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Embedding Periodic Maps on Surfaces into Those on S3∗
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Abstract Call a periodic map h on the closed orientable surface Σg extendable if h extends
to a periodic map over the pair (S3, Σg) for possible embeddings e : Σg → S3. The authors
determine the extendabilities for all periodical maps on Σ2. The results involve various
orientation preserving/reversing behalves of the periodical maps on the pair (S3, Σg). To
do this the authors first list all periodic maps on Σ2, and indeed the authors exhibit each
of them as a composition of primary and explicit symmetries, like rotations, reflections and
antipodal maps, which itself should be interesting. A by-product is that for each even g,
the maximum order periodic map on Σg is extendable, which contrasts sharply with the
situation in the orientation preserving category.
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1 Introduction

Closed orientable surfaces are the most ordinary geometric and physical subjects to us, since
they stay in our 3-dimensional space everywhere in various manners (often as the boundaries
of 3-dimensional solids).

The study of symmetries on closed orientable surfaces is also a classical topic in mathematics.
An interesting fact is that some of those symmetries are easy to see, and others are not, or to
be more precise, some symmetries are more visible than others.

Let’s have a look at the examples. Let Σg be the orientable closed surface with genus g.
We always assume that g > 1 in this paper. It is easy to see that there exists a symmetry ρ of
order 2 on Σ2 indicated in the left side of Figure 1, and it is not easy to see that there exists
a symmetry τ of order 2 on Σ2 whose fixed-point set consists of two non-separating circles,
indicated in the right side of Figure 1. A primary reason for this fact is that we can embed
Σ2 and ρ into the 3-space and its symmetry space simultaneously, that is to say, ρ is induced
from a symmetry of our 3-space, or ρ extends to a symmetry over the 3-space; and on the other
hand, as we will see, τ can never be induced by a symmetry of the 3-space for any embedding
of Σ2.

Now we make a precise definition: If a finite group action G on Σg can also act on the pair
(S3, Σg) for possible embeddings e : Σg → S3, that is to say, ∀h ∈ G, we have h ◦ e = e ◦ h, and
we call such a group action on Σg extendable over S3 (with respect to e).
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Figure 1

Such extendable finite group actions have been addressed in [13–14]. But those two papers
focus on the problem of maximum orders in the orientation preserving category. In this paper
we start to discuss the extendable problem for general finite group actions and we will delete
the orientation preserving restriction. We will first focus on the simplest case: The cyclic group
actions on the surface Σ2.

We examine the extendabilities for all periodical maps on Σ2. To do this we first need not
only to exhibit all Zn-actions on Σ2, but also to exhibit them in a very geometric and visible
way.

Theorem 1.1 (1) There exist twenty-one conjugacy classes of finite cyclic actions on Σ2

which are generated by the following periodical maps: ρ2,1, ρ2,2, τ2,1, τ2,2, τ2,3, τ2,4, τ2,5, ρ3,
ρ4, τ4,1, τ4,2, ρ5, ρ6,1, ρ6,2, τ6,1, τ6,2, τ6,3, ρ8, τ8, ρ10, τ12, where each map presented by ρ/τ is
orientation preserving/reversing, and the first subscript indicates the order.

(2) The extendability of twenty-one periodic maps in (1) are: ρ2,1{+}, ρ2,2{+,−}, τ2,1{+,−},
τ2,2{+,−}, τ2,3{+}, τ2,4{∅}, τ2,5{−}, ρ3{+}, ρ4{−}, τ4,1{+,−}, τ4,2{∅}, ρ5{∅}, ρ6,1{+},
ρ6,2{−}, τ6,1{∅}, τ6,2{−}, τ6,3{∅}, ρ8{∅}, τ8{∅}, ρ10{∅}, τ12{+}, where the symbol {+}/
{−}/ {+,−}/ {∅} indicates that the map has orientation preserving/orientation reversing/both
orientation preserving and reversing/no extension.

The geometric descriptions of (1) and (2) are given in Figure 2 and Figure 3, respectively,
where we exhibit each of them as a composition of rotations, reflections, and (semi-)antipodal
maps:

(i) Each rotation in 2-space (3-space) is indicated by a circular arc with arrow around a
point (an axis).

(ii) Each reflection about a 2-sphere = 2-plane ∪∞ or a circle = line ∪∞ is indicated by
an arc with two arrows.

(iii) Each (semi-)antipodal map is indicated by a point (another fixed point is ∞).
More concrete descriptions of those maps will be given in the proof of Theorem 1.1 and

Example 2.1.

Let Cg and CEg be the maximum orders of periodical maps and extendable periodical maps
on Σg respectively; Co

g and CEo
g be the corresponding notions restricted to the orientation-

preserving category. Then it is known that (1) Co
g is 4g + 2. Cg is 4g + 4 when g is even and

4g + 2 when g is odd (see [10]). (2) CEo
g = 2g + 2 if g is even and 2g − 2 if g is odd (see [13]).

By the construction and argument provided for the maps τ12 and τ2,4 (see Example 2.1
and Case (2−)), we can easily get the following facts which do not appear in the orientation
preserving category.

Corollary 1.1 (1) For each even g, the maximum order periodic map on Σg is extendable,
that is to say, CEg = 4g + 4.

(2) For each g, there exists a non-extendable symmetry of order 2 on Σg.
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The following notions are convenient for our later discussion.
Let G = Zn = 〈h〉, where h is a periodic map of order n on (S3, Σg). According to whether

h preserves/reverses the orientation of S3/Σg, we have four types of extendable group actions.
(1) Type (+, +): h preserves the orientations of both S3 and Σg.
(2) Type (+,−): h preserves the orientation of Σg and reverses that of S3.
(3) Type (−, +): h reverses the orientation of Σg and preserves that of S3.
(4) Type (−,−): h reverses the orientations of both Σg and S3.

Figure 2

One can easily check that the type of the action G = 〈h〉 is independent of the choice of the
periodical map h. Those notions remind us that Type (+, +) and Type (+,−) are extending
orientation preserving maps on Σg to those of S3 in the orientation preserving and reversing
ways respectively, and Type (−, +) and Type (−,−) are extending orientation reversing maps
on Σg to those of S3 in the orientation preserving and reversing ways respectively. Periodical
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maps of Type (+, +) and Type (−,−) do not change the two sides of Σg, and periodical maps
of the remaining two types do change the two sides of Σg.

Notice that if G is extendable and h ∈ G is an element which equals the identity on Σg,
then it is easy to see that h is the identity on the whole S3. Hence we always assume that the
group action is faithful on both Σg and S3.

Suppose that S (resp. P ) is a properly embedded (n − 1)-manifold (resp. n-manifold) in
an n-manifold M . We use M \ S (resp. M \ P ) to denote the resulting manifold obtained by
splitting M along S (resp. removing intP , the interior of P ).

The fixed point set Fix(G) for a finite group action on X is defined as {x ∈ X | g(x) =
x, ∀g ∈ G}.

In Section 2, we recall some fundamental results, construct some examples, and prove some
lemmas, which will be used in Section 3 to prove Theorem 1.1.

Figure 3
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2 Some Facts and Examples

We first recall some fundamental results in this section.

Consider 2-disc D2 (resp. 3-disc D3) as the unit disc in R2 (resp. R3); and 2-sphere S2

(resp. 3-sphere S3) as the unit sphere in R3 (resp. R4). Then each periodic map on D2, S2

and B3, S3 can be conjugated into O(2), O(3), O(4) respectively. Those results in dimension
2 can be found in [3], and the results in dimension 3 can be found in [4] for actions of isolated
fixed points, in [2, 11] for actions with fixed point set of dimension at least 1, and in [6–8] for
fixed-point free actions.

There exists exactly one standard orientation-reversing Z2-action on D2: A reflection about
a diameter. There exist two standard orientation-reversing Z2-actions on D3 (resp. S2): One
is a reflection about an equator 2-disc (circle), and the other is the antipodal map. There also
exist two standard orientation-reversing Z2-actions on S3: One is a reflection about an equator
2-sphere, and the other is the semi-antipodal map which has two fixed points {0,∞}, which on
every sphere {(x, y, z) | x2 + y2 + z2 = R2} is an antipodal map.

The facts in the following statement, which can be found in [2–4, 6–9, 11], will be used
repeatedly later.

Theorem 2.1 (1) Any orientation reversing periodic map on the 2-disc D2 is conjugate to
a reflection about a diameter.

(2) An orientation reversing Z2-action on S3(D3) must conjugate to either a reflection about
a 2-sphere (2-disc) or a semi-antipodal (antipodal) map.

(3) The fixed-point set of an orientation preserving Zn-action on a closed orientable 3-
manifold M is a disjoint union of circles (may be empty).

(4) In (3) if M = S3 then the fixed-point set of an orientation preserving Zn-action must
be either the empty set or an unknotted circle.

We will also give a brief recall of orbifold theory for later use (see [1, 4–5, 16]).

Each orbifold we considered has the form M/G, where M is an n-manifold and G is a finite
group acting faithfully on M . For a point x ∈ M , denote its stable subgroup by St(x), and
its image in M/G by x′. If |St(x)| > 1, x′ is called a singular point and the singular index is
|St(x)|, otherwise it is called a regular point. If we forget the singularity we get a topological
space |M/G| which is called an underlying space.

We can also define the covering space and the fundamental group for orbifold. There exists a
one to one correspondence between orbifold covering spaces and conjugate classes of subgroups
of orbifold fundamental groups, and regular covering spaces correspond to normal subgroups.

In the following, if we say covering spaces or fundamental groups, they always refer to the
orbifold corresponding objects.

A simple picture we should keep in mind is the following: Suppose that G acts on (S3, Σg).
Let Γ = {x ∈ S3| ∃ g ∈ G, g �= id, s.t. gx = x}. Then Γ/G is the singular set of the 3-orbifold
S3/G, and Σg/G is a 2-orbifold with a singular set Σg/G ∩ Γ/G.

Suppose that a finite cyclic group G = Zn acts on Σg. Then Σg/G is a 2-orbifold whose
singular set contains isolated points a1, a2, · · · , ak, with indices q1 ≤ q2 ≤ · · · ≤ qk. Suppose
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that the genus of |Σg/G| is ĝ. We have the Riemann-Hurwitz formula

2 − 2g = n
(
2 − 2ĝ −

k∑
i=1

(
1 − 1

qi

))
, qi dividing n. (RH)

The following Hurwitz-type result is about the existence and classification of the actions of
finite group G on Σg.

Theorem 2.2 (1) A finite cyclic group G acts on the surface Σg to get an orbifold X =
Σg/G if and only if there exists an exact sequence

1 → π1(Σg) → π1(X) → G → 1.

(2) If two finite group actions G and G′ are conjugate, then their exact sequences have the
following diagram:

1 �� π1(Σg)

∼=
��

�� π1(X)

∼=
��

�� G

∼=
��

�� 1

1 �� π1(Σ′
g) �� π1(X ′) �� G′ �� 1

(3) If two finite group actions G and G′ have the above diagram, and both actions have no
reflection fixed curves, then these actions are conjugate.

Proof (1) It is parallel to the classical covering space theory, and is the fundamental
property in orbifold theory.

(2) Suppose that two actions are conjugate induced by an homeomorphism between surfaces
f̃ : Σg → Σ′

g, and then there is a diagram about covering maps:

Σg

f̃

��

�� X

f

��
Σ′

g
�� X ′

Then f̃∗ and f∗ give the first two vertical homomorphisms between the fundamental groups.
The third one is also well defined as a quotient of f∗.

(3) Suppose that the two actions have the group-level diagram, and that both actions have
no reflection-fixed curves. Then we have f∗ : π1(X) → π1(X ′). By [15, Theorem 5.8.3], this
homomorphism can be induced by some orbifold homeomorphism f . Now because the left
square commutes, f can be lift to a homeomorphism f̃ between covering surfaces such that it
induces the first vertical homomorphism. Such f̃ gives the desired conjugation between actions.

To prove Theorem 1.1, besides quoting the above results, we need more results and con-
structions.

Suppose that h is an orientation-reversing periodic map of order 2q on a compact p-manifold
U , p = 2, 3. Then the index-two subgroup of G = 〈h〉 is the unique one Go = 〈h2〉 which acts
on U orientation preservingly. Let X = U/Go be the corresponding p-orbifold, π : U → X be
the cyclic branched covering of degree q, and 〈h〉 be the induced order-2 orientation reversing
action on X .
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Lemma 2.1 Under the setting above: Suppose that x ⊂ X is of index n (n = 1 if x is a
regular point), and x is a fixed point of h. Then

(1) q
n must be odd.

(2) If p = 2, x must be a regular point of h.

Proof (1) Let N(x) = Bp ⊂ |X | be an h-invariant p-ball. Then π−1(x) = {x̃1, · · · , x̃l},
where l = q

n , and π−1(Bp) = {B1, · · · , Bl} is a disjoint union p-ball which is an h-invariant
set. Moreover, the action of h on {B1, · · · , Bl} is transitive and orientation reserving (under
the induced orientation). The stable subgroup of x̃1, St(x̃1) ⊂ Z2q = 〈h〉 is a cyclic group
Z2n = 〈hl〉. Since St(x̃1) contains an orientation reversing element, l must be odd.

(2) In case of dimension 2, any orientation reversing periodic map must be conjugated to
a reflection about a diameter L of B2 by Theorem 2.1(1). Therefore any finite cyclic group
containing an orientation reversing element must be Z2, that is to say, n = 1 and therefore x is
a regular point.

Lemma 2.2 Suppose that h is an orientation preserving periodic map on Σg and the number
of singular points of X = Σg/〈h〉 is odd. Then h can not extend to S3 in the type (+, +).

Proof Otherwise let h̃ : (S3, Σg) → (S3, Σg) be such an extension. As an orientation
preserving periodic map on S3, its fixed-point set must be a disjoint union of circles by Theorem
2.1(3), and the singular-point set Γ〈h̃〉 of the orbifold S3/〈h̃〉 must be a disjoint union of circles.
Then the singular-point set of the 2-orbifold Σg/〈h〉, as the intersection of those circles and
|Σg/〈h〉|, must have an even number of points, which is a contradiction.

Lemma 2.3 The Klein bottle K can not embed into RP 3.

Proof Otherwise there exists an embedding K ⊂ RP 3. We can assume that K is transversal
to some RP 2 ⊂ RP 3. Cutting RP 3 along this RP 2 we get the D3, and K becomes an embedded
proper surface S ⊂ D3 with χ(S) = χ(K) = 0. Note that every embedded proper surface in
D3 must be orientable, so S must be an annulus. But the two boundaries of S in ∂D3 must
be identified by the antipodal map on ∂D3 before the cutting, that is to say, we can only get a
torus from S, not K, which is a contradiction.

The constructions below provide various extendable periodic maps on Σg.

Example 2.1 For every g > 1, we will construct some finite cyclic actions on a Heegaard
splitting S3 = Vg ∪

Σg

V ′
g .

Consider S3 as the unit sphere in C2, then

S3 = {(z1, z2) ∈ C
2 | |z1|2 + |z2|2 = 1}.

Let

am = (e
mπi
2 , 0), m = 0, 1, 2, 3,

bn = (0, e
nπi
g+1 ), n = 0, 1, · · · , 2g + 1.

Connect each a2l to each b2k with a geodesic in S3 and each a2l+1 to each b2k+1 with a geodesic
in S3, where l = 0, 1 and k = 0, 1, · · · , g. Then we get two two-parted graphs Γ, Γ′ ∈ S3 each
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which has 2 vertices and g + 1 edges, and is in the dual position (see Figure 4). The left one is
a sketch map, and the right one presents exactly how the graphs look like. All the graphs are
projected to R3 from S3.

Figure 4

We have the following three isometries on S3 which preserve the graph Γ ∪ Γ′:

τ(g) : (z1, z2) �→ (iz1, e
πi

g+1 z2),

ρ : (z1, z2) �→ (−z1, z2),

σ : (z1, z2) �→ (z1, z2).

Here τ and ρ preserve the orientation of S3 and σ reverses the orientation of S3. If g is even,
〈τ(g)〉 has order 4(g + 1).

The points in S3 have an equal distance to Γ and Γ′ forms a closed subsurface having genus
g. This is our Σg. It cuts S3 into two handlebodies Vg and V ′

g which are neighborhoods of Γ
and Γ′. All the isometries τ(g), ρ, σ preserve Γ ∪ Γ′, so they must also preserve Σg. One can
check easily that τ, ρ and σ give examples of extendable periodical maps on (S3, Σg) of types
(−, +) (+, +) and (−,−), respectively. In particular, τ(g) gives a periodic map on (S3, Σg) of
type (−, +) and order 4(g + 1) when g is even. Notice that this is also the maximum order of
cyclic group action on Σg when g is even. A more concrete and intuitive picture to indicate
how τ(2) acts on Σ2 is given in Figure 5 (for another such description, see [12]).

ai �→ ai+1, bi �→ bi+1

Figure 5



Embedding Periodic Maps on Surfaces into Those on S3 169

Compositions of τ(g), ρ, σ provide extendable periodical maps on Σg of required orders and
types, for example,

(1) στ(2) is a map on (S3, Σ2) of type (+,−) and order 6.

(2) στ4(2) on (S3, Σ2) is of type (−,−) and order 6.

3 Extendabilities of Periodical Maps on Σ2

Suppose that Zn = 〈h〉 acts on Σ2, and we know n ≤ 12. We will discuss all the periods
n ∈ {2, 3, · · · , 12}. For each period n, we will divide the discussion into two cases: The
orientation preserving maps on Σ2, denoted as (n+); and the orientation reversing maps on
Σ2, denoted as (n−). For each case (nε), ε = ±, we first discuss part (1) of Theorem 1.1, the
classification of periodic maps; and then part (2) of Theorem 1.1, the extendabilities of those
maps.

We remark that for each odd n, the situation is simpler, since all the possible actions must be
orientation-preserving. If n = 2k, then h induces an involution h on X = Σ2/〈h2〉, the orbifold
corresponding to the unique index-two sub-group Zk of Z2k, and if h is orientation-reversing,
n must be 2k, and h is orientation-reversing on X .

(2+) classification: Now X = Σ2/Z2 is a closed orientable 2-orbifold with χ(X) = χ(Σ2)
2 =

−1 by (RH), and |X | must be a sphere or a torus. Every branched point of X must be of index-
2. So X is either a sphere with six index-2 branched points, denoted by X1 = S2(2, 2, 2, 2, 2, 2),
or a torus with two index-2 branched points, denoted by X2 = T (2, 2).

By Theorem 2.2(1), we have an exact sequence 1 → π1(Σ2) → π1(Xi) → Z2 → 1, and for
each branched point x of X , St(x) must be mapped isomorphically onto Z2.

Note π1(X1) = 〈a, b, c, d, e, f | abcdef = 1, a2 = b2 = c2 = d2 = e2 = f2 = 1〉, and the
only surjection π1(X1) → Z2 = 〈t | t2 = 1〉 is (a, b, c, d, e, f) �→ (t, t, t, t, t, t), so this Z2 action is
unique up to conjugacy, denoted by ρ2,1, whose action on Σ2 is indicated in the left of Figure
6.

Note π1(X2) = 〈a, b, u, v | aba−1b−1= uv, u2= v2=1〉, and the possible surjections from
π1(X2) to Z2 = 〈t | t2 = 1〉 are

(a, b, u, v) �→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1, 1, t, t),
(1, t, t, t),
(t, 1, t, t),
(t, t, t, t).

Consider the automorphisms of

π1(X2) : (a, b, u, v) �→ (a, ba, u, v), (a, b, u, v) �→ (a, uab, ava−1, u),

and all these representations are equivalent. So this Z2 action is unique up to conjugacy, and
we denote it by ρ2,2, whose action on Σ2 is indicated in the middle and right of Figure 6.
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π

ρ2,1

π

ρ2,2 ρ2,2

O

Figure 6

Extendibility: As indicated in Figure 6, ρ2,1 can extend orientation-preservingly.
The fixed-point set of any orientation-reversing Z2 action on S3 is either the set containing

two points or the 2-sphere by Theorem 2.1(2), which can not intersect Σ2 with 6 isolated points,
and therefore ρ2,1 can not extend orientation-reservingly. So we have ρ2,1{+}.

As indicated in the middle of Figure 6, ρ2,2 can extend orientation-preservingly. If we choose
the embedding Σ2 → S3 as the right-side of Figure 6, one can see that ρ2,2 can also extend
to S3 orientation-reversingly, as a semi-antipodal map about the origin point O with two fixed
points O and ∞. So we have ρ2,2{+,−}.

(2−) classification: Suppose τ is an order-2 orientation-reversing homeomorphism of Σ2.
Consider the fixed-point set fix(τ).

If fix(τ) = ∅, then the map Σ2 → Σ2/Z2 is a covering map, and Σ2/Z2 is a non-orientable
closed surface with χ = −1, which is the connected sum of a torus and a projective plane.
Because the covering map is unique, the action is unique up to conjugacy, and we denote it by
τ2,1, whose action on Σ2 is indicated in Figure 7. Here it is a semi-antipodal map with fixed
points O and ∞.

τ2,1

O

Figure 7

Now suppose fix(τ) �= ∅. Because τ is orientation-reversing, fix(τ) must be the union of
disjoint circles on Σ2. Suppose that fix(τ) contains at least one separating circle C0, and then τ

changes the two components of Σ2\C0. So fix(τ) = {C0}. In this case the action is also unique,
and denote it by τ2,2, whose action on Σ2 is indicated in Figure 8. On the left, the symbol ↔
means a reflection about the middle plane, and on the right is a π-rotation.

τ2,2

π

τ2,2
Figure 8



Embedding Periodic Maps on Surfaces into Those on S3 171

Now suppose that each component of fix(τ) is non-separating.
If |fix(τ)| = 1, for example, fix(τ) = {C1}, then Σ2\C1 is a torus with two holes. Then the

Z2 action on Σ2\C1 is fixed-point free and changes the two boundary components, so it induces
a double cover onto a non-orientable surface. This is also unique, denoted by τ2,3, whose action
on Σ2 is indicated in Figure 9.

τ2,3

O

C1

C1

π

τ2,3

C1

Figure 9

τ2,4

C1 C2

C2 C1
O

Figure 10

If |fix(τ)| = 2, for example, fix(τ) = {C1, C2}, then Σ2\{C1, C2} must be a sphere with four
holes (see Figure 10). Then the Z2 action on Σ2\{C1, C2} is fixed-point free and changes the
four boundary components into two pairs. The action is also unique, denoted by τ2,4.

If |fix(τ)| = 3, for example, fix(τ) = {C1, C2, C3}, then Σ2\{C1, C2, C3} are two 3-punctured
spheres. The action is also unique, denoted by τ2,5.

If |fix(τ)| ≥ 4, then Σ2\{Ci} has more than two components, which is impossible.
Extendibility: τ2,1 can extend to S3 as a semi-antipodal map under the embedding Σ2 → S3

indicated in Figure 7. Choose an embedding of RP 2 in RP 3, and using a local connected sum
with a torus T , we get an embedding of RP 2#T into RP 3. The double cover of (RP 3, RP 2#T )
is (S3, Σ2). This shows that τ2,1 can also extend orientation-preservingly. So we have τ2,1{+,−}.

τ2,2 can obviously extend orientation-reversingly (the left side of Figure 8). It can also
extend orientation-preservingly, as indicated in right side of Figure 8. So we have τ2,2{+,−}.

The fixed-point set of any orientation-reversing Z2 action on S3 is either the set containing
two points or a 2-sphere by Theorem 2.1(2), and the 2-sphere is separating, which can not
intersect Σ2 with a union of non-separating circles. Since the fixed-point sets of both τ2,3 and
τ2,4 are unions of non-separation circles, neither τ2,3 nor τ2,4 can extend orientation-reversingly.

The fixed-point set of any orientation-preserving Z2 action on S3 is either the empty set or
a circle by Theorem 2.1(4), which can not intersect Σ2 with more than one circle. Since the
fixed-point sets of both τ2,4 and τ2,5 contain more than one circles, neither τ2,4 nor τ2,5 can
extend orientation-preservingly.
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Note that τ2,3 can extend orientation-preservingly as in Figure 9. and that τ2,5 can extend
orientation-reversingly, as shown in Figure 11.

τ2,5
Figure 11

So we have τ2,3{+}, τ2,4{∅}, and τ2,5{−}
(3+) classification: Here X = Σ2/Z3 is a closed orientable 2-orbifold with χ(X) = χ(Σ2)

3 =
− 2

3 , and every branched point of X must has index 3. So X is either a sphere with four index-3
branched points, denoted by X1 = S2(3, 3, 3, 3), or a torus with one index-3 branched point,
denoted by X2 = T (3).

As above, we have the exact sequence 1 → π1(Σ2) → π1(Xi) → Z3 → 1, and for each
branched point x of X , St(x) must be mapped isomorphically onto Z3.

For X1, π1(X1) = 〈a, b, c, d | abcd = 1, a3 = b3 = c3 = d3 = 1〉, up to some permutation of
the bases, the only possible surjections π1(X1) → Z3 = 〈t | t3 = 1〉 is (a, b, c, d) �→ (t, t, t2, t2),
and hence this Z3 action is unique up to conjugacy, denoted by ρ3.

For X2, π1(X2) = 〈a, b, u | aba−1b−1 = u, u3 = 1〉, from its abelianzation, we know that
there is no finite-injective surjection to Z3, so there is no corresponding Z3 action.

Extendibility: In the embedding Σ2 ∈ S3 of Example 2.5, one can check directly that
Σ2/〈τ4

12〉 = S2(3, 3, 3, 3), so ρ3 can be the restriction of τ4
12, where τ12 = τ(2) in Example 2.5.

So ρ3 has the extension τ4
12 over S3, which is of type (+, +), and we have ρ3{+}.

(4+) classification: Here X = Σ2/Z4 is a closed orientable 2-orbifold with χ(X) = − 1
2 .

Every branched point of X has index either 2 or 4. So X is either X1 = S2(2, 2, 2, 2, 2), or
X2 = S2(2, 2, 4, 4), or X3 = T (2). As above we have an exact sequence 1 → π1(Σ2) → π1(Xi) →
Z4 → 1, and for each branched point x of X , St(x) must inject into Z4.

For X1, π1(X1) = 〈a, b, c, d, e | abcde = 1, a2 = b2 = c2 = d2 = e2 = 1〉, each generator
corresponds to some branched point, and must be mapped to t2 in Z4 = 〈t | t4 = 1〉, which is
impossible, so there is no corresponding Z4 action.

For X3, π1(X3) = 〈a, b, u | aba−1b−1 = u, u2 = 1〉, u must be mapped to t2 in Z4 = 〈t | t4 =
1〉, which is impossible, so there is no corresponding Z4 action.

For X2, π1(X2) = 〈a, b, x, y | abxy = 1, a2 = b2 = x4 = y4 = 1〉, up to some permutation
of the bases, the only possible representation from π1(X2) to Z4 = 〈t | t4 = 1〉 is (a, b, x, y) �→
(t2, t2, t, t3), and hence this Z4 action is unique up to equivalence, denoted by ρ4.

Extendibility: From Figure 12, ρ4 can extend orientation-reversingly as a π
4 -rotation to-

gether with a reflection. Note that ρ4 has a fixed point. Suppose that ρ4 can extend orientation-
preservingly, and then by Lemma 2.1(4), the singular set of S3/ρ4 must be a circle of in-
dex 4. Therefore the index of singular points of X2 must also be 4, which contradicts that
X2 = S2(2, 2, 4, 4). So we have ρ4{−}.

(4−) classification: Consider the orbifolds X = Σ2/〈h2〉. From the discussion in (2+),
either X1 = S2(2, 2, 2, 2, 2, 2), or X2 = T 2(2, 2). By Lemma 2.1 (1), the orientation-reversing
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involution hi on Xi has no regular fixed point, so the orbifold Xi/Z2 = Σ2/Z4 is either a
projective plane with three index-2 branched points, denoted by Y1 = RP 2(2, 2, 2), or a Klein
bottle K with one index-2 branched point, denoted by Y2 = K(2).

Figure 12

For Y1, π1(Y1) = 〈x, a, b, c | abc = x2, a2 = b2 = c2 = 1〉, up to some permutation of the
bases, the possible representations from π1(Y1) to Z4 = 〈t | t4 = 1〉 are

(x, a, b, c) �→
{

(t, t2, t2, t2),
(t3, t2, t2, t2),

and an automorphism of Z4: t �→ t3 changes the two representations. Hence this Z4 action is
unique up to equivalent, and we denote it by τ4,1.

For Y2, π1(Y2) = 〈x, a, b | aba−1b = x, x2 = 1〉, the possible representations from π1(Y2) to
Z4 = 〈t | t4 = 1〉 are

(x, a, b) �→
{

(t2, ∗, t),
(t2, ∗, t3),

where ∗ means that a may be mapped to any element in Z4. Consider the automorphism of
π1(Y2) : (x, a, b) �→ (x, ab, b) and some automorphism of Z4, and all these representations are
equivalent. Hence this Z4 action is unique up to equivalent, and we denote it by τ4,2, whose
action on Σ2 is indicated in Figure 13.

Figure 13

Extendibility: In the embedding Σ2 ∈ S3 of Example 2.1, one can check directly that
Σ2/〈ρτ3

12〉 = RP 2(2, 2, 2), so τ4,1 can be the restriction of τ3
12. Therefore it has the extension

τ3
12 over S3, which is of type (−, +). It can also extend orientation-reversingly (see Figure 14).

So we have τ4,1{+,−}.
τ4,2 can not extend orientation-preservingly, otherwise, there will be an embedding of Klein

bottle K into |S3/Z4|. Here S3/Z4 has branched points, and it can not be a Z4-Len space, so
|S3/Z4| must be S3 or RP 3. But K can not embed into either S3 or RP 3 by Lemma 2.3.
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Figure 14

τ4,2 can not extend orientation-reversingly. By applying Dehn’s lemma, the orbifold X2

must bound a 3-orbifold Θ in S3/Z2, with |Θ| a solid torus. There is a proper branched arc L

of index 2 in Θ. It is easy to see χ(|Θ \ N(L)|) = −1, so h2| on |Θ \ N(L)| must have fixed
points. This means that h2 on Θ must have regular fixed points, which contradicts Lemma 2.1
(1). So we have τ4,2{∅}.

(5+) classfication: Now X = Σ2/Z5 is a closed orientable 2-orbifold, χ(X) = χ(Σ2)
5 = − 2

5 ,
and every branched point of X must has index 5. So X = S2(5, 5, 5). As above, we have an
exact sequence 1 → π1(Σ2) → π1(X) → Z5 → 1, and for each branched point x of X , St(x)
must be mapped isomorphically onto Z5.

Now π1(X) = 〈a, b, c | abc = 1, a5 = b5 = c5 = 1〉, and up to some permutation of the
bases, the possible surjections from π1(x) to Z5 = 〈t | t5 = 1〉 are

(a, b, c) �→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(t, t, t3),
(t, t2, t2),
(t3, t3, t4),
(t2, t4, t4).

Consider the automorphisms of Z5 : t �→ t2 and t �→ t4, and all these representations are
conjugate. Hence this Z5 action is unique up to conjugacy, and we denote it by ρ5, whose
action on Σ2 is indicated in Figure 21.

Extendibility: Suppose that ρ5 is extendable, and then the extension on (S3, Σ2) must be
of type (+, +), which contradicts Lemma 2.2, since the orbifold Σ2/〈ρ5〉 = S2(5, 5, 5) contains
three singular points. So we have ρ5{∅}.

(6+) classification: The orbifolds that correspond to the index-2 subgroup must be X =
(S2; 3, 3, 3, 3), as we see in (3+). Then orientation-preserving Z2 actions on X give the orbifold
X/Z2 = Σ2/Z6, which is either Y1 = S2(2, 2, 3, 3) or Y2 = S2(3, 6, 6).

For Y1, π1(Y1) = 〈a, b, x, y | abxy = 1, a2 = b2 = x3 = y3 = 1〉, up to some permutation
of the bases, the only possible representation from π1(Y1) to Z6 = 〈t | t6 = 1〉 is (a, b, x, y) �→
(t3, t3, t2, t4), so this Z6 action is unique up to equivalent, and we denote it by ρ6,1, whose action
on Σ2 is indicated in Figure 15.

Figure 15
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For Y2, π1(Y2) = 〈a, b, x | abx = 1, a6 = b6 = x3 = 1〉, the possible representations from
π1(Y2) to Z6 = 〈t | t6 = 1〉 are

(a, b, x) �→
{

(t, t, t4),
(t5, t5, t2).

Consider the automorphism of Z6: t �→ t5, and these representations are equivalent. Hence this
Z6 action is unique up to conjugacy, and we denote it by ρ6,2.

Extendibility: In the embedding Σ2 ⊂ S3 in Example 2.1, one can check directly that
Σ2/〈τ2

12〉 = S2(2, 2, 3, 3), so ρ6,1 can be the restriction of τ2
12, and therefore has the extension

τ2
12 over S3, which is of type (+, +).

ρ6,1 can not extend orientation-reversingly: Otherwise, the extension must be of type (+,−),
which must interchange two components of S3 \ Σ2. Denote by Θ1 and Θ2 the two 3-orbifolds
bounded by X = S2(3, 3, 3, 3), and {A, B, C, D} the four branched points on X . By applying
the Smith theory, we may suppose that two branched arcs in Θ1 are AB and CD, and that two
branched arcs in Θ2 are BC and DA (see Figure 16). Note that the induced involution ρ6,1 on
X is a π-rotation about two ordinary points, and interchanges Θ1 and Θ2. So ρ6,1(A) �= A. If
ρ6,1 interchanges A and B, ρ6,1 will keep the singular arc AB invariant; if ρ6,1 interchanges the
pair (A, B) and the pair (C, D), then ρ6,1 interchanges the singular arcs AB and CD. In either
case we would have ρ6,1(Θ1) = Θ1, which is a contradiction. So we have ρ6,1{+}.

A

B C

D

Θ1

Θ2

Figure 16

Since Σ2/〈ρ6,2〉 = S2(3, 6, 6) has three singular points, ρ6,2 can not extend to S3 in type
(+, +) by Lemma 2.2. In the embedding Σ2 ∈ S3 in Example 2.1, one can check that
Σ2/〈στ12〉 = S2(3, 6, 6), so ρ6,2 can be the restriction of στ12, and therefore has the exten-
sion στ12 over S3 which is of type (+,−). So we have ρ6,2{−}.

(6−) classification: Consider the orbifolds X = Σ2/〈h2〉 = (S2; 3, 3, 3, 3). The action of h

on X is either the antipodal map, corresponding to the orbifold Y1 = RP 2(3, 3), or a reflection
on a circle which contains no branched points, corresponding to the orbifold Y2 = D

2
(3, 3), a

disk with a reflection boundary and branched points (3, 3).
For Y1, π1(Y1) = 〈a, b, x | ab = x2, a3 = b3 = 1〉, the possible representations from π1(Y1) to

Z6 = 〈t | t6 = 1〉 are

(a, b, x) �→

⎧⎪⎨⎪⎩
(t2, t2, t2),
(t4, t4, t4),
(t2, t4, t3).

But the first two respresentations are not surjective, so only the third one is possible. Hence
this Z6 action is unique up to equivalent, and we denote it by τ6,1. An illustration of the
action τ6,1 on Σ2 is based on Figure 17: Denote the union of three tubes by its top and bottom
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boundary components by A, ∂A+ and ∂A−, and two 3-punctured 2-spheres by S+ and S−.
Then

Σ2 = S+ ∪∂S+=∂A+ A ∪∂S−=∂A− ∪S−,

where the identification ∂S+ = ∂A+ is given in the most obviously way, and the identifications
∂S− = ∂A− and ∂S+ = ∂A+ differ by π. Then τ6,1 restricted on each tube is an antipodal
map, and τ6,1 restricted to S+ ∪ S− is a reflection about the plane between them.

Figure 17

For Y2, π1(Y2) = 〈a, b, x, r | ab = x, r2 = 1, xr = rx, a3 = b3 = 1〉, the possible
representations from π1(Y1) to Z6 = 〈t | t6 = 1〉 are

(a, b, x, r) �→

⎧⎪⎨⎪⎩
(t2, t4, 1, t3),
(t2, t2, t4, t3),
(t4, t4, t2, t3).

Denote the first one by τ6,2. The second and third ones are equivalent by an automorphism of
Z6: t �→ t5, and we denote it by τ6,3, whose action on Σ2 is indicated in Figure 18: Joining two
disks with 3 bands, each with a half twist, then we get a surface F , which can be viewed as the
Seifert surface of the trefoil knot. Its neighborhood in S3 is V2

∼= F × [−1, 1]. Then the action
of τ6,3 on Σ2 − ∂V2 is the composition of a 2π

3 rotation and a reflection about F × {0}.

Figure 18
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Extendibility: Just applying a similar proof for the non-existence of ρ6,1{−}, we can show
that τ6,1, τ6,2 and τ6,3 can not extend orientation-preservingly.

τ6,1 can not extend orientation-reversingly, otherwise τ6,1 acts on (S3, Σ2) in the type (−,−).
Since Y1 = RP 2(3, 3), the Z2-action τ3

6,1 has no fixed point on Σ2, so fix(τ3
6,1) on S3 contains

two points {x, y} by Theorem 2.1. Since τ2
6,1(x) must be a fixed point of τ3

6,1 and τ2
6,1 is of order

3, we must have τ2
6,1(x) = x, and then τ6,1(x) = x. Hence the branched set S3/〈τ2

6,1〉 is a circle
C of index 3 and |S3/〈τ2

6,1〉| = S3. Denote by Θ a 3-orbifold bounded by X = S2(3, 3, 3, 3)
containing x, the image of x. Then |Θ| = D3 and Θ ∩ C is in two branched arcs of index 3.
But the orientation revering involution τ6,1 on (Θ, X) is the antipodal map, and hence x is the
only fixed point of τ6,1 on Θ. Clearly x ∈ Θ ∩ C, so τ6,1 keeps each arc of Θ ∩ C invariant.
Therefore τ6,1 on Θ has at least two fixed points, which is a contradiction. So we have τ6,1{∅}.

In the embedding Σ2 ∈ S3 in Example 2.1, one can check that Σ2/〈στ4
12〉 = D

2
(3, 3), so

τ6,2 can be the restriction of στ4
12. Therefore it has the extension στ4

12 over S3 which is of type
(−,−). So we have τ6,2{−}.

τ6,3 can not extend orientation-reversingly. Otherwise τ6,3 acts on (S3, Σ2) in the type
(−,−). Now fix(τ3

6,3) ∩ Σ2 is a separating circle C. fix(τ3
6,3) = S2 ⊂ S3. Let Σ2\C = Σ+ ∪ Σ−

and S2\C = D+ ∪ D−. So the Z3-action τ2
6,3 on Σ+ ∪ D+

∼= T is an extendable action. But
the orbifold T/Z3 = (S2; 3, 3, 3), which can not embed in S3/〈τ2

6,3〉 by Lemma 2.2. So we have
τ6,3{∅}.

(7+) classification: Now X = Σ2/Z7 is a closed orientable 2-orbifold with χ(X) = χ(Σ2)
7 =

− 2
7 , and every branched point of X must be of index 7. There is no such orbifold.
(8+) classification: Consider the orbifolds X = Σ2/〈h2〉 = (S2; 2, 2, 4, 4). Let Y = Σ2/Z8 =

X/Z2, and then Y is either Y1 = (S2; 2, 2, 2, 4), or Y2 = (S2; 4, 4, 4), or Y3 = (S2; 2, 8, 8).
For Y1, π1(Y1) = 〈a, b, c, x | abcx = 1, a2 = b2 = c2 = x4 = 1〉, there exists no surjection

π1(Y1) → Z8, so there is no corresponding Z8 action.
For Y2, π1(Y2) = 〈a, b, c | abc = 1, a4 = b4 = c4 = 1〉, there exists no surjection π1(Y2) → Z8,

so there is no corresponding Z8 action.
For Y3, π1(Y3) = 〈a, b, x | abx = 1, a8 = b8 = x2 = 1〉, the possible surjections from π1(Y3)

to Z8 = 〈t | t8 = 1〉 are

(a, b, x) �→
{

(t, t3, t4),
(t5, t7, t4).

Consider the automorphism of Z8: t �→ t5, and these representations are equivalent. Hence this
Z8 action is unique up to equivalent, and we denote it by ρ8, whose action on Σ2 is indicated
in Figure 19.

Figure 19

Extendibility: Note ρ2
8 = ρ4. If either ρ8(+) or ρ8(−) exists, we have ρ4(+), which contra-

dicts ρ4{∅}. So we have ρ8{∅}.



178 Y. Guo, C. Wang, S. C. Wang and Y. M. Zhang

(8−) classification: Consider the orbifolds X = Σ2/〈h2〉 = (S2; 2, 2, 4, 4). By Lemma 2.3 (1),
h on X has no regular fixed points on X , so it must be an antipodal map. Therefore Y = X/Z2

must be (RP 2; 2, 4). π1(Y ) = 〈a, b, x | ab = x2, a2 = b4 = 1〉, and the possible representations
from π1(Y ) to Z8 = 〈t | t8 = 1〉 are

(a, b, x) �→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(t4, t2, t3),
(t4, t2, t7),
(t4, t6, t5),
(t4, t6, t).

Consider the automorphisms of Z8 : t �→ t5 and t �→ t7, and all these representations are
equivalent. Hence this Z8 action is unique up to equivalent, and we denote it by τ8, whose
action on Σ2 is indicated in Figure 20.

Figure 20

Extendibility: Still we have τ2
8 = ρ4. The same reason used in (8+) shows τ8{∅}.

(9+) classification: First consider the Z3 subgroup orbifold X . As we see in 3+, X =
S2(3, 3, 3, 3). The only possible orbifold Y = X/Z3 is S2(3, 3, 9). But its fundamental group
can not surjectively map onto Z9. So there is no such action.

(10+) classification: As we see in (5+), the orbifolds X = Σ2/〈h2〉 = S2(5, 5, 5). Let
Y = Σ2/Z10 = X/Z2, and then Y = S2(2, 5, 10). π1(Y ) = 〈a, b, c | abc = 1, a2 = b5 = c10 = 1〉,
and the possible representations from π1(Y ) to Z10 = 〈t | t10 = 1〉 are

(a, b, c) �→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(t5, t2, t3),
(t5, t4, t),
(t5, t6, t9),
(t5, t8, t7).

Consider the automorphism of Z10 : t �→ t3 and t �→ t7, and all these representations are
equivalent. Hence this Z10 action is unique up to conjugacy, and we denote it by ρ10, whose
action on Σ2 is indicated in Figure 21 (see [12] for detailed descriptions).

Figure 21
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Extendibility: Since ρ2
10 = ρ5, the same reason used in (8+) shows ρ10{∅}.

(10−) classification: Consider the orbifolds X = Σ2/〈h2〉 = S2(5, 5, 5). By symmetric
consideration, h can not be an antipodal map, since there are exactly three singular points
of index 5, and h also can not be a reflection about a circle, since such a circle must pass a
branched point of index 5, which contradicts Lemma 2.1(2).

(11+) classification: Now X = Σ2/Z11 is a closed orientable 2-orbifold χ(X) = χ(Σ2)
11 = − 2

11 ,
and every branched point of X must be of index 11. There is no such orbifold.

(12+) classification: First consider the Z6 subgroup orbifold X . X is either X1 = S2(2, 2, 3, 3)
or X2 = S2(3, 6, 6) as we see in (6+). So Y = X/Z2 is either Y1 = (S2; 3, 4, 4), or Y2 =
(S2; 2, 6, 6), or Y3 = (S2; 2, 2, 2, 3), and none of these fundamental groups has surjection onto
Z12, so there is no orientation-preserving actions of Z12.

(12−) classification: Still the Z6 subgroup orbifold will be either X1 = (S2; 2, 2, 3, 3) or
X2 = (S2; 3, 6, 6). The orientation-reversing Z2-action on X can not have regular fixed points,
so it must be an antipodal map. So only X1 is possible and Y = X1/Z2 = (RP 2; 2, 3).
π1(Y ) = 〈a, b, x | ab = x2, a2 = b3 = 1〉, and the possible representations from π1(Y ) to
Z12 = 〈t | t12 = 1〉 are

(a, b, x) �→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(t6, t4, t5),
(t6, t4, t11),
(t6, t8, t7),
(t6, t8, t).

Consider the automorphisms of Z12 : t �→ t5 and t �→ t7, and all these representations are
equivalent. Hence this Z12 action is unique up to equivalent, which is the τ12 in Example 2.1.

Extendibility: τ12 can not extend orientation reversely. Otherwise τ12 acts on each com-
ponent of S3 \ Σ2. Denote by Θ1 and Θ2 the two 3-orbifolds bounded by X = (S2; 2, 2, 3, 3),
and then each Θi has two singular arcs of index 2 and index 3 respectively. We may assume
|Θ1| = B3 and the induced orientation reversing involution τ12 acts on each Θi. Hence τ12

on |Θ1| must be a reflection about an equator disc, which has a regular fixed point, and this
contradicts Lemma 2.1(1). From Example 2.5, we have τ12{+}.
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