pλ

2

)
‖XN‖p

2dt+
(pb2

2λ
+
C1p(p− 1)

2

)
‖XN‖p−2

2 dt

+ p‖XN‖p−2
2 XT

NU(XN )dBt. (3.10)

Keeping in mind that C1 <
λ

p−1 and (3.10), we derive that

sup
t∈[0,∞)

E‖XN(t ∧ τD)‖p
2 ≤ C

(2)
2 ,

where C(2)
2 = E‖X0‖2

2 +
b2
λ +C1(p−1)

λ−C1(p−1) .
We can argue similarly to (3.9) to obtain

E‖XN(t ∧ τD)‖p
2 ≤ C(2)

p , (3.11)

where C(2)
p = E‖X0‖p

2 +
b2
λ +C1(p−1)

λ−C1(p−1) .
Combining (3.9) with (3.11), we conclude

sup
t∈[0,∞)

E‖XN(t ∧ τD)‖p
2 ≤ Cp := C(1)

p + C(2)
p ,

where C(1)
p andC(2)

p are independent ofN and t, and depend on the constantsE‖X0‖p
2, λ, p, b, C1

only.
It is obvious that the stopping time satisfies τD → ∞ as D → ∞. By the continuity of the

solution XN(t) in t, we see that for any fixed t ∈ [0,∞), ‖XN(t∧ τD)‖p
2 is bounded, t∧ τD → t

as D → ∞, and

‖XN(t ∧ τD)‖p
2 −→ ‖XN(t)‖p

2 a.s. (as D → ∞). (3.12)



116 S. Jiang and J. P. Yin

Putting all the above uniform estimates for E‖XN(t ∧ τD)‖p
2 together, using (3.12) and the

Fatou lemma, we obtain

E‖XN(t)‖p
2 = E lim

D→∞
‖XN(t ∧ τD)‖p

2 ≤ lim
D→∞

inf E‖XN(t ∧ τD)‖p
2 ≤ Cp,

where Cp is independent of t. Hence,

sup
t∈[0,∞)

E‖XN(t)‖p
2 ≤ Cp,

which completes the proof.

Under a weaker condition on the initial expectation, we still have Lemma 3.4, namely, the
following lemma.

Lemma 3.5 Let E‖X0‖4
2 <∞ and T > 0 be arbitrary but fixed. Assume that the conditions

(A1)–(A4) hold. Then there exists a constant C̃4, such that

E sup
t∈[0,T ]

‖XN(t)‖2
2 ≤ C̃4, (3.13)

where C̃4 is independent of N , and depends possibly on T,C2, C4, C1, λ, b only.

Proof In view of the uniform boundedness Lemma 3.4, we see that it is not necessary to
use the stopping time in the following discussion. If we integrate (3.2) from 0 to t (t ∈ [0, T ]),
we obtain

sup
t∈[0,T ]

‖XN (t)‖2
2

= ‖X0‖2
2 + sup

t∈[0,T ]

∫ t

0

b2

λ
ds− λ sup

t∈[0,T ]

∫ t

0

‖XN(s)‖2
2ds+ sup

t∈[0,T ]

∫ t

0

‖U(XN(s))‖2
2ds

+ 2 sup
t∈[0,T ]

∫ t

0

XT
N(s)U(X(s))dBs + sup

t∈[0,T ]

∫ t

0

φ(s)ds.

Taking the expectation to the above identity, and using the Burholder-Davis-Gundy inequality
to control the stochastic integral, we infer that

E sup
t∈[0,T ]

‖XN(t)‖2
2 ≤ E‖X0‖2

2 +
b2

λ
T − λ

∫ T

0

E‖XN(s)‖2
2ds+

∫ T

0

E‖U(XN(s))‖2
2ds

+ 2E sup
t∈[0,T ]

∫ t

0

XT
N(s)U(XN (s))dBs

≤ E‖X0‖2
2 +

b2

λ
T +

∫ T

0

C1(1 + E‖XN (s)‖2
2)ds

+ 8E
∣∣∣ ∫ T

0

‖XT
N(s)U(XN (s))‖2

2ds
∣∣∣ 1
2

≤ E‖X0‖2
2 +

(b2
λ

+ C1 + C1C2

)
T + 8 + 8E

∫ T

0

‖XNT (s)‖2
2‖U(XN (s))‖2

2ds

≤ E‖X0‖2
2 +

(b2
λ

+ C1 + 9C1C2 + 8C1C4

)
T + 8 := C̃4,
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which implies the boundedness given in the lemma.

Making use of the above lemmas, we are able to show the main results of this paper, i.e.,
Theorems 3.1–3.2 below.

Theorem 3.1 Suppose that the conditions (A1)–(A4) are satisfied. Then, the Rössler-
Lorentz systems (2.1)–(2.2) with E‖X0‖4

2 <∞ possesses a global unique almost sure continuous
solution process, which has the following property:

If, in addition, E‖X0‖p
2 <∞ for a fixed p ∈ N even, then

sup
t∈[0,∞)

E‖X(t)‖p
2 ≤ Cp. (3.14)

Proof First, we show the existence. By virtue of Lemma 3.1, the truncated system (3.1)
has a continuous solution XN (t) (t ∈ [0,∞)). To prove the existence, we show that the sequence
XN (t) is convergent XN (t) → X(t) as N → ∞ in some sense. Let τD denote the stopping time
introduced in (3.8) for an N ∈ N. From Lemma 3.5 and the Chebyshev inequality we get

P{τN (ω) < N} ≤ P

{
sup

t∈[0,N ]

‖XN(t)‖2 ≥ N
}
≤
E sup

t∈[0,N ]

‖XN (t)‖2
2

N2

≤ E‖X0‖2
2 + ( b2

λ + C1 + 9C1C2 + 8C1C4)N + 8
N2

→ 0, as N → ∞, (3.15)

whence
P{τ∞(ω) <∞} = 0

and
P{τ∞(ω) = ∞} = 1.

Thus for almost every ω ∈ Ω, there exists an N0(ω), such that τN0(ω) is large enough. Moreover,
one has

CN ′(X) = CN (X) = C(X), N ′ ≥ N > 0 for all ‖X‖2 ≤ N. (3.16)

Hence,

τN ′ ≥ τN and XX0
N ′ (·, ω) = XX0

N (·, ω) (almost sure) on [0, τN ] for all N ′ ≥ N. (3.17)

By virtue of (3.17), if τN → ∞, then τN ′ → ∞ for all N ′ ≥ N (N → ∞). Therefore, the
set {ω : τN (ω) → ∞} is monotonously increasing and converges to Ω as N → ∞.

Moreover, because for any N ∈ N, XN (t) is continuous in t and converges uniformly in t to
X(t), X(t) is also continuous in t (in fact, note that if τN0(ω) is sufficiently large, then we can
express for almost all ω ∈ Ω the limit function as X(·, ω) := XN ′(·, ω) for all N ′ ≥ N0(ω)).

Next, we have to show that the limit function X(t) is indeed a solution of the original
Rössler-Lorentz system. When t = 0, it is obvious that XN (0) = X(0) = X0 for all N ∈ N,
while for t > 0 we show that X(t) solves (2.1)–(2.2) by taking it to the limitation in (3.1) as
N → ∞. To this end, recalling the definition of (3.8), we have

CN (XN (t ∧ τN )) = C(X(t ∧ τN ))
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and

XN (t ∧ τN ) = X(t ∧ τN ) for all t <∞.

Moreover, the almost sure convergence of τN
(N→∞)−→ ∞ implies that

P

{
sup

t∈[0,T ]

∥∥∥ ∫ t

t0

[A(XN (s) −X(s)) + (F − F ) + CN (XN (s)) − C(X(s))]ds

+
∫ t

t0

[U(XN (s)) − U(X(s))]dBs

∥∥∥
2
> 0

}
≤ P{τN < t} (N→∞)−→ 0, (3.18)

where we have used the fact that if τN ≥ t, then τN ∧ t = t, and consequently, XN(t) = X(t),
CN (XN (t)) = C(X(t)) and

sup
t∈[0,T ]

∥∥∥ ∫ t

t0

[A(XN (s) −X(s)) + (F − F ) + CN (XN (s)) − C(X(s))]ds

+
∫ t

t0

[U(XN (s)) − U(X(s))]dBs

∥∥∥
2

= 0.

Therefore, X(·) is a solution of the stochastic Rössler-Lorentz system on [0,∞). Meanwhile,
the boundary of the moments (3.14) can be obtained by the uniform-in-t convergence of XN (t)
to X(t) and Lemma 3.4. Finally, for any fixed N > 0, the coefficients of the truncated system
(3.1) satisfy the uniform Lipschitz continuity condition, so the uniqueness of the the system
(3.1) can be ensured. Combining (3.18) with the uniform-in-t convergence of XN (t) to X(t),
we obtain the uniqueness of solutions to the Rössler-Lorentz system by an almost sure means.

In Theorem 3.1 we have discussed the existence, uniqueness and the moment properties of
solutions to the systems (2.1)–(2.2). Now, we study the pathwise property.

Theorem 3.2 Let the conditions in Theorem 3.1 hold. Then for any initial data X0 ∈ Ω,
the solution X(t) of (2.1) established in Theorem 3.1 satisfies

lim sup
t→∞

log(‖X(t)‖2)
log t

≤ 1, a.s. (3.19)

Proof We use the same notations as in the proof of Theorem 3.1. Following a procedure
similar to that used for (3.2), we obtain

d‖X‖p
2 = −pλ

2
‖X‖p

2dt+ ‖X‖p−2
2

pb2

2λ
dt+

p

2
(p− 1)‖X‖p−2

2 ‖U(X)‖2
2dt

+ p‖XN‖p−2
2 XTU(X)dBt + ψ(t)dt, (3.20)

where ψ(t) ≤ 0 is an adapted process.
First, we discuss the behavior of the solution in the time interval [t, t+ 1]. Let p = 2. For

any t > 0, we integrate (3.20) over (s, t), and then take the supremum and expectation to get

E sup
t≤s≤t+1

‖X(s)‖2
2

≤ E‖X0‖2
2 +

b2

λ
+ E sup

t≤s≤t+1

∫ s

t

‖U(X(u))‖2
2du+ E sup

t≤s≤t+1

∫ s

t

XT(u)U(X(u))dBu

= E‖X(t)‖2
2 +

b2

λ
+

∫ t+1

t

E‖U(X(u))‖2
2du + E sup

t≤s≤t+1

∫ s

t

XT(u)U(X(u))dBu, (3.21)
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which, together with the Burkholder-Davis-Gaudy inequality and the condition (A3), gives

E sup
t≤s≤t+1

‖X(s)‖2
2 ≤ E‖X(t)‖2

2 +
b2

λ
+ C1 +

∫ t+1

t

E‖X(u)‖2
2du

+
√

32E
(∫ t+1

t

‖XT(u)U(X(u))‖2
2du

) 1
2

≤ 2C2 +
b2

λ
+
√

32 + C1 +
√

32C1C2 +
√

32C1C4 := C̃, (3.22)

where C̃ depends on C1, C2, C4, λ and b2 only, but not on t. Thus, the inequality (3.22) implies
that the constant C̃ satisfies

E sup
k≤s≤k+1

‖X(s)‖2
2 ≤ C̃, k = 1, 2, · · · .

Let ε be arbitrary. It follows from the Chebyshev inequality that

P

{
sup

k≤s≤k+1
‖X(s)‖2 > k1+ε

}
≤
E sup

k≤s≤k+1
‖X(s)‖2

2

k2+2ε
≤ C̃

k2+2ε
, k = 1, 2, · · · .

Applying the well-known Borel-Cantelli Lemma (see [14]), we find that for almost all ω ∈ Ω,

sup
k≤s≤k+1

‖X(s)‖2 ≤ k1+ε for all but finitely many k. (3.23)

Hence, there exists a k0(ω), such that for almost all ω ∈ Ω, (3.23) holds whenever k ≥ k0.
Consequently, for almost all ω ∈ Ω, if k ≥ k0 and k ≤ t ≤ k + 1, one has

log(‖X(t)‖2)
log(t)

≤ log(k1+ε)
log(k)

= 1 + ε.

Taking t→ ∞, we conclude

lim sup
t→∞

log(‖X(t)‖2)
log(t)

≤ 1 + ε,

which, by letting ε→ 0, gives the pathwise property (3.19). In other words, the solution would
not grow faster than t1+ε, with probability one.

4 Numerical Results

In this section, we present some numerical results with different parameters which show
qualitative differences between the stochastic and deterministic Lorentz-Rössler systems, and
illustrate our theoretic analysis. We use the stochastic and deterministic Runge-Kutta schemes
to carry out our numerical tests, for all of which the initial datum is taken to be X0 = (1, 0.1, 1)
and all coefficients in the systems are chosen so that the conditions (A1)–(A4) are satisfied. For
simplicity, we only consider the independent noise (uij,i	=j = 0, i, j = 1, 2, 3). First we consider
some examples to exhibit the moment estimates of the Rössler-Lorentz system.

Example 4.1 Let the coefficients of the linear terms be σ = 2, r = 0, a = −7, b = 1, β =
2, c = 0, and nonlinear parameters be α1(t) = 1

sin(t2)+2 + 1
cos(t2)+2 , α2(t) = 1

cos(t2)+2 , α3(t) =
1

sin(t2)+2 . With these choices, it is easy to see that the conditions (A1)–(A4) hold. The stochastic
and deterministic solutions to (1.4) are shown in the following Figures 9–10, respectively.
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Figure 9 The attractor and the time series of the stochastic Rössler-Lorentz system with
a white noise uii = 0.01, i = 1, 2, 3.
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Figure 10 The attractor and the time series of the deterministic Rössler-Lorentz system.

If we take the nonlinear terms to be small transformations:

α1(t) =
1

sin(t) + 2
+

1
cos(t2) + 2

, α2(t) =
1

cos(t2) + 2
, α3(t) =

1
sin(t) + 2

,

then we find that the stochastic and deterministic solutions possess very different trajectories
(see Figures 11–12).
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Figure 11 The attractor and the time series of the stochastic Rössler-Lorentz system with
a white noise uii = 0.01, i = 1, 2, 3.
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Figure 12 The attractor and the time series of the deterministic Rössler-Lorentz system.

Example 4.2 Let c = 0. We take β > 0 and a < 1 to satisfy the condition (A1). In this
example, we first consider the case with σ = 12, r = −10, a = −7, b = 1, β = 2, c = 0, and

α1(t) =
1

sin(t) + 2
+

5
sin(t2) + 2

, α2(t) =
5

sin(t2) + 2
, α3(t) =

1
sin(t) + 2

.

The corresponding numerical solutions are illustrated in Figures 13–14.
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Figure 13 Stochastic system with a white noise uii = 0.1, i = 1, 2, 3.
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Figure 14 Deterministic system.

Then, we consider the effect of matrix A. Change the linear terms and assume that σ =
9, r = −10, a = −18, b = 1, β = 2, c = 0, and the corresponding numerical solutions are
shown in Figures 15–16.
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Figure 15 Transformed linear terms system with a white noise uii = 0.1, i = 1, 2, 3.
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Figure 16 Deterministic system with different linear terms.

Example 4.3 In this example, we mainly test the effect of noises. Take σ = 2, r = 0, a =
−18, b = 1, β = 8(cos t+ 1), c = 0, and

α1(t) =
t

2t+ 2
−2 sin(t)+3+

1
cos(3t) + 2

, α3(t) =
t

2t+ 2
, α2(t) = −2 sin(t)+3+

1
cos(3t) + 2

.

Thus, the corresponding stochastic and deterministic numerical solutions are presented in Fig-
ures 17–20.
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Figure 17 Stochastic system with a white noise uii = 0.1, i = 1, 2, 3.
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Figure 18 Stochastic system with a white noise uii = 0.01, i = 1, 2, 3.
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Figure 19 Stochastic system with a white noise uii = 0.001, i = 1, 2, 3.
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Figure 20 Deterministic system with a white noise uii = 0, i = 1, 2, 3.

In this paper, we have established a sufficient condition under which the stochastic system
(1.3) has a unique solution. Moreover, we have carried out a number of numerical experiments,
which show some interesting qualitative behaviors of solutions, summarized as follows.

(1) From Examples 1–3 we obviously see that for any time T , Theorem 3.1 can be ensured,
and the boundary of the moments of the solutions can be obtained.

(2) Examples 1–2 clearly show the dynamical behavior of the system (1.4), which mainly
depends on the nonlinear terms. In particular, Example 1 gives small transforms on nonlinear
terms, but the respective paths have large differences.

(3) For a more general Lorentz-Rössler system, if the uniqueness can be ensured, we can
show, for Example 3 in particular, that the stochastic system converges toward the correspond-
ing deterministic system when the intensity of the noise goes to zero.



124 S. Jiang and J. P. Yin

(4) All the numerical results on the system (1.3) give us very abundant expressions, including
the behavior of the well-known Lorentz and Rössler systems. Furthermore, parts of the systems
could be used to make a more complex and more secure hop-frequency time series.

(5) In view of the numerical results given in Figure 4, we have clearly found that the
combined stochastic Lorentz-Rössler system possesses better properties than the corresponding
deterministic system.
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