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Abstract This paper deals with an alternative proof of Beurling-Lax theorem by adopt-
ing a constructive approach instead of the isomorphism technique which was used in the
original proof.
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1 Introduction

In 1948, Beurling [2] first investigated the shift-operator-invariant subspace M in Hardy
space H2(D) in the unit disc context for the shift operator defined by

S∗f(z) = zf(z), z ∈ D.

Here a subspace M in H2(D) is said to be a shift-operator-invariant-subspace if

S∗
M ⊂ M.

The following celebrated result is called Beurling theorem.

Theorem 1.1 Suppose that M is a non-zero closed subspace of H2(D). Then M is a
shift-operator-invariant space if and only if

M = IH2(D),

where I is an inner function in H∞(D).

Here we say a function f ∈ H∞(D) is an inner function if |f | = 1 almost everywhere on
the boundary ∂D. Similarly, a function f ∈ H∞(C+) is an inner function if |f | = 1 almost
everywhere on the real line R.

As a consequence of this theorem, a subspace is a backward-shift-invariant space (SM ⊂ M)
if and only if (see [3])

M = H2(D) ∩ IH2(D),

Manuscript received October 24, 2012. Revised October 28, 2013.
1Cisco School of Informatics, Guangdong University of Foreign Studies, Guangzhou 510420, China.
E-mail: chenqiuhui@hotmail.com

2Department of Mathematics, University of Macau, Macau, China. E-mail: fsttq@umac.mo
∗This work was supported by the Multi-Year Research Grant (No. MYRG115(Y1-L4)-FST13-QT),
the Multi-Year Research Grant (No. MYRG116(Y1-L3)-FST13-QT), Macau Government (No. FDCT
098/2012/A3), and the Natural Science Foundation of Guangdong Province (No. S2011010004986).



142 Q. H. Chen and T. Qian

where the backward-shift operator is defined by

Sf(z) =
f(z) − f(0)

z
, z ∈ D.

The Beurling theorem was extended to the upper-half complex plane by Lax in 1959, which
is now named the Beurling-Lax theorem (see [7]). In the upper-half plane case, by using the
same notation, the shift operator and the backward-shift operator are defined, respectively, by

S∗f(w) = eiλwf(w), Sf(w) = e−iλwf(w), λ > 0, w ∈ C
+.

Theorem 1.2 Let M be a non-zero closed subspace of H2(C+). Then M is a shift-operator-
invariant subspace if and only if there exists an inner function F ∈ H∞(C+) such that M =
FH2(C+).

There is a large number of documents for the studies of forward shift and backward-shift
invariant subspaces (see [1, 3–5]) mainly in theoretical aspects. As an important tool, the shift
invariant subspace is useful in bandwidth keeping and phase retrieval, which are two topics
in optical and signal processing (see [6]). Recently, Tan and Qian used techniques of forward
and backward operators to solve some questions in the theory of analytic signals, especially the
characterization of Bedrosian identity. We will offer a survey in Section 2 about Tan and Qian’s
results. We are inspired to revisit the proof of the Beurling-Lax theorem.

We remark that, in the unit disc case, Beurling’s proof is constructive for the choice of an
inner function for any invariant subspace, which is important for the calculation and charac-
terization of analytic signals from the Bedrosian identity. But in the upper half plane case,
the proof of the Beurling-Lax theorem (see [5, 7]) is complicated by involving the technique of
isomorphism between H2(D) and H2(C+). Many applications are dependent on the concrete
form of the factor inner function inducing the shift invariant subspace. In this note, we choose
the special function 1

i+· ∈ H2(C+) and use its orthogonal projection into M to construct the
inner function F appearing in Theorem 1.2.

2 Preliminaries and Surveys

Related to the Hardy space in the unit disc, we say f ∈ Hp(D), if

sup
r

1
2π

∫ π

−π

|f(reiθ)|pdθ = ‖f‖p
Hp(D) < ∞

for p ∈ (0,∞). When p = ∞, we say f ∈ H∞(D) if f is a bounded analytic function on D and
we write

‖f‖H∞(D) = sup
z∈D

|f(z)|.

In the upper half plane case, we say f ∈ Hp(C+) if f is analytic on C+ and

sup
y>0

∫ ∞

−∞
|f(x + iy)|pdx = ‖f‖p

Hp(C+) < ∞.



A Constructive Proof of Beurling-Lax Theorem 143

When p = ∞, we write f ∈ H∞(C+) for the bounded analytic functions on C+, and we give
H∞(C+) the norm ‖f‖H∞(C+) = sup

w∈C+
|f(w)|.

In the case p = 2, as Hilbert spaces, H2(D) and H2(C+) are equipped with the inner product

〈f, g〉D =
1
2π

∫ π

−π

f(eiθ)g(eiθ)dθ, f, g ∈ H2(D)

and
〈f, g〉C+ =

∫ ∞

−∞
f(t)g(t)dt, f, g ∈ H2(C+),

respectively.
The linear mapping which takes a function f ∈ Hp(C+) to its non-tangential boundary

limit function f ∈ Lp(R) is an isometric isomorphism from Hp(C+) onto a closed subspace of
Lp(R) which we shall denote by Hp(R).

For any function f ∈ Hp(C+), by the well-known Nevanlinna factorization theorem, f can
be factorized as

f(z) = Of (z)If (z), z ∈ C
+,

where
(1) Of , the outer factor of f , is given by

Of (z) = exp
( i

π

∫ ∞

−∞

1 + tz

z − t

ln |f(t)|
1 + t2

dt
)
;

(2) If , the inner factor of f , can be further factorized into

If (z) = ei(az+b)Bf (z)Sf(z),

where
(i) b is a real number and a is a nonnegative number;
(ii) Bf is the Blaschke product formed with the zero sequence Ef = {αk} of f in C+ (the

zeros repeat according to their respective multiples) which can be represented by

Bf (z) =
∏

αk∈Ef

|α2
k + 1|

α2
k + 1

z − αk

z − αk
,

where |α2
k+1|

α2
k+1

is understood whenever αk = i;
(iii) Sf , the singular inner function, is given by

Sf (z) = exp
( i

π

∫ ∞

−∞

1 + tz

t − z
dμ(t)

)
,

where μ is a real, bounded, increasing function with derivative μ′(t) = 0 almost everywhere on
R.

Two classical problems of long interest in a number of practical areas, including optics,
antenna theory and physics, are formulated as follows: The first is to find all functions g such
that Band(fg) ⊂ Band(f); the second is to find all-pass filters eiθ(t) such that Band(feiθ) ⊂



144 Q. H. Chen and T. Qian

Band(f). Here, Band(f) is the support of the bandlimited signal f ∈ L2(R) whose Fourier
transform has compact support. The Lebesgue measure of Band(f) is called the bandwidth of f .
They are referred to as the band keeping problem and the phase retrieval problem, respectively.
Obviously, the phase retrieval problem is closely related to the band keeping problem. In [10],
the authors give a characterization of function g such that Band(fg) ⊂ Band(f).

Proposition 2.1 Suppose that f, g are nonzero functions, f ∈ L2(R) is bandlimited with
Band(f) = [0, A] and g ∈ Hp(R), p ∈ [1,∞]. Then fg ∈ L2(R) is bandlimited with Band(fg) =
[0, A] if and only if g ∈ Hp(R) ∩ IfHp(R), where If is the inner factor of f which does not
contain the singular inner function.

Noting that Hp(R) ∩ IfHp(R) is a backward-shift invariant subspace, the authors in [10]
offer a characterization of this subspace.

Proposition 2.2 Suppose that {αk}∞k=1 is a sequence in C+ which can define a Blaschke
product

B(z) =
∞∏

k=1

|α2
k + 1|

α2
k + 1

z − αk

z − αk
.

Then for p ∈ (1,∞),

Hp(R) ∩ BHp(R) = (BHp′
)⊥ = spanp{en}∞n=1,

where the closure spanp is in the Lp topology, p′ = p
p−1 , (BHp′

)⊥ = {f ∈ Hp : 〈f, Bg〉 = 0, ∀g ∈
Hp′} and the Takenaka-Malmquist (TM, for short) system {en}∞n=1 is defined by

en(z) =

√
2
π Im{αn}
z − αn

n−1∏
k=1

z − αk

z − αk
.

Moreover, in [8], the authors prove the following result.

Proposition 2.3 The TM system {en} is a Schauder basis in spanp{en}, 1 < p < ∞. In
other words, for any f ∈ spanp{en}, we have

f =
∞∑

n=1

〈f, en〉en in the Hp(∂D)-norm sense.

It consequently concludes that the TM system {en} is a Schauder basis of Hp(R) if {αk}
can not form a Blaschke product.

3 A Constructive Proof of Lax’s Theorem

The sufficiency is trivial since FH2(C+) is an invariant subspace under the multiplication by
eiλw. Now we show the necessity. Suppose that M is a non-zero closed subspace of H2(C+). Let
G ∈ H2(C+) be the orthogonal projection of the function 1

w+i ∈ H2(C+) onto M. Therefore,

1
w + i

= G(w) +
( 1

w + i
− G(w)

)
,
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where G ∈ M and 1
w+i − G(w) is orthogonal to M.

Now we prove that |G(t)|2 = C
1+t2 for t ∈ R, where C is some positive constant. Since

G is in M, we know that eiλwG is in M for any λ ≥ 0 due to the invariance of M under the
multiplication by eiλw. By the orthogonality between M and 1

w+i − G, we have∫ ∞

−∞

( 1
t − i

− G(t)
)
eiλtG(t)dt = 0, λ ≥ 0.

It follows that

1√
2π

∫ ∞

−∞
|G(t)|2eiλtdt =

2πi√
2π

1
2πi

∫ ∞

−∞

eiλtG(t)
t − i

dt.

Since eiλzG(z) is analytic on the upper half plane when λ > 0, we apply Cauchy’s formula to
get that

1√
2π

∫ ∞

−∞
|G(t)|2eiλtdt =

√
2πiG(i)e−λ.

By noting the Hermitian property of the Fourier transform of a real function, using the

Laplace integral
∫ ∞

−∞

e±iλt

t2 + y2
dt =

π

y
e−y|λ|, y > 0 (see [10]) and utilizing the uniqueness of

Fourier transform of function in L2, we obtain that

|G(t)|2 =
2iG(i)
1 + t2

, t ∈ R.

Since G ∈ H2(C+), by Nevanlinna factorization theorem, we have G = IGOG with IG ∈
H∞(C+) and OG ∈ H2(C+) being inner function and outer function, respectively. Now we
define the subspace M̃ of H2(C+) by

M̃ = IGH2(C+).

Obviously, M̃ is an invariant subspace under the multiplication by eiλw for any λ ≥ 0. We
observe that G is also in M̃ since OG ∈ H2(C+). By using the density of {eiλ· : λ > 0} in
H2(∂C+) and the invariance of M under multiplication by eiλw, we conclude that M̃ ⊂ M.

Finally, we want to show that M̃ = M. To this end, it suffices to show that the conditions
f ∈ M and f ⊥ M̃ imply that f = 0. On the one hand, from the invariance of M̃ under
multiplication by eiλw and f ⊥ M̃, we have∫ ∞

−∞
f(t)G(t)e−iλtdt = 0, λ ≥ 0. (3.1)

On the other hand, from the facts that 1
w+i − G ⊥ M and the invariance of M under the

multiplication by eiλw, we obtain that∫ ∞

−∞
eiλtf(t)

( 1
t − i

− G(t)
)
dt = 0,

which is equivalent to ∫ ∞

−∞
f(t)G(t)eiλtdt = 2πif(i)e−λ, λ ≥ 0. (3.2)
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Setting λ = 0 in Equations (3.1)–(3.2), we conclude that f(i) = 0. Therefore, (3.1)–(3.2)
indicate that the Fourier transform of fG is zero. Thus fG = 0. Noting that we have already
shown G 
= 0, we therefore conclude f = 0. The proof of this theorem is completed.
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