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Abstract A horizontal Hodge Laplacian operator [y is defined for Hermitian holomor-
phic vector bundles over PTM on Ké&hler Finsler manifold, and the expression of [y is
obtained explicitly in terms of horizontal covariant derivatives of the Chern-Finsler con-
nection. The vanishing theorem is obtained by using the d»dx-method on Kéhler Finsler
manifolds.
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1 Introduction

Bochner [1-3] initiated a method, i.e., the well-known “Bochner technique”, which used
the Laplace operator and the general maximum principle of Hopf to deal with the relation
between vector or tensor fields and the curvature of manifolds, and got the global properties of
manifolds. From then on, the Bochner technique became a very useful method in geometrical
study. Both in Riemannian and Kéhlerian manifolds, the Bochner technique was discussed in
details in [4-8]. The Bochner technique is used to integrate the Laplacian of the pointwise
square norm of a harmonic form over a compact Riemannian manifolds, yielding thereby two
terms. One is the global square norm of the covariant derivatives of the harmonic form. The
other involves the curvature tensor. Under the suitable condition of the curvature tensor, it can
be obtained that the harmonic form must be zero or parallel. It was applied to (0, ¢)-forms on a
Kéhler manifold with values in Hermitian holomorphic line bundles, due to Kodaira [9]. Later,
the technique was called as the Bochner-Kodaira technique. The Bochner-Kodaira technique
is the important method in differential geometry and is variated as the 99 Bochner-Kodaira
technique due to Siu [10-11].

Recently, under the initiation of S. S. Chern, the global differential geometry of real and
complex Finsler manifolds gained a great development (see [12-17]), Abate and Pateizio [16]
set up a Cartan-Finsler connection in real Finsler manifolds and a Chern-Finsler connection in
complex Finsler manifolds. The main purpose of this paper is to generalize the Bochner-Kodaira
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techniques from Ké&hler manifolds to Kéhler Finsler manifolds, and the vanishing theorem is
obtained by using the 903 Bochner-Kodaira technique.

2 Complex Finsler Manifolds

Let M be a compact complex manifold of dimension n, and 7 : TV°M — M, where T1°M
is the holomorphic tangent bundle of M. We denote by o : M — T1Y°M the zero section of
TYOM, and set M = T'OM \o(M), which means the holomorphic tangent bundle minus its
zero section. Let z = (z1,---,2") and (z,v) = (2%,---, 2", 0!, .-+ v™) be the local coordinates
on M and the induced complex coordinates on T0M, respectively. For simplicity, we denote

0 : 0

HZ@, (y:a?7 I<p,a<n,

which give a local holomorphic frame field of 7100

Since there is a natural C* = C\{0} acting on T M by scalar multiplication, the projective
tangent bundle PTM can be defined by PTM = {(z, [v]) | (2, [v]) = (2, \v), ¥(z,v) € M, X €
C*}. The local coordinate system (z,v) for TM may also be considered as a local coordinate
system for PTM as long as v is considered as a homogeneous coordinate system. The reason
for working on PTM rather than TM is that PTM is compact, if M is compact.

Let F be a strongly pseudoconvex complex Finsler metric defined on T"9M, that is F :
T*9M — R7 is a continuous function satisfying the following conditions (see [16]):

(i) G = F? is smooth on M ;

(ii) F(v) >0forallve M:;

(iii) F(\v) = |\|F(v) for all v € TH°M and X € C;

(iv) The Hermitian matrix (G 5) is positive definite on M, where

0’G
Gs =775
Foate et
and the derivatives with respect to the z-coordinates will be denoted by indexes after a semi-
colon, for instance,

0%G 0%G
Ciur = 920z CGaw = 0z" v’
A manifold M endowed with a strongly pseudoconvex complex Finsler metric will be called
a strongly pseudoconvex complex Finsler manifold.
Let T@M be the complexity of the real tangent bundle TeM of M , and Tc M be the com-
plexity of the real tangent bundle Tk M of M. Then the differential dr : TCM — TeM of

71 M —s M defines the vertical bundle V over M by
Y = Kerdr N T°M C TLOM,

which is a holomorphic vector bundle of rank n over M. A local frame field of V is given by
{31, e ,5‘n} and there is a well-defined Hermitian metric on V induced by F' given by

(Vi, Vo = G5, 0) ViV, (2.1)

where (z,v) € M, Vi,Vo € V, with V; = Vjaéa (j = 1,2). Then there is a unique Chern-
Finsler connection D associated to the Hermitian structure induced by F. Then the Chern
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Finsler connection is the Hermitian connection of the holomorphic vector bundle (V(, )). Let
H C THYM be the complex horizontal bundle associated to the Chern Finsler connection, and
the natural local frame {d1,---,d,} for H is given by

Sy = 0y —T'%0a,

where I'Y, = G™*Gx,, are called the nonlinear connection coefficients associated to (M, F).
In this paper, we shall only use the adapted frame {6,“5‘&} for T20M and its dual frame
{dz#,0v*}, where v = dv® 41 dz", because they have a simple rule of transformation under
the change of coordinates.

Using the complex horizontal map © : V — H, the Hermitian metric (,) on V can be
transferred on H by setting (Hi, Ha), = (0 '(Hy), 0 (Hy)), for v € M and Hy, Hy € H,.
Note that we shall use v € M rather than (z,v) € M for simplicity, when there is no chance
of confusion. The Hermitian metric (,) on T%°M is defined by requiring M to be orthogonal
to V and the Chern Finsler connection extends to the complex linear connection still called the
Chern Finsler connection on M, which is compatible with the Hermitian metric (,) on TLOM,
but is not torsion free in general. It has H-valued (2,0)-torsion § and V-valued (1,1)-torsion T,
and 6 relates to the Kéhlerianity of the Chern Finsler connection D. More precisely, a strongly
pseudoconvex complex Finsler metric F is called strongly Kahler if and only if

re —-1o =0, (2.2)

v vip

called Kéhler if and only if
(Ff:;u - FS;M)’UM = Oa (23)

and called weakly Kéhler if and only if
Go(T'y, — T3, v =0. (2.4)

Recently, Chen and Shen [18] showed that a Ké&hler-Finsler metric must be a strongly
Kahler-Finsler metric. Then, it is necessary to consider the Kéhlerian case in this paper.

By defining D(X) = DX and the complex linearity, the Chern Finsler connection D can
be extended to the whole complex vector bundle TCM and its dual complex vector bundle
T(EM by requiring Do(X) 4+ ¢p(DX) = dp(X) for every ¢ € X(Téﬁ) and X € X(TCM).
Thus the Chern Finsler connection can also be extended to the complex linear connection
D: X(TE’SM) — X(TEM ® TE’SM) in the usual way. All the extended connections are still
called the Chern Finsler connection with the conjugation and preserving the type. Let V be
the covariant differentiation defined by D. Since the complex Finsler fundamental tensor G 0B
is both H-metrical and V-metrical, i.e.,

Vs,G,5=0, V3 G,5=0, (2.5)

y TaB T
G are also both H-metrical and V-metrical.
3 Bochner-Kodaira Techniques for the Pull-Back Bundles of Holomor-
phic Vector Bundles

The principal step in the Bochner-Kodaira technique is the computation of the Laplacian.
There are some results about the Laplacian and their applications for horizontal (p, ¢)-forms
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on the base manifold or the tangent bundle (see [19-23]). In preparation, we will give simple
statements for the Laplacian for the horizontal (p, ¢)-forms on PTM, and omit the complicated
computation. In this section, we focus on the horizontal Laplacian [0y of the horizontal (p, q)-
form with the value in the Hermitian holomorphic vector bundles on PTM. Then, we will give
the expression of [y explicitly in terms of the horizontal covariant derivatives of the Chern
Finsler connection, which was called the Bochner-Kodaira technique.

Let (M, F) be a compact Kéhler Finsler manifold. It is known that F' induces naturally a
non-degenerated Hermitian metric on the total space PTM,

G =G 5d2" @ Az’ + (InG) 500" ® 67°.
Denote
wy =V —1(InG) 500" A 6T°,  wy = V—1G 5dz" A dz".
Then the invariant volume form of PTM is given by
n—1

dv= “H A v
n!l (n—1)!
If we denote by do the pure vertical form of the volume form of PTM, thus
wg_l

do= a7

and then
wn
dv = "2 Ado.
n!

Let AP+ be the space of horizontal (p, ¢)-forms on PTM, that is, those coefficients of every
© € AP7 are zero homogeneous with respect to fibre coordinates, and the elements of AP>? in
local coordinates are

1

o= ) Pa gy, 25 A Az A dz% A A dEP,
1

b= o E Deyooeydy -y, B2 A A2 A dzh A A dzde.

Then the pointwise inner product is given by

(o, ¥) = ]%q!z Corr-ory BB, Ver gty G GO GPt L GPuda(3.1)
If we denote
Ay = (a1, ,0p), a1 <az<---<ap 1<a; <n,
Anp=(apr1, ), Qpr1 < - <ap, 1<a; <n,
where (a1, -+, Qp, Qpt1,- -+, Qp) is a permutation of (1,2,---,n). Similarly, for B, = (81, -,

6q); anq = (ﬂqula"' 7ﬂn); Cp = (Clv"'cp)v Cnfp = (Cerlv"' 7Cn); Dq = (dlv"' adq)v
Dy_g=(dgt1,--- ,dy), and

GCPAP — G510(1 .. .G’Ep(’(p7 GEqu = Gﬁldl e Gﬁqdq’
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then

(p,¥) = ¥YA,B, wcpﬁq GOrAr GBaPa = SDAquwZPqu (3.2)

where ¢ArBa = ) GCrA»GBaDy
p q

Notice that there is a global inner product in AP>? given by

(0 ¥)pra = / (0, )dv. (3.3)

PTM

Then we can define the operator * : A7 — A"~ 9" "P by the relation

/ e A *E Ndo = ((p, Q/J)pTM. (34)
PTM

It is easy to obtain that the operator * has the following properties:
(i) ) ==y
(i) xx1p = (=1)PTp. _

Under the local coordinate, if ¢ = ZwA,,Eq dz4» A dzBa,

s = () (-1 DInN "G g, GOAGEPryy, o dptia adePrer, (35)

where GAqAn*qE' En*p = Gal"'aqaq+1"'anﬁl”'ﬁpﬁp+l”'an = det(GO‘lBk)

If (M, F) is a Kéhler Finsler manifold, then by the symmetry of the horizontal connection

coefficients: '}, = I'}. , the horizontal derivatives can be replaced by the horizontal covariant

derivatives, that is,

1 —
87'“0 - P'—Q' Z véu soocr’ﬂ’pﬁl'”ﬁqdzu A dz(yl ARRERA dzﬁq7 (36)

_ 1 o 3
Onp = o Z V(;,Tgoal___apglmquz“ Adz® A Ad2Pa (3.7)

Let 07, and 5; be the adjoint operators of 9y, and 93 with respect to the global inner product
in AP?, respectively, that is,

(O, ) = (,05,0), (Db, @) = (¥, Dpeep),

which satisfy 05, = —  (O*) and 5; = — % (On*). Then by solving (dn, ) = (7/%5:180)7 one
can get
(4P ay-app, 8, = —(=1)" 3 GV 530y, (3.8)

By defining the horizontal Laplacian operator
Oy = 0303y + 020, (3.9)

we can get its expression explicitly in terms of the horizontal covariant derivatives of the Chern
Finsler connection.

Theorem 3.1 (see [21]) For any ¢ € AP9,
(DHSO)O‘l"'(’pEr”Eq

q
% i—1 v
= -G+ véuvéﬁwal..-apﬁl~nﬁq + ZZ(_l) Ga" [v‘s”’v‘sﬁi]@mm%ﬁﬁlmﬁmﬁ . (310)
v,p i=1 S
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In the following, we emphasize on deriving the horizontal Laplacian operator for the horizon-
tal (p,g)-form with value in the Hermitian holomorphic vector bundle on PTM by extending
the operators Oz, O, *,5:1,8;‘1, without confusion, and we continue to use all the symbols,
respectively.

Let E be a Hermitian holomorphic vector bundle over PTM with the Hermitian metric Laﬁ'
In local coordinates, the curvature operator of metric L is given by (see [6, p. 117] and [16,

p. 93]) -
QF = 9(L79Lg),

where

0 =0pdz” + 0", 0 =0,d2" + 0ut)®,
6, =8, —T%9,, P = dv®™ + Td".

The coefficients of the horizontal part of F are

Q55 = w05 L5 + (0.T3)(O5L,5) — L7 (0uLaz) (55L,5), (3.11)

af;uv
so we can define a horizontal curvature form of E by

0,5 = —V—1Q,5,,d2" Adz". (3.12)

aB;uv
If the strongly pseudoconvex complex Finsler manifold is a Kahler manifold, then the nonlinear
connection I'? = 0, and the horizontal curvature form (3.12) reduces to an ordinary curvature
form of the Kéhler manifold (see [10]). Furthermore, for a Kéhler Finsler manifold, there exists a
normal coordinate system (see [24-25]), for which one also has the nonlinear connection I'Y = 0,
and in this case, the horizontal curvature form (3.12) takes the form of a Kéhler manifold, that
is, in the normal coordinate system, the Kéahler Finsler manifold is very similar to a Kahler
manifold, so one often uses the normal coordinate system to simplify calculations (see [5]).

Let .Ap’q(E) be the space of complex horizontal (p, g)-forms on PTM with value in E. If
{e,}"_, is a local holomorphic frame of E, then ¢, € AP4(E) are

¢: Zea(bav 7#: Z%Wﬂ
o=1 p=1

respectively, where ¢7,y* € AP, and we have

Inp = es01¢". (3.13)
o=1
Then we define
Vi, = eu(LMN0o Lz, ¢ + Vs, 0"), Vb= e Vs ¢, (3.14)

where Vs,_, Vgﬁ are the horizontal covariant derivatives of the Chern Finsler connection.

We can define the pointwise inner product on AP?(E) by

T

(@, 0) = D (eoren)(¢7,8") = Y Lom(¢”, "), (3.15)

o,p=1 o,pu=1
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where (¢7,9") is defined by (3.1).
The global inner product can be defined by

= v = y 2N M) do
@)= [ owno= [ 30 Ll v

™ )2

:/ z”: L)\ﬂqﬁ’\ A shr A do, (3.16)
P

™ T

and we define ||[¢||? = (¢, ¢), as usual.
The adjoint 5; of 3, on AP4(E) can be defined by solving

Ond,¥) = (6, 0h0) (3.17)

for 5;_(. Let ¢ € Ap’qH(E), NS .Ap’q(E) and 7 = Ly;¢™ A #p# A do, and then

0:/ dT:/ dHT:/ OnT
PTM PTM PTM

= / L,\ﬁgncﬁ)‘/\*W/\da—l— (—1)Pte N A Oy (Lag * ) A do,
PTM PTM
but
/ LyzOnd™ A i Ado = / Lyad™ A +(Dy0)" A do.
PTM PTM
Thus
Ly, * @p)" = —(=1)P 90y (L, 5 + ¥").

Then

(Do) = — (=1L (L5 % PY),

*

(Ort0)" = — % (O % P) — L6 L5 * (d2® A x¥) (3.18)
= Dyt — LX“(SQLVX s (dz® A *)¥).

In order to obtain the expression of (E;w)” explicitly, we need to compute *(dz® A xp").
For ¢ € AP?, we can write

V=5, 2 Az A dzPr A dzPa = wngqdzAP A dzBa
and
. lo(n—1 TqAq BT, An_ —Bn—
*p” = 1”(—1)2”(" Jteng Anqu,fnpr ata G T’wzjqdz a N\ dzPror.
If we set
. 1 —1)+ JgAq Byl
w,l:ln,qﬁn,p _ln(_l)gn(n )+pn qA,,_QEPEH_pG aAq 3By pw}’qu, (3.19)
then

An— —Bn—;
¥ = w:ﬂ_qgn_pdz @ AdzPnoe

_ By Bn—q v Bp_q ZAn—p
= sgn (Ap Anp) anianipdz Adz



132 J. X. Xiao, C. H. Qiu and T. D. Zhong

and
By B -
o vy q n—q v - o B, _ —A,_
w(dz® A xp”) = x (sgn (Ap Anp) aniqAnipdz AdzPr-a A dz p)
. Lo(n— _ B, B, _
_ (l)n(_1)2n(n 1)+(n q+1)nsgn ( q Pn Q) Bo_pByBAn_ Fos
p Hn—p
. Ganprnprananfq GB%/)E - dzB» A dgE‘qq,
n—qCn—p
where E,_; is the increasing set of numbers complementary to the set 5A,_, C (1,---,n). Let
Xq—1 be the increasing set of numbers complementary to the set 3B,,_; C (1,---,n), and set
_in(_ in(n—1)+(n—g+1)n Bq anq Anfp Ap
n=1i"(-1)2 sgn (Ap A, sgn By . B,)"
Then

#(dz A #y”) =G, GOnrnop GBnmaDrmaGlogl o qufe \ dzhe
v —p

n—qbn

7L7pApﬁianqu— 1

Bn—q By G pAn—p B qDn_q B
= 7)sgn <6Bnq Xo1 GAnprpE'nquQ G P Je q G
: wgwawdz“v A dzXe-1

and

1 B,_, B
i"(—1 sn(n—1)+pn S n( n—q q )
(=1) e gp e

2 B, B,,— A,_, A B, _ B
— _1 n“+pn—gqn q n—q n—p 4 n—q q
( ) sen (AP An—p) Seit (Bn—q Bq) sen (ﬁBn—q Xq—1>
— (1)t (e p)p (- a) (4D gy (Bq Bnq) san (A Anp)

P
Ap Anfp 6qul Bn*q
B
= (_1)I)Sgn ( ! ’
ﬂqul

by which, and (3.18), we get

(2% A x) = (<175 1

Bo v .4 SXq-1
Xq—l)G wAqudz A dzXet,

Hence, we have the following result.

Proposition 3.1 For any ¢ € AP(E),
@)y 5., = @) 0,5, = (F1P D LMGaL sG55 (3.20)

By defining the horizontal Laplacian operator Oy for the holomorphic vector bundle on PTM,
we have

Oy = 5’}-{5; + 5;57{
and Oy = 0 for ¢ € Ap’q(ﬁ), if and only if ¢ is harmonic horizontal (p, q)-form with value
in E.
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Theorem 3.2 If (M, F) is a Kdhler Finsler manifold, for any ¢ € Ap’q(E), we have

q

I . 5a 7 v o .
(DHw)APE,I = -G V(S V(S w z_: ’véﬁk]wAp51"'5k—1ﬁﬁk+1"'ﬁq
- B B
O _TH v _
; viBy, »ﬁk)wApl%"'3767133“1'“54’ (3.21)

where Q‘Lﬂi = Q”ﬁkaGﬁa F”;k G'BO‘L)"‘@V(LVX)%]C (T'7).

Proof From (3.3) and (3.13),

q

( 'Hw) A, BB, (EHwM)Apﬁ—Bq = (_1)p<véﬁwzp§q _Z o5 wz pB1 B 1BBry1

@l
Q
~

k=1
Then
_ A Ba
@) 5. = @rDrt) a5, = D LM 0alin GO (Vs
_Zv%k ApBy - ﬁk—lﬁkﬁ»l"'ﬁq)
= (0300t 4 5, — O L0 L zGPVs yh
by _ Pa v
+ D LM Oaly, G ;VﬁakwApﬁl~~~Bk_1m+1~~~Bq
and
q
@rBr0), 5. = @Dy s, Z o (DIl 5GP 5 o 5 )
q
_(a. a* _ i _ Ba v
- (87187_{1&”)14])3(1 - ; 651« (ZL léaLl’)‘G )wApﬁl"'Ek—lwk+1"'Eq
_ B q
. A Y alsle] v _ _ —
ZL H(SO‘LV)\G (;véﬁkwApﬂf"ﬂk—lBﬁkﬁ-l"'@;).
Thus
(One)y 5, = Ond") a5 B, — 2 LML, 5GPVt =

B A _ MBa v - _
kz:lvaﬁk<ZL 5QLV)‘G )wApﬁl“'ﬁk—lﬁﬁk+1"'5q

q
— _(Ba p _ _
= G VaaV%wAp kz_: ] A 51 ﬁk—1ﬁr3k+1"'ﬁq
q
_ Ba 1A B H v _ _
ZG L 5 LV)\V‘S_ kz_: Q ,ﬁk l/; )w p[31 Bk71[35k+1"'54

q —

= —GP (Vo Vsl 5+ 3 LML 5Vt 5 )+ G

k=1
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and

q

. o Quﬁ Fllﬁ o _
PBI kalﬁﬁfwrl”ﬂq ;( Vi B Vﬁk)w 51"'5k7156k+1"'5q

[Viar Vi 19
— q =y
_BaT . o iz Bo

G v(iav(iﬁl/}Aqu—’—kZﬂG [V(S V(s ]w ApBy - Bk,lmk+l”'ﬁq

q _ _
- wB _puBgr
Z(QWBk FV?ﬁk)wApﬁl"'ﬁk—lﬁﬁk+1"'ﬁq’

k=1

uB u B uB _ ~Baying Vo=
where (2 VB, = =0 ,ﬁkaG o Fwﬁk =GPYL /87(LV)\)65,€(F3).

Lemma 3.1 (see [16]) Let D : X(THOM) — x(TEM @ Tk OM) be the complex linear
connection on M induced by the Chern-Finsler connection. Then for any V,, Vs € x(T* OM)
we have

Dy, Dv, — Dy, Dv, = Dy, v, + 2(Va, V), (3.22)
D, DVB N Di Dy, = D[VQ7Vﬁ] + Q(Vaavﬁ)v (3.23)
Dy DVﬁ DVﬁD = D[Va Vs (3.24)

where ) is the curvature operator of the Chern Finsler connection D. In local coordinates, the
curvature operator is given by

Q=05 [de’ @ da + 60”7 © 04
and
Qf = R§,,pd2" A dZ” + R§;p00° AdZ” + Ry, d2" A SDT + Risy00° A ST
Let us calculate the second term on the right-hand side of (3.21). For a form ¢, of type
(1,0),
[véu; v&;]@a = V[é,‘,,ép] Pa + Q((S/“ 57)500t = _F;U(sﬁ(r;gp,)(p‘r + Rz;p,ﬁ(p‘l"

We denote T;W = 7,6, T7 7 = G Tr,, T7 = L = G, R P = GPrRT . and
R}, = G”"RT . Obviously, we have ’];TW = ’Tale and Rg = =RZ_ v~ Lhen

GBM[V&MV(SV]SO = 7:1 v SDT + Ra 1/907'
For a form ¢ of type (0,1),

GV, Vleg = —G Vs, Vi los = —(T] Tor + RZ 7or).

I

Similarly, we see

Ba
G [V(S Vé ] Aﬁl ﬁk—lmlwrl'”ﬁq

(T 4 + R 2w

a; ﬂk [e7H 5k 'Ota‘,—17'0(7',+1"'Otpﬁl"ﬂk_156k+1"ﬂq

M@

.
I

Tyt
T + RV, 5 50 w01 (3.25)

~ =
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Then, (3.21) can be rewritten as

Ond)y 5, = —GPvy, ﬁéﬁwiﬁq
q r _ _
DD DT AR L N )
1 — _
B ;(TETk + R;%k)wipﬁl.._gkfﬁgmuﬁq
i — _
- 5 - Fﬁ;gk)%pgl...gk_lmk+l,,,5q. (3.26)

bl
Il
—

Let 8 = <euvgﬁwu,w>dzﬁ, where (, ) is understood in the sense of (3.15). When M is a
compact Kéhler Finsler manifold, by Stokes’ theorem, [p1, (E;Q)dv =0, so

0= GV s, (LipVastly 5 w0 rPo)dv
PTM pa
= PV, (Luw Vet — Y ArBadu + GPLpVs " — Vs g ArBady
PTM ( e APBQ) PTM H T AB,

- / GP Ly Vs, Vst 5 v ABado + Va2,
PTM P

Thus, [|Vith]|? = —(eu(G7V5, Vs 1), 9).
When M is a compact Kahler Finsler manifold, by contracting (3.21) with ﬁw € APU(E)

and integrating over PTM, we obtain

193 I1? + (19|

2 L B B —V— 5
= 2 D B ———— (77 P T By, M NoGA, _1vB,_
=¥l (p—1)g - 1)! /PTM L”)‘(Ta v TR, v) TApflﬁ—qulw ' tdv
1 — _
S (TP £ ROy
g —1) /PTM LT + RxWApﬁyq_l
B B v Ay,
+ (Ql:;ﬁk B FZ;Ek)wApEEfl)w)\ pxa-1do, (3.27)

where || - | denotes the global L? norm over PTM, and 6711/1 denotes the E-valued tensor with
components V(;Ew”. (3.27) is the 671 Bochner-Kodaira technique.
Since
[%‘50 ’ %5ﬁ]wu - 6‘5@ %‘%wu - %6§§6a Y =[Vs,, Véﬁ]wu - Qﬁ;ﬁawu,
that is,
-V, V(;Ew“ = —V(;EV(SQ PH — [Vaa,v,sﬁ]wu + Qﬁ;gawy7 (3.28)

by applying the commutation formula for [65u , 65[7]1/)“ to (3.21), with (3.25), we obtain

Ort)s,5, =~ GP Vi Ve, i, 5, — G [Vaa: V] B, T UYL,

q —

Bo v . _
+ ; G Voas Vs Wi 5,5, BBy ,r B,
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wpB _peBNy 7
(Q 76k FV;EI;;),ll)AP/ﬁl'“/ﬁk—l/ﬁﬁk-f—l'“/ﬁq

x>
Il S
—

q

_ Ba Vi Iz _ w B w B o _
=-G véﬁvé"wApgq kzﬂ(ﬂ VB -T ,ﬁk)w ApBr+Br_18B41B,
: B B
T T 14
+ ;2 ’Z; 5 Ra“ﬁkw cai_1raigr By Bre_1BBrsr By
= 1=

M@

(T7 + R}, )Y" (3.29)

- OtiflTOti+1~~~aqu

-
Il
_

When M is a compact Kéhler Finsler manifold, and by contracting (3.29) with w € AP4(E)
and integrating over PTM, we obtain

19311 + (|97 [|?
~ 1 v I—
= [|[Vno||* - ol Jor L%, 5, v rPado
1

_ _(OrB _TuB AApTXg 1
p!(q_l)!/PTMLH)\(Qy@ ,,z)wA 5%, 11/; TXq—1dp

1 B —
- T T M\UA, 1B,
(p—1l¢! /PTM A+ R WTA ~1Bq v @

1
T Dig-)

where || - || denotes the global L2 norm over PTM, and V31 denotes the E-valued tensor with
components Vs . (3.30) is the V3 Bochner-Kodaira technique.

T B T B N@A,_1vB,—
/PTM ux (7, 5 + R, )Q/JTAP BB, 11/; adp_1 tdw, (3.30)

Remark 3.1 If the Kdhler Finsler manifold is a Kéhler manifold, then (3.27) and (3.30)
coincide with (1.3.3) and (1.3.5) in [11].

4 0303 Bochner-Kodaira Technique

00 Bochner-Kodaira technique was initiated by Siu [10] and named in [11], and the method
is a modification of the classical Bochner-Kodaira technique by replacing the operator OJ with
00 and exploits the bigraded structure of the differential forms on a Kihler manifold in a
more serious way than usual in the computations with (. In this section, we study the 90y
Bochner-Kodaira technique on Kéhler Finsler manifolds and get the vanishing theorem for the
Hermitian holomorphic bundle on PTM on Ké&hler Finsler manifolds.

Let F be the Hermitian holomorphic vector bundle of rank » on PTM is the same bundle as
stated in Section 3. We know that there exist normal coordinates of M and normal fiber coor-
dinates of E, which can be found with detailed information in [24-25]. This greatly simplifies
our calculations in local coordinates, and then, in all the following computations, we will use
the normal coordinates of M and the normal fiber coordinates of E.

Letting ¢ = 3 e, ot € AY(E ), and under the normal coordinates of M and the normal
fiber coordinates of E we have Vﬁga = > e, Vnp", where Vi is the horizontal covariant
differentiation of Chern Finsler connection. If M is a K&hler Finsler manifold, and V" =
Opt, letting

O = O On (L 50" N> A 7Y, (4.1)
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where wy = V—lGadea A dz®, and dywy = 0 on Kihler Finsler manifolds, then

P = ({97-[57-[ (Luxga“ N J N w;l_[pil)

= V=16, 3 A A A T L aVidug At A

()L 3T AT Ay (1)L gt A Tt A1
+ LHXSOH A 57.(87130’\ A w;l_[qfli “2)

When M is a compact Kéhler Finsler manifold, and by integrating over PTM, we obtain

0= / d Ado
PTM
=41 . O, xN¢" A O A w;;_q_l Ado
5 -~ —q—1
+ /PTM L 5Vnone! No* Awi 170 Ado
+ (—=1)9t! / L;LXEH‘PH A Or /\w;;_q_l Ado
PTM
+ (—1)‘1/ L 5xVupt AVypr A w;f(_q_l Ado
PTM
5 5 n —q—1
+ /PTM L 5¢" N Ononp Nwy 0 Ado (4.3)
By applying integration by parts to the second term and the last term, from

A(L,50me" A AWl T A do)
= Luxvngnépu A J A w;l_[qil Ado

+ (—1)q+1LHX5Hga” A Op o A w;f{_q_l Ado,

it follows that

/ LHXvH({_)HQOH Ar A w;;_q_l Ado = (—1)‘1/ LIJEH@” A O A w;;_q_l Ado.
PTM

PTM
Likewise,
/ L5¢" A O Or ™ A w;;_q_l ANdo = (—1)q/ LHXEHQO" A O A w;f(_q_l Ado.
PTM PTM
Hence

\/—1/ @l;@”/\g/\wz_q_l Ado

PTM

+ (—1)‘1/ LHXgHQOH A O A w;;_q_l Ado
PTM

+ (—1)q/ L 5xVueh AVypr A w7 A do = 0. (4.4)
PTM

We are going to transform, by using the exterior algebra of Hermitian vector spaces, each
term in (4.4) to a corresponding term obtained from the V4 Bochner-Kodaira technique.
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We will list the formulae we need concerning exterior algebras of Hermitian vector spaces,
which were collected together by Siu [11]. Let L be the operator of taking a wedge product
with wy = V—lGadea A dz?, and A be the adjoint operator of L with the pointwise inner
product (, ) on AP defined by (3.1). A k-form ¢ € AP? is called primitive if Ay = 0.

For any primitive k-form ¢ and s < r,

s—1 S
AL = (H(r—z‘))(H(n—k—r+j))LT*S¢. (4.5)
i=0 j=1
Let ey 4 = (—1)%(”""1)(”"“1"'1)(\/—1)”_‘1. For any primitive (p,q)-form ¢ with p + ¢ = k,

*Lp = ¢, , S A (4.6)

(n—Fk—1)

for 0 <1 <mn—Fk. One has «L'4 =01if | >n — k.
Every k-form v can be uniquely written as

v = g L"v,.,
T

where each v, is primitive, and r runs from max{0,k — n} to the largest integer [g], not
exceeding %

Lemma 4.1 (see [11]) For any (1,q)-form n,

n—qg—1 n
w
ENATA —B—— = — (An, An)) —LE. 4.7
For detailed information of these formulae, see [6, p.69].
Lemma 4.2
_ wiat
O AP AN H
607(1@[“\/\90 A A (h—g— 1) Ado
- (19 B L g 5o B )dv (4.8)
— g m¥E,” (g— 1)1 »X Y58, % ’ '
where as in (3.11), © 5 = —V/=1Q 5.,7zd2* A dZ" and Q 5 = G*7Q 5. 7

Proof Since ¢* is (0, ¢)-form, it is primitive. By (4.6),

- wnqul _
_mgux/\ipu/\sﬁ)‘/\HT/\dU:—@Nx/\gﬁp’/\*Lgﬁ)‘/\dU

=(-0,5 A", Lo™)dv
= (A(=0,5 A "), pM)do.
Using local coordinates, we have

q

_ _ mwy . — ) _ [ 2
(G)H)\ AN )aﬁBq - 1(QH>\;GK3¢§4 ;Q“’\;O{ﬁk@ﬁr“ﬁk1ﬁﬁk+1"'5q)'
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Contracting both sides with Gaﬁ, we obtain
~o 7
_ - MVNs = Q ot — By _
(AOx A", = Quinep, ;Qm 5 T
Taking the inner product with ¢*, we obtain the desired equation.
By applying (4.6) to the case 7 = O and [ = 0, we get

n—qg—1

TatTL s One” A O A~
q+1 ® ¥ ( —q—l)

ANdo = Z Luxgmp" A %01 A do
= (Onp, Inp)do. (4.9)

By using Lemma 4.1 in the case n = Oyp" = Vypt, we have
n q—1
(n— q —1)!
Using €1 4= —¢€0g+1=(—1)7"1/~1€g 4, we multiply (4.4) by (—1)4 G 6;‘11), *\/_(n 6((’14 o
and we obtain
/ (iQ—‘i_;qgiﬁigi o 7),\—3qu
oot Vgl AT B T (g — 1) ; 1% B ¥ By By 1BBryr By ) ¥

—0x¢l* + I Vael? = 930]* = 0, (4.11)

Tl 50ne" A O™ A Ndo = ((Vap, Viep) = @y, Ogp))do. (4.10)

which is the same as (3.30) obtained by Vi Bochner-Kodaira technique under the normal
coordinates of M and the normal fiber coordinates of E .
Then combining (4.4) with (4.9)-(4.10), we have

n—qg—1

w
S A ﬁ/\i/\da
/‘ L R e}

= —[Onell? = 193l” + [ Vrel*. (4.12)
Then, we have the following result.

Theorem 4.1 (Vanishing Theorem) Let M be an n-dimensional compact Kihler Finsler
manifold, p € A%(E), ¢ = > eqp®. If the horizontal curvature form G)aﬁ of E satisfies

wn qg—1
© A 5/\7/\d0<0 4.13
/ an? N (n—q—1)! (4.13)
then there is no nonzero horizontal harmonic (0, q)-form over PTM with valued in E, for all
0<qg<n.

Proof Since M is compact, ¢ is horizontal harmonic if and only if 93 = E*Hgo = 0. From

(4.12), we have
_ w;;—q—l
€. 0, 59 NP N —F—=xn Ado >0,
q/PTM b (n—q-1)

which contradicts (4.13) when ¢ is not identically zero. Hence ¢ = 0.
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