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The Cocycle Property of Stochastic Differential Equations
Driven by G-Brownian Motion∗
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Abstract In this paper, solutions of the following non-Lipschitz stochastic differential
equations driven by G-Brownian motion:

Xt = x +

∫ t

0

b(s, ω,Xs)ds +

∫ t

0

h(s, ω,Xs)d〈B〉s +

∫ t

0

σ(s, ω, Xs)dBs

are constructed. It is shown that they have the cocycle property. Moreover, under some
special non-Lipschitz conditions, they are bi-continuous with respect to t, x.
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1 Introduction

Let Ω denote the space of all Rd-valued continuous paths ω : [0,+∞) � t �→ ωt ∈ Rd, with

ω0 = 0, equipped with a uniform convergence topology. If a linear expectation EP , which is

induced by the Wiener measure P , is given, the canonical process Bt(ω) is a d-dimensional

Brownian motion on the probability space (Ω,F , P ). Here F stands for a Borel σ-field of

Ω. Now, if a sublinear expectation E is given, what is the canonical process Bt(ω) on some

constructed probability space? It is a G-Brownian motion introduced in [7]. The stochastic

calculus with respect to the G-Brownian motion has been established (see [7–9]). Relative to

the Lévy theorem of the Brownian motion, a martingale characterization of G-Brownian motion

has been shown in [10]. The BDG inequality for G-stochastic integrals was also established (see

[6]). Moreover, the G-Itô formula in [8] was obtained and later Gao in [6] extended it by the

localization method.

Consider the following stochastic differential equation (SDE, for short) driven by G-Brownian

motion:

Xt = x+
∫ t

0

b(s, ω,Xs)ds+
∫ t

0

h(s, ω,Xs)d〈B〉s +
∫ t

0

σ(s, ω,Xs)dBs, (1.1)
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where x ∈ Rn, b : R+ × Ω × Rn �→ Rn, σ : R+ × Ω × Rn �→ Rn×d, h : R+ × Ω × Rn �→ Rn×d2

with the following form:

h =

⎛
⎜⎜⎜⎜⎝

h
(1)
11 · · · h

(1)
1d h

(1)
21 · · · h

(1)
2d · · · h

(1)
d1 · · · h

(1)
dd

h
(2)
11 · · · h

(2)
1d h

(2)
21 · · · h

(2)
2d · · · h

(2)
d1 · · · h

(2)
dd

...
...

...
...

...
...

h
(n)
11 · · · h

(n)
1d h

(n)
21 · · · h

(n)
2d · · · h

(n)
d1 · · · h

(n)
dd

⎞
⎟⎟⎟⎟⎠ ,

and

〈B〉 = (〈B1, B1〉, 〈B1, B2〉, · · · , 〈B1, Bd〉, · · · , 〈Bd, B1〉, 〈Bd, B2〉, · · · , 〈Bd, Bd〉)T.
Here AT stands for the transposition of matrix A. The second and third integral on the right

side of (1.1) will be introduced in Section 2. If b, h and σ satisfy Lipschitz conditions, Peng [8]

showed the existence and uniqueness of the solution to Equation (1.1) in the spaceM2
G(0, T ) (see

the definition in Section 2) by the contracting mapping theorem. Under the same conditions,

Gao defined the Picard iterative approximation sequence and obtained the unique solution to

(1.1) (see [6]). However, many coefficients do not satisfy the Lipschitz condition. Therefore

the extension to non-Lipschitz conditions is necessary. Here we do this. The unique solution

to (1.1) is constructed through successive approximation. It is worthwhile to mention that

non-Lipschitz conditions have been studied in [2]. But our assumption is more general than

theirs.

Moreover, we study a property of (1.1). Because the property is similar to the cocycle

property of SDEs driven by Brownian motion, we also call it the cocycle property. As we know,

it is the first time to mention the cocycle property of SDEs driven by G-Brownian motion.

Using the cocycle property, under some special non-Lipschitz conditions, we get a bi-

continuous modification of the solution with respect to t, x.

This paper is arranged as follows. In Section 2 we prepare some preliminaries to the readers’

convenience. In Section 3, the solution to (1.1) is constructed and its cocycle property is proved.

We consider its bi-continuity under some special non-Lipschitz conditions in Section 4.

The following conventions will be used throughout the paper: C with or without indices will

denote different positive constants (depending on the indices) whose values may change from

one place to another.

2 Preliminaries

First of all, we introduce G-expectation (see [5–6]).

Sd denotes the space of d × d symmetric matrices. Γ is a given nonempty, bounded and

closed subset of Rd×d which is the space of all d × d matrices. lip(Rd) is the set of bounded

Lipschitz continuous functions on Rd. | · | denotes the length of a vector in Rn. ‖ · ‖ stands for

the Hilbert-Schmidt norm of a matrix.

For A ∈ Sd, set

G(A) =
1
2

sup
γ∈Γ

tr[γγTA].
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For each ϕ ∈ lip(Rd), define

E(ϕ) := u(1, 0),

where u(t, x) is the viscosity solution to the following G-heat equation:⎧⎨
⎩
∂u

∂t
−G(D2u) = 0, (t, x) ∈ [0,∞) × R

d,

u(0, x) = ϕ(x),
(2.1)

and D2u = (∂2
xixj

u)d
i,j=1 (the existence and uniqueness of (2.1) in the sense of the viscosity

solution can be found in [4]). Then E : lip(Rd) �→ R is a sublinear expectation, i.e.,

(1) X � Y, E[X ] � E[Y ],

(2) E[X + Y ] � E[X ] + E[Y ],

(3) for all λ � 0, E[λX ] = λE[X ],

(4) for all c ∈ R, E[X + c] = E[X ] + c.

This sublinear expectation is also called a G-normal distribution on R
d and is denoted by

N(0,Σ), where Σ := {γγT, γ ∈ Γ}.
To well understand the sublinear expectation, we introduce another concept. Let Ft :=

σ(ωs, s � t) and AΓ
0,∞ be the collection of all Γ-valued {Ft, t � 0}-adapted processes on the

interval [0,∞). For each θ ∈ AΓ
0,∞, we denote

B0,θ
t :=

∫ t

0

θsdωs.

Pθ denotes the law of the process B0,θ
t under P . Define

C(A) := sup
θ∈AΓ

0,∞

Pθ(A), A ∈ F .

Then C(·) is a Choquet capacity (see [5]). A set A is polar if C(A) = 0 and a property holds

“quasi-surely” (q.s., for short) if it holds outside a polar set. For each X ∈ F such that EPθ
X

exists for each θ ∈ AΓ
0,∞. Set

EX := sup
θ∈AΓ

0,∞

EPθ
X

and then for all X ∈ L1
G(F) (introduced in the sequel)

EX = EX.

For its proof, refer to [5].

For each t > 0, set

Lip(Ft) := {f(ωt1, ωt2 , · · · , ωtn) : n � 1,

t1, · · · , tn ∈ [0, t], f ∈ lip(Rd×n)},

Lip(F) :=
∞⋃

n=1

Lip(Fn) ⊂ Cb(Ω).
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Let H be a vector lattice of real functions defined on Ω such that Lip(F) ⊂ H and if that

X1, · · · , Xn ∈ H, then g(X1, · · · , Xn) ∈ H for each g ∈ lip(Rn).

Let E : H �→ R be a sublinear expectation on H. A d-dimensional random vector X with

each component in H is said to be G-normal distributed under the sublinear expectation E[·] if

for each ϕ ∈ lip(Rd),

u(t, x) := E(ϕ(x +
√
tX)), t � 0, x ∈ R

d

is the viscosity solution of the G-heat equation (2.1).

E is called to be a G-expectation if the d-dimensional canonical process {Bt(ω), t � 0} is a

G-Brownian motion under the sublinear expectation, that is,

(i) B0 = 0;

(ii) for any s, t � 0, Bt ∼ Bt+s −Bs ∼ N(0, tΣ);

(iii) for any m � 1, 0 = t0 < t1 < · · · < tm <∞, the increment Btm −Btm−1 is independent

of Bt1 , · · · , Btm−1 , i.e., for each ϕ ∈ lip(Rd×m),

E(ϕ(Bt1 , · · · , Btm−1 , Btm −Btm−1)) = E(ψ(Bt1 , · · · , Btm−1)),

where ψ(x1, · · · , xm−1) = E(ϕ(x1, · · · , xm−1, Btm −Btm−1)). In particular, for any a ∈ Rd, Ba
t

:= (a, Bt) :=
d∑

i=1

aiBi
t is a one-dimensional G-Brownian motion.

Next, we only introduce a stochastic integral about Ba
t for convenience of statement (see

[5–6]).

To the G-expectation E, the topological completion of Lip(Ft) (resp. Lip(F)) under the

Banach norm E[| · |] is denoted by L1
G(Ft) (resp. L1

G(F)). E[·] can be extended uniquely to a

sublinear expectation on L1
G(F). The extension is also denoted by E.

For T ∈ R+, 0 = t0 < t1 < · · · < tN = T . Let p � 1 be fixed. Define

Mp,0
G (0, T ) :=

{
ηt(ω) =

N∑
j=1

ξj−1(ω)1[tj−1,tj)(t); ξj−1(ω) ∈ Lp
G(Ftj−1)

}
,

where Lp
G(Ft) = {ξ ∈ L1

G(Ft); E|ξ|p <∞}. For ηt(ω) ∈Mp,0
G (0, T ),

1
T

∫ T

0

E(ηt)dt =
1
T

N∑
j=1

E(ξj−1)(tj − tj−1).

For each p � 1, Mp
G(0, T ) denotes the completion of Mp,0

G (0, T ) under the norm

‖η‖Mp
G(0,T ) =

1
T

(∫ T

0

E|ηt|pdt
) 1

p

.

For each η ∈M2,0
G (0, T ), define

I(η) =
∫ T

0

η(s)dBa
s :=

N∑
j=1

ξj−1(Ba
tj
−Ba

tj−1
),
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and then we get a stochastic integral with respect to G-Brownian motion. Besides, the mapping

I : M2,0
G (0, T ) �→ L2

G(FT ) can be continuously extended to I : M2
G(0, T ) �→ L2

G(FT ). For each

η ∈M2
G(0, T ), the stochastic integral is defined by

∫ T

0

η(s)dBa
s =: I(η).

Let πN
t = {tN0 , tN1 , · · · , tNN}, N = 1, 2, · · · , be a sequence of partitions of [0, t] and

μ(πN
t ) = max

1�i�N
|tNi − tNi−1|.

The quadratic variation process 〈Ba〉t of the process Ba
t is defined by

〈Ba〉t = lim
μ(πN

t )→0

N∑
k=1

(Ba
tN
k
−Ba

tN
k−1

)2 = (Ba
t )2 − 2

∫ t

0

Ba
s dBa

s .

For each fixed s � 0,

〈Ba〉t+s − 〈Ba〉s = 〈(Bs)a〉t,

where Bs
t = Bt+s −Bs and (Bs)at = (a, Bs

t ).

Define a mapping M1,0
G (0, T ) �→ L1

G(FT ) as follows:

Q0,T (η) =
∫ T

0

η(s)d〈Ba〉s :=
N∑

j=1

ξj−1(〈Ba〉tj
− 〈Ba〉tj−1

).

Then Q0,T can be uniquely extended to M1
G(0, T ). We still denote this mapping by

∫ T

0

η(s)d〈Ba〉s =: Q0,T (η), η ∈M1
G(0, T ).

The following two theorems from [6, Theorems 2.1–2.2] are BDG inequalities for the G-

stochastic integral.

Theorem 2.1 For p � 2 and η ∈ Mp
G(0, T ), set Xt =

∫ t

0 η(s)dB
a
s . Then there exists a

continuous modification X̃ of X, i.e., for ω ∈ Ω̃ ⊂ Ω with C(Ω̃c) = 0, X̃.(ω) is continuous and

C(|Xt − X̃t| 
= 0) = 0 for all t ∈ [0, T ], such that

E

(
sup

s�u�t
|X̃u − X̃s|p

)
� C(p, a)E

((∫ t

s

|ηu|2du
) p

2
)
,

where 0 < C(p, a) <∞ is a constant only dependent on p and a.

Theorem 2.2 Let p � 1 and η ∈ Mp
G(0, T ). Then there exists a continuous modification

Ỹ a
t of Y a

t :=
∫ t

0 ηud〈Ba〉u such that for any 0 � s < t � T ,

E

(
sup

s�u�t
|Ỹ a

u − Ỹ a
s |p

)
� C(p)(t − s)p−1

∫ t

s

E|ηu|pdu.
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3 SDEs Driven by G-Brownian Motion

Theorem 3.1 Suppose that for p � 2,

(1) there exists a function H(t, u) : R+ × R+ �→ R+ such that

(1a) for fixed t, H(t, u) is continuous nondecreasing with respect to u,

(1b) for T > 0, any 0 < t � T and Xt ∈ Lp
G(Ft),

b(t,Xt), h(t,Xt), σ(t,Xt) ∈Mp
G(0, T )

and

E|b(t,Xt)|p + E‖h(t,Xt)‖p + E‖σ(t,Xt)‖p � H
(
t,E

(
sup
r�t

|Xr|p
))
,

(1c) for any constant K > 0, the differential equation

du
dt

= KH(t, u)

has a global solution for any initial value u0;

(2) there exists a function F (t, u) : R+ × R+ �→ R+ such that

(2a) for fixed t, F (t, u) is continuous nondecreasing in u and F (t, 0) = 0,

(2b) for T > 0, any 0 < t � T and Xt, Yt ∈ Lp
G(Ft),

E|b(t,Xt) − b(t, Yt)|p + E‖h(t,Xt) − h(t, Yt)‖p + E‖σ(t,Xt) − σ(t, Yt)‖p

� F
(
t,E

(
sup
r�t

|Xr − Yr|p
))
,

(2c) for any constant K > 0, if a non-negative function ϕt satisfies

ϕt � K

∫ t

0

F (s, ϕs)ds

for all t ∈ R+, then ϕt = 0.

Then (1.1) has a unique solution X which is continuous q.s. and Xt ∈ Lp
G(Ft) for t > 0.

Remark 3.1 Fix T > 0 and assume that b, h and σ satisfy, for all x, x1, x2 ∈ Rn,

(H1) |b(t, x)|2 + ‖h(t, x)‖2 + ‖σ(t, x)‖2 � β2
1(t) + β2

2(t)|x|2;
(H2) |b(t, x1)− b(t, x2)|2 +‖h(t, x1)−h(t, x2)‖2 +‖σ(t, x1)−σ(t, x2)‖2 � β2(t)ρ(|x1−x2|2),

where β1 ∈M2
G(0, T ), β, β2 : [0, T ] �→ R+ are square integrable and ρ : (0,+∞) �→ (0,+∞) is a

continuous, increasing and concave function so that

ρ(0+) = 0,
∫ 1

0

dr
ρ(r)

= +∞.

Under these conditions (H1) and (H2), Bai and Lin in [2, Theorem 3.1] showed the existence

and uniqueness of the solution to (1.1). If we choose H(t, u) = Eβ2
1(t) + β2

2(t)u and F (t, u) =

β2(t)ρ(u), it can be easily justified that (1a)–(1c) and (2a)–(2c) hold for p = 2. Therefore, our

result is more general than that in [2].
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We are now in a position to give the proof of Theorem 3.1.

Proof of Theorem 3.1 Let X0
t := x and for n ∈ N,

Xn
t := x+

∫ t

0

b(s,Xn−1
s )ds+

∫ t

0

h(s,Xn−1
s )d〈B〉s +

∫ t

0

σ(s,Xn−1
s )dBs (3.1)

∀T > 0. First of all, we show that for t < T and n ∈ N,

Xn
t ∈ Lp

G(Ft) and E

(
sup
r�t

|Xn
r |p

)
� ut � uT , (3.2)

where ut satisfies

ut = C1(p, T )|x|p + C1(p, T )
∫ t

0

H(s, us)ds,

and

C1(p, T ) := 4p−1(1 + C(p)T p−1).

Suppose

Xn−1
t ∈ Lp

G(Ft)

and

E
(
sup
r�t

|Xn−1
r |p) � ut,

which together with the definition of the G-stochastic integral and (1b) yield Xn
t ∈ Lp

G(Ft).

Secondly, by Theorems 2.1–2.2, the Hölder inequality and (1a)–(1b), we get

E

(
sup
r�t

|Xn
r |p

)

� 4p−1
(
|x|p + E

(
sup
r�t

∣∣∣ ∫ r

0

b(s,Xn−1
s )ds

∣∣∣p) + E

(
sup
r�t

∣∣∣ ∫ r

0

h(s,Xn−1
s )d〈B〉s

∣∣∣p)

+ E

(
sup
r�t

∣∣∣ ∫ r

0

σ(s,Xn−1
s )dBs

∣∣∣p))

� C1(p, T )
(
|x|p +

∫ t

0

E(|b(s,Xn−1
s )|p)ds+

∫ t

0

E(‖h(s,Xn−1
s )‖p)ds

+ E

[( ∫ t

0

‖σ(s,Xn−1
s )‖2ds

) p
2
])

� C1(p, T )
(
|x|p +

∫ t

0

E(|b(s,Xn−1
s )|p)ds+

∫ t

0

E(‖h(s,Xn−1
s )‖p)ds

+ T
p
2−1

∫ t

0

E(‖σ(s,Xn−1
s )‖p)ds

)

� C1(p, T )
(
|x|p +

∫ t

0

H
(
s,E

(
sup
r�s

|Xn−1
r |p

))
ds

)

� C1(p, T )
(
|x|p +

∫ t

0

H(s, us)ds
)

� ut

for all t � T . By the induction method, (3.2) is proved.
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Next, we have, by the same deduction as above,

E

(
sup
r�t

|Xn
r −Xm

r |p
)

� 3p−1
(

E

(
sup
r�t

∣∣∣ ∫ r

0

(b(s,Xn−1
s ) − b(s,Xm−1

s ))ds
∣∣∣p)

+ E

(
sup
r�t

∣∣∣ ∫ r

0

(h(s,Xn−1
s ) − h(s,Xm−1

s ))d〈B〉s
∣∣∣p)

+ E

(
sup
r�t

∣∣∣ ∫ r

0

(σ(s,Xn−1
s ) − σ(s,Xm−1

s ))dBs

∣∣∣p))

� C2(p, T )
(∫ t

0

E|b(s,Xn−1
s ) − b(s,Xm−1

s )|pds

+
∫ t

0

E‖h(s,Xn−1
s ) − h(s,Xm−1

s )‖pds

+ T
p
2−1

∫ t

0

E‖σ(s,Xn−1
s ) − σ(s,Xm−1

s )‖pds
)

� C2(p, T )
∫ t

0

F
(
s,E

(
sup
r�s

|Xn−1
r −Xm−1

r |p
))

ds,

where C2(p, T ) := 3p−1(1 + C(p)T p−1). Let

Yt = lim sup
n,m→∞

E

(
sup
r�t

|Xn−1
r −Xm−1

r |p
)
.

It follows from the Fatou lemma and (2a) that

Yt � C2(p, T )
∫ t

0

F (s, Ys)ds.

By (2c), we obtain that Yt ≡ 0, i.e.,

lim
n,m→∞ E

(
sup
r�t

|Xn−1
r −Xm−1

r |p
)

= 0.

Then there exists a subsequence {Xnk
t } such that for any k � 1,

∥∥∥ sup
r�t

|Xnk+1
r −Xnk

r |
∥∥∥

p
:=

(
E

(
sup
r�t

|Xnk+1
r −Xnk

r |
)p) 1

p � 1
2k
.

Thus ∥∥∥ ∞∑
k=1

sup
r�t

|Xnk+1
r −Xnk

r |
∥∥∥

p
= sup

θ∈AΓ
0,∞

(
EPθ

( ∞∑
k=1

sup
r�t

|Xnk+1
r −Xnk

r |
)p) 1

p

� sup
θ∈AΓ

0,∞

∞∑
k=1

(
EPθ

(
sup
r�t

|Xnk+1
r −Xnk

r |
)p) 1

p

�
∞∑

k=1

∥∥∥ sup
r�t

|Xnk+1
r −Xnk

r |
∥∥∥

p
� 1,

which implies
∞∑

k=1

sup
r�t

|Xnk+1
r −Xnk

r | <∞ q.s.
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Set Xt = Xn1
t +

∞∑
k=1

(Xnk+1
t −Xnk

t ). Then X is q.s. defined on Ω for all t ∈ [0, T ] and continuous

q.s. Moreover,
∥∥ sup

0�t�T
|Xt|

∥∥
p
<∞, and

(
E

(
sup
r�t

|Xnk
r −Xr|p

)) 1
p � sup

θ∈AΓ
0,∞

(
EPθ

( ∞∑
l=k

sup
r�t

|Xnl+1
r −Xnl

r |
)p) 1

p

�
∞∑

l=k

∥∥∥ sup
r�t

|Xnl+1
r −Xnl

r |
∥∥∥

p
.

Letting k → ∞ and taking limits on both sides of the above inequality, we get

lim
k→∞

E

(
sup
r�t

|Xnk
r −Xr|p

)
= 0.

Now by the Hölder inequality, (2b) and Theorems 2.1–2.2, it holds that

E

(
sup
r�t

∣∣∣ ∫ r

0

b(s,Xnk
s )ds−

∫ r

0

b(s,Xs)ds
∣∣∣p)

� C2(p, T )
∫ t

0

F
(
s,E

(
sup
r�s

|Xnk
r −Xr|p

))
ds,

E

(
sup
r�t

∣∣∣ ∫ r

0

h(s,Xnk
s )d〈B〉s −

∫ r

0

h(s,Xs)d〈B〉s
∣∣∣p)

� C2(p, T )
∫ t

0

F
(
s,E

(
sup
r�s

|Xnk
r −Xr|p

))
ds

and

E

(
sup
r�t

∣∣∣ ∫ r

0

σ(s,Xnk
s )dBs −

∫ r

0

σ(s,Xs)dBs

∣∣∣p)

� C2(p, T )
∫ t

0

F
(
s,E

(
sup
r�s

|Xnk
r −Xr|p

))
ds.

Taking limits on both sides of (3.1) in Lp
G(Ft), we attain that X satisfies (1.1).

Next, let X and X ′ be two solutions to (1.1), and then by the same way as above, we obtain

that

E

(
sup
r�t

|Xr −X ′
r|p

)
� C2(p, T )

∫ t

0

F
(
s,E

(
sup
r�s

|Xr −X ′
r|p

))
ds

for all t � T . We can apply (2c) and deduce that E
(
sup
r�t

|Xr −X ′
r|p

)
= 0, which implies that

Xt = X ′
t, t ∈ [0, T ] q.s. Thus the proof is completed.

Next assume that b, h and σ are independent of t, ω, and we study the cocycle property of

(1.1) under these conditions of Theorem 3.1. The method comes from [1].

For 0 � s < t <∞, consider the following equation:

Φs,t(x, ω) = x+
∫ t

s

b(Φs,u(x, ω))du +
∫ t

s

h(Φs,u(x, ω))d〈B〉u

+
∫ t

s

σ(Φs,u(x, ω))dBu. (3.3)

By Theorem 3.1 we know that (3.3) has a unique solution and denote it by Φs,t(x, ω).
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Lemma 3.1 For 0 � r < s < t <∞,

Φr,t(x, ω) = Φs,t(Φr,s(x, ω), ω) q.s. (3.4)

Proof Because Φr,t(x, ω) solves (3.3), it follows from the additive property of G-stochastic

integrals (see [7])

Φr,t(x, ω) = x+
∫ t

r

b(Φr,u(x, ω))du +
∫ t

r

h(Φr,u(x, ω))d〈B〉u

+
∫ t

r

σ(Φr,u(x, ω))dBu

= x+
∫ s

r

b(Φr,u(x, ω))du +
∫ s

r

h(Φr,u(x, ω))d〈B〉u

+
∫ s

r

σ(Φr,u(x, ω))dBu +
∫ t

s

b(Φr,u(x, ω))du

+
∫ t

s

h(Φr,u(x, ω))d〈B〉u +
∫ t

s

σ(Φr,u(x, ω))dBu

= Φr,s(x, ω) +
∫ t

s

b(Φr,u(x, ω))du +
∫ t

s

h(Φr,u(x, ω))d〈B〉u

+
∫ t

s

σ(Φr,u(x, ω))dBu.

However,

Φs,t(Φr,s(x, ω), ω) = Φr,s(x, ω) +
∫ t

s

b(Φs,u(Φr,s(x, ω), ω))du

+
∫ t

s

h(Φs,u(Φr,s(x, ω), ω))d〈B〉u

+
∫ t

s

σ(Φs,u(Φr,s(x, ω), ω))dBu.

By the uniqueness of the solution to (3.3), (3.4) is proved.

Before stating another lemma, we introduce a notation Φ0,t(x, ω̂), which solves the following

equation:

Φ0,t(x, ω̂) = x+
∫ t

0

b(Φ0,u(x, ω̂))du +
∫ t

0

h(Φ0,u(x, ω̂))d〈Bs〉u

+
∫ t

0

σ(Φ0,u(x, ω̂))dBs
u,

based on 〈Bs〉u = 〈B〉s+u − 〈B〉s ∼ 〈B〉u, Bs
u = Bs+u −Bs ∼ Bu and Theorem 3.1.

Lemma 3.2 For 0 � s, t <∞,

Φs,s+t(x, ω) = Φ0,t(x, ω̂) q.s. (3.5)



Cocycle Property of G-SDEs 157

Proof Define Φ0
s,s+t(x, ω) := x, Φ0

0,t(x, ω̂) := x and for n ∈ N,

Φn
s,s+t(x, ω) := x+

∫ s+t

s

b(Φn−1
s,u (x, ω))du +

∫ s+t

s

h(Φn−1
s,u (x, ω))d〈B〉u

+
∫ s+t

s

σ(Φn−1
s,u (x, ω))dBu,

Φn
0,t(x, ω̂) := x+

∫ t

0

b(Φn−1
0,u (x, ω̂))du+

∫ t

0

h(Φn−1
0,t (x, ω̂))d〈Bs〉u

+
∫ t

0

σ(Φn−1
0,t (x, ω̂))dBs

u.

Then Φn
s,s+t(x, ω),Φn

0,t(x, ω̂) are well defined by the proof of Theorem 3.1. First of all, we prove

Φn
s,s+t(x, ω) = Φn

0,t(x, ω̂) q.s. (3.6)

Assume that (3.6) holds for n−1. Taking a sequence of partitions of [0, t]: πN
t = {tN0 , tN1 , · · · ,

tNN}, N = 1, 2, · · · , one gets by Proposition 5.3.5 in [9]

N∑
j=1

b(Φn−1
s,s+tN

j−1
(x, ω))((s + tNj ) − (s+ tNj−1)) →

∫ s+t

s

b(Φn−1
s,u (x, ω))du in L1

G(F),

and by the definitions of G-stochastic integrals,

N∑
j=1

h(Φn−1
s,s+tN

j−1
(x, ω))(〈B〉s+tN

j
− 〈B〉s+tN

j−1
) →

∫ s+t

s

h(Φn−1
s,u (x, ω))d〈B〉u in L1

G(F),

N∑
j=1

σ(Φn−1
s,s+tN

j−1
(x, ω))(Bs+tN

j
−Bs+tN

j−1
) →

∫ s+t

s

σ(Φn−1
s,u (x, ω))dBu in L2

G(F),

as μ(πN
t ) → 0. Thus, by (3.6), Proposition 5.3.5 in [9] and the definitions of G-stochastic

integrals,

Φn
s,s+t(x, ω) = lim

μ(πN
t )→0

[
x+

N∑
j=1

b(Φn−1
s,s+tN

j−1
(x, ω))((s+ tNj ) − (s+ tNj−1))

+
N∑

j=1

h(Φn−1
s,s+tN

j−1
(x, ω))(〈B〉s+tN

j
− 〈B〉s+tN

j−1
)

+
N∑

j=1

σ(Φn−1
s,s+tN

j−1
(x, ω))(Bs+tN

j
−Bs+tN

j−1
)
]

= lim
μ(πN

t )→0

[
x+

N∑
j=1

b(Φn−1
0,tN

j−1
(x, ω̂))(tNj − tNj−1)

+
N∑

j=1

h(Φn−1
0,tN

j−1
(x, ω̂))(〈Bs〉tN

j
− 〈Bs〉tN

j−1
)

+
N∑

j=1

σ(Φn−1
0,tN

j−1
(x, ω̂))(Bs

tN
j
−Bs

tN
j−1

)
]
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= x+
∫ t

0

b(Φn−1
0,u (x, ω̂))du+

∫ t

0

h(Φn−1
0,u (x, ω̂))d〈Bs〉u

+
∫ t

0

σ(Φn−1
0,u (x, ω̂))dBs

u

= Φn
0,t(x, ω̂),

where these limits hold in L1
G(F).

Finally, by the proof of Theorem 3.1 we know that Φn
s,s+t(x, ω), Φn

0,t(x, ω̂) converge to

Φs,s+t(x, ω), Φ0,t(x, ω̂) respectively in L2
G(F). So, (3.5) is proved by taking the limit to (3.6).

Theorem 3.2 (Cocycle Property) For 0 � s, t <∞,

Xt+s(x, ω) = Xt(Xs(x), ω̂) q.s.

Proof By (3.4)–(3.5), we have

Xt+s(x, ω) = Φ0,s+t(x, ω) = Φs,s+t(Φ0,s(x, ω), ω)

= Φ0,t(Φ0,s(x, ω), ω̂) = Xt(Xs(x), ω̂) q.s.

4 A Special Case: F (t, u) = Cq(t)ρη(u)

For 0 < η < 1
e , we define a concave function as

ρη(u) :=
{
u logu−1, u � η,
η log η−1 + (log η−1 − 1)(u− η), u > η.

Then Cq(t)ρη(u) satisfies (2a) and (2c), where q(t) is a strictly positive and integrable function

on R+. In this section, we consider the special case: F (t, u) = Cq(t)ρη(u).

Lemma 4.1 Suppose that b, h and σ satisfy those conditions in Theorem 3.1 for F (t, u) =

Cq(t)ρη(u). Then for any T > 0, there are three positive constants C3 = C3(p, T ), C4 =

C4(p, T ) and C5 = C5(p, T ) such that for any x, y ∈ Rn and any s, t ∈ [0, T ],

E(|Xs(x) −Xt(x)|p) � C3|s− t| p
2 ,

E

(
sup
t�T

|Xt(x) −Xt(y)|p
)

� C5|x− y|p·exp{−C4
∫ T
0 q(s)ds}.

Its proof is similar to that of Theorem 3.1 and we omit it.

Proposition 4.1 Suppose that b, h and σ satisfy those conditions in Theorem 3.1 for

F (t, u) = Cq(t)ρη(u). Moreover, they are independent of t, ω. Then the solution Xt(x) to

(1.1) is bi-continuous with respect to t, x.

Proof In Lemma 4.1 we first choose p sufficiently large and secondly T =: T0 sufficiently

small such that

p · exp
{
− C4

∫ T0

0

q(s)ds
}
> d.
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Then by Theorem 31 in [5]

[0, T0] × R
d � (t, x) �→ Xt(x, ω) ∈ R

d

has a bi-continuous modification which is still denoted by Xt(x).

For t ∈ [T0, 2T0], by Theorem 3.2 we have that for all s ∈ [0, T0],

Xs+T0(x, ω) = Xs(XT0(x, ω), ̂̂ω), q.s., (4.1)

where Xs(x, ̂̂ω) solves the following equation:

Xs(x, ̂̂ω) = x+
∫ s

0

b(Xu(x, ̂̂ω))du +
∫ s

0

h(Xu(x, ̂̂ω))d〈BT0〉u

+
∫ s

0

σ(Xu(x, ̂̂ω))dBT0
u .

Set

X̃s+T0(x, ω) := Xs(XT0(x, ω), ̂̂ω).

Since (s, x) �→ Xs(x, ̂̂ω) and x �→ XT0(x, ω) are continuous q.s., we obtain the continuity of

(s, x) �→ X̃s+T0(x, ω) q.s. We still denote the bi-continuous modification of X̃s+T0(x, ω) by

X̃s+T0(x, ω). By (4.1), we have

X̃s+T0(x, ω) = Xs+T0(x, ω), q.s.

Then there is a set ˜̃Ω ⊂ Ω with C(˜̃Ωc

) = 0 such that for all ω ∈ ˜̃Ω,

Xs+T0(x, ω) = Xs(XT0(x, ω), ̂̂ω), ∀s ∈ [0, T0].

In the same way as t ∈ [T0, 2T0], we get that Xt(x) has a bi-continuous modification for

t ∈ [2T0, 3T0], [3T0, 4T0], · · · .
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