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Abstract This paper deals with the s-reflexive spaces introduced by Yang and Zhao. The
authors prove that every s-reflexive Hausdorff space is zero-dimensional, and indicate a
close relationship between the theory of s-reflexive spaces and that of continuous selections.
Several examples relating to s-reflexivity are given.
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1 Introduction

The notion of a reflexive family of sets originated in research on the invariant subspace
problem in functional analysis (see [8, 19–21]). In [19], Yang and Zhao introduced the s-
reflexive spaces in which reflexive families can be characterized in a simple way. Let X be a
topological space. Denote by 2X and by F(X), respectively, the family of all subsets and the
family of all nonempty closed subsets of X . Let C(X, X) be the set of all continuous mappings
X → X .

For all A ⊂ 2X and B ⊂ C(X, X), let

AlgX(A) = {f ∈ C(X, X) : f(A) ⊂ A for every A ∈ A} ,

LatX(B) = {A ∈ 2X : A is closed and f(A) ⊂ A for every f ∈ B}.

When there is no possibility of confusion, we write Alg(A) and Lat(B) instead of AlgX(A) and
LatX(B).

Note that A ⊂ Lat(Alg(A)) for every closed family A. A closed family A is called reflexive
if A = Lat(Alg(A)) (see [19]). As pointed out in [21], a closed family A is reflexive if and only
if A = Lat(B) for some B ⊂ C(X, X).

Lemma 1.1 (see [19]) Let A be a reflexive closed family. Then
(a) X, ∅ ∈ A.
(b) B ⊂ A implies ∩B ∈ A.
(c) B ⊂ A implies ∪B ∈ A.
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Definition 1.1 (see [19–20]) A family A of closed subsets of a topological space X is a
closed set lattice (briefly, a cs-lattice) if it satisfies the conditions (a)–(c) in Lemma 1.1. The
space X is s-reflexive if every cs-lattice in X is reflexive.

In [19], Yang and Zhao showed that every s-reflexive Hausdorff space is hereditarily dis-
connected, and they proved that all strongly zero-dimensional complete metric spaces and all
countable metric spaces are s-reflexive.

In Section 2 below, we introduce the concept of a csl-carrier on a topological space, and
we characterize s-reflexive spaces in terms of properties of csl-carriers. Some basic properties
of s-reflexive spaces are obtained in this section. In particular, we prove that every s-reflexive
Hausdorff space is zero-dimensional; this strengthens the result of Yang and Zhao mentioned
above. In [20, Proposition 1], Yang and Zhao characterized reflexivity of cs-lattices by the exis-
tence of certain continuous selections. In Section 3, we study connections between s-reflexivity
and the existence of continuous selections. We call a space X “self-selective” if every lower
semi-continuous carrier Φ : X → F(X) has a continuous selection. We show that X ⊕ X is
s-reflexive whenever X is self-selective and T1. For an ultraparacompact space X , the converse
obtains: If X ⊕ X is s-reflexive, then X is self-selective. In Section 4, we consider s-reflexivity
of metrizable spaces. We show that some well-known selection theorems by E. Michael can
be used to derive sufficient conditions for s-reflexivity of (locally) metrizable spaces. We raise
the question whether every metrizable s-reflexive space is either completely metrizable or σ-
discrete. As a partial answer to this question, we show that an s-reflexive absolutely Borel
separable metrizable space is either completely metrizable or countable. In Section 5, we give
examples on s-reflexive spaces, for instance, we describe a normal s-reflexive space which is not
strongly zero-dimensional. We show that a dyadic space is s-reflexive if and only if the space
is zero-dimensional and metrizable. We also indicate some open problems; some of them are
essentially problems on continuous selections.

We denote the set of all rational numbers by Q and the set of all positive integers by N.

2 On s-Reflexive Spaces

A carrier between spaces X and Y is a mapping Φ : X → 2Y such that Φ(x) 
= ∅ for every
x ∈ X . For a carrier Φ : X → 2Y , set Φ[A] = ∪Φ(A) for every A ⊂ X . A carrier Φ : X → 2Y

is closed-valued if Φ(x) is closed in Y for every x ∈ X , and Φ is lower semi-continuous (briefly,
lsc) if the set {x ∈ X : R{x} ∩ G 
= ∅} is open for every open G ⊂ Y . It is well known that a
carrier Φ : X → 2Y is lsc if and only if Φ

[
A

] ⊂ Φ[A] for every A ⊂ X . A (continuous) selection
of a carrier Φ : X → 2Y is a (continuous) mapping f : X → Y such that f(x) ∈ Φ(x) for each
x ∈ X . We denote by Sel(Φ) the set of all continuous selections of a carrier Φ.

In this paper, we deal with carriers X → 2Y mainly in the situation where X = Y . A
carrier Φ : X → 2X is called a carrier on X . For many purposes, it would be more convenient
to represent carriers on X as (binary) relations on X , but we shall not do this because in the
theory of continuous selections, carriers are almost always considered as set-valued mappings.
Instead, we adopt some terminologies from the theory of relations for carriers on a space. We
say that a carrier Φ on a space X is reflexive if x ∈ Φ(x) for every x ∈ X , and Φ is transitive
if y ∈ Φ(x) implies Φ(y) ⊂ Φ(x) for all x, y ∈ X .

Let L be a family of subsets of a space X . We define a carrier ΔL on X by the formula
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ΔL(x) = ∩(L)x, where (L)x = {A ∈ L : x ∈ A}. Note that a carrier Φ on X has the form
ΔL for some L ⊂ 2X if and only if Φ is reflexive and transitive (we agree that ∩N = X when
N = ∅).

Apart from notation, the following is essentially (see [20, Lemma 7]).

Lemma 2.1 (see [20]) For every L ⊂ 2X , we have Sel(ΔL) = Alg(L).

We say that a carrier Φ on a space X is a csl-carrier provided that there exists a cs-lattice
A in X such that Φ = ΔA.

Lemma 2.2 A carrier Φ on a space X is a csl-carrier if and only if Φ is reflexive,
transitive, closed-valued and lsc.

Proof Necessity. Suppose that Φ is a csl-carrier on X . Then Φ is obviously reflexive,
transitive and closed-valued. By [19, Lemma 4], Φ is lsc.

Sufficiency. Suppose that a carrier Φ on X is reflexive, transitive, closed-valued and lsc.
Let A = {A ∈ 2X : A is closed and Φ[A] ⊂ A}. Clearly ∅, X ∈ A. Let B ⊂ A. Then we
have Φ[∩B] ⊂ ∩{Φ[B] : B ∈ B} ⊂ ∩B, and thus ∩B ∈ A. Moreover, ∪B ∈ A, because
Φ

[∪B] ⊂ Φ[∪B] = ∪{Φ[B] : B ∈ B} ⊂ ∪B. We have shown that A is a cs-lattice. Let x ∈ X .
Note that Φ(x) ∈ A because Φ is transitive. Thus ∩(A)x ⊂ Φ(x). Moreover, Φ(x) ⊂ Φ[A] ⊂ A

for every A ∈ (A)x. Therefore ∩(A)x = Φ(x). By the foregoing, Φ = ΔA.

Note that if F is a closure-preserving family of closed subsets of X , then ΔF is a csl-carrier.
By the proof of sufficiency for the above lemma, we have the following result.

Lemma 2.3 Let Φ be a csl-carrier on a space X. Then the family A = {A ⊂ X :
A is closed and Φ[A] ⊂ A} is a cs-lattice and Φ = ΔA.

By [20, Proposition 1], the following result obtains.

Proposition 2.1 (see [20]) A space X is s-reflexive if and only if for every csl-carrier Φ
on X, we have {f(x) : f ∈ Sel(Φ)} = Φ(x) for each x ∈ X.

For T1-spaces, we can characterize s-reflexivity by a simpler condition.

Proposition 2.2 A T1-space X is s-reflexive if and only if for every csl-carrier Φ on X,
we have {f(x) : f ∈ Sel(Φ)} = Φ(x) for each x ∈ X.

Proof By Proposition 2.1, we only need to show the necessity. Assume that X is an s-
reflexive T1-space and Φ is a csl-carrier on X . Let x ∈ X and y ∈ Φ(x). We show that there
exists f ∈ Sel(Φ) such that f(x) = y. If y = x, then idX ∈ Sel(Φ) and idX(x) = y. Assume that
y 
= x. Define a carrier Ψ ⊂ X × X by setting Ψ(x) = {x, y}, Ψ(y) = {y} and Ψ(z) = Φ(z) for
each z 
∈ {x, y}. It is easy to see that Ψ is a csl-carrier on X . The set {y} = Ψ(x)\{x} is open
in Ψ(x) and it follows, by Proposition 2.1, that there exists f ∈ Sel(Ψ) such that f(x) = y.
Since Ψ(z) ⊂ Φ(z) for every z, we have f ∈ Sel(Φ).

In [14, Proposition 2.2], it is observed that a carrier Φ : X → 2Y is lsc provided that
{f(x) : f ∈ Sel(Φ)} = Φ(x) for every x ∈ X (see also [17, Theorem 0.44]).

For zero-dimensional spaces, we can weaken the condition characterizing s-reflexivity in
Proposition 2.2.
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Proposition 2.3 A zero-dimensional space X is s-reflexive provided that for each csl-
carrier Φ on X and for all non-isolated points x, y ∈ X with y ∈ Φ(x), there exists f ∈ Sel(Φ)
such that f(x) = y.

Proof Assume that the stated condition holds. Let Φ be a csl-carrier on X , and let x, y ∈ X

be such that y ∈ Φ(x). We show that there exists f ∈ Sel(Φ) with f(x) = y. If x is isolated,
we can define f by setting f(x) = y and f(z) = z for z 
= x. If y is isolated, then the set
{z ∈ X : y ∈ Φ(z)} is open. Since X is zero-dimensional, there is a clopen neighborhood U of
x such that U ⊂ {z ∈ X : y ∈ Φ(z)}. In this case we can define f by setting f(z) = y for z ∈ U

and f(z) = z for z 
∈ U . We have shown that the condition in Proposition 2.2 is satisfied. By
Proposition 2.1, the space X is s-reflexive.

Since every space with at most one non-isolated point is zero-dimensional, we have the
following consequence of Proposition 2.3.

Corollary 2.1 A T1-space with at most one non-isolated point is s-reflexive.

Remarks 2.1 (1) Example 5.5 below shows that a regular space with only two non-isolated
points can fail to be s-reflexive.

(2) Example 5.2 shows that the T1-axiom in Corollary 2.1 can not be omitted.

We shall later give examples to show that s-reflexivity is not a hereditary property. Our
next result shows that s-reflexivity is closed-hereditary.

Proposition 2.4 A closed subspace of an s-reflexive space is s-reflexive.

Proof Let S be a closed subspace of an s-reflexive space X , and let Φ be a csl-carrier on
S. Define a carrier Ψ on X by setting Ψ(x) = Φ(x) for x ∈ S and Ψ(x) = X for x ∈ X\S.
Then Ψ is a csl-carrier on X . Let x ∈ S. By Proposition 2.1, we have {f(x) : f ∈ Sel(Ψ)} =
Ψ(x). Note that for every f ∈ Sel(Ψ), we have f |S ∈ Sel(Φ). As a consequence, we have
{g(x) : g ∈ Sel(Φ)} = Φ(x). By Proposition 2.1, the space S is s-reflexive.

Proposition 2.5 Let X be a space such that, for all a, b ∈ X, there exists a clopen
s-reflexive G ⊂ X with a, b ∈ G. Then X is s-reflexive.

Proof Let Φ be a csl-carrier on X and let a ∈ X . By Proposition 2.1, we only need to
show that {f(a) : f ∈ Sel(Φ)} is dense in Φ(a). Let b ∈ Φ(a) and let U be a neighborhood of
b. There exists a clopen s-reflexive G ⊂ X such that a, b ∈ G. Define a carrier Ψ on G by
setting Ψ(x) = Φ(x) ∩ G for x ∈ G. Then Ψ is a csl-carrier. By Proposition 2.1, there exists
g ∈ Sel(Φ) such that g(a) ∈ U . Define a mapping f : X → X by setting f(x) = g(x) for x ∈ G

and f(x) = x for x ∈ X\G. Then f ∈ Sel(Φ) and f(a) = g(a) ∈ U .

In [19, Example 1], Yang and Zhao showed that a space is s-reflexive provided that the
topology of the space is either indiscrete or cofinite. It follows that an s-reflexive space is not
necessarily T0 and an s-reflexive T1-space is not necessarily Hausdorff. Example 5.1 below shows
that an s-reflexive T0-space may fail to be T1, Example 5.3 shows that a regular s-reflexive space
may fail to be normal, and Example 5.10 shows that a normal s-reflexive space may fail to be
paracompact.

Next we shall prove that every s-reflexive Hausdorff space is zero-dimensional. As a conse-
quence, s-reflexive Hausdorff spaces are regular.
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Lemma 2.4 Let F be a nonempty closed subset of an s-reflexive T1-space X and let
p ∈ X\F . Then there exists a retraction f of X such that p 
∈ f(X) and F ⊂ f(X). If p has a
non-dense neighborhood, then we can choose f so that the set f(X) is clopen.

Proof Let a ∈ F . Define a carrier Φ on X by setting Φ(x) = {x} for x ∈ F and
Φ(x) = {x, a} for x ∈ X\F . Note that Φ is a csl-carrier and Φ(p) = {p, a}. By Proposition 2.2,
there exists f ∈ Sel(Φ) such that f(p) = a. The mapping f is a retraction, because for each
x ∈ X , either f(x) = x or f(x) = a. Moreover, F ⊂ f(X) and p 
∈ f(X).

Assume that p has a non-dense open neighborhood G. Then F ′ = F ∪ (X\G) is a closed set
with non-empty interior and p 
∈ F ′. Let a ∈ IntF ′. As above, there exists a retraction f on X

such that F ′ ⊂ f(X), p 
∈ f(X) and for each x ∈ X , either f(x) = x or f(x) = a. We show that
f(X) is clopen. Let U = f−1(IntF ′) and note that U is open and U = (X\f(X))∪(IntF ′). We
have that X\f(X) = U\F ′ and hence X\f(X) is open and f(X) is closed. On the other hand,
f(X) = (IntF ′) ∪ f−1(X\{a}) and hence f(X) is open. As a consequence, f(X) is clopen.

Corollary 2.2 Let F be a nonempty closed subset of an s-reflexive Hausdorff space X

and let p ∈ X\F . Then there exists a retraction f of X such that p 
∈ f(X), F ⊂ f(X) and the
set f(X) is clopen.

It follows from the above result that s-reflexive Hausdorff spaces have “many” retracts.

Corollary 2.3 In an s-reflexive Hausdorff space, every closed subset is an intersection of
clopen retracts.

Corollary 2.4 Every s-reflexive Hausdorff space is zero-dimensional.

An infinite space with cofinite topology is s-reflexive and T1, but not zero-dimensional.
Example 5.4 below shows that a normal s-reflexive space is not necessarily strongly zero-
dimensional.

3 Strongly s-Reflexive Spaces and Self-selective Spaces

In this section, we consider the relationship between the theory of s-reflexive spaces and
that of continuous selections.

We call a space X self-selective if every lsc carrier X → F(X) has a continuous selection.
In the next section, we shall indicate some classes of self-selective spaces.

A space X is retractifiable (see [3]), if every nonempty closed subset of X is a retract. Every
retractifiable space is strongly zero-dimensional and hereditarily collectionwise normal (see [3]).
It is easy to see that every self-selective T1-space X is retractifiable (see [14, Corollary 1.5]).
Example 5.10 below gives a simple example of a retractifiable space which is not self-selective.

We call a space X strongly s-reflexive if the topological sum X ⊕ X is s-reflexive. Every
strongly s-reflexive space is s-reflexive, but the converse does not hold, as we shall see in Section
4. It follows from Proposition 2.5 that if a space X is strongly s-reflexive, then X × D is s-
reflexive for every discrete space D.

The following result indicates a connection between self-selective spaces and strongly s-
reflexive spaces.

Proposition 3.1 Every self-selective T1-space is strongly s-reflexive.
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Proof Let X be a self-selective T1-space. The topological sum X ⊕ X is homeomorphic
with the space Y = X × {0, 1}, where {0, 1} is discrete. Set X0 = X × {0} and X1 = X × {1}.
Let Φ be a csl-carrier on Y , and let a ∈ Y . To show that {f(a) : f ∈ Sel(Φ)} = Φ(a), let
b ∈ Φ(a). We have to show that there exists f ∈ Sel(Φ) such that f(a) = b.

Without loss of generality, we can assume that a ∈ X0. Define j ∈ {0, 1} by the condition
b ∈ Xj. Since Φ is lsc and X is zero-dimensional, there exists a clopen subset U of X0 such
that a ∈ U ⊂ {p ∈ X0 : Φ(p) ∩ Xj 
= ∅}. Define a carrier Ψ : X0 → F(Xj) by setting

Ψ(p) =

⎧⎨
⎩
{b}, p = a,
Φ(p) ∩ Xj, p ∈ U\{a},
{p}, p ∈ X0\U.

It is easy to check that Ψ is lsc. Since X0 and Xj are both homeomorphic to the self-
selective space X , there exists g ∈ Sel(Ψ). Define f : Y → Y by setting f(p) = g(p) for p ∈ U

and f(p) = p for p ∈ Y \U . Then f ∈ Sel(Φ) and f(a) = b. It follows from the foregoing by
Proposition 2.2 that Y is s-reflexive.

Example 5.4 below shows that not all strongly s-reflexive spaces are retractifiable, and
Example 5.7 below shows that not all retractifiable spaces are s-reflexive. The following diagram
summarizes the relationships between the previous properties in the class of Hausdorff spaces.

self-selective ⇒ strongly s-reflexive ⇒ s-reflexive
⇓ ⇓

retractifable ⇒ strongly zero-dimensional ⇒ zero-dimensional

Next we shall indicate a situation in which strong s-reflexivity is equivalent to self-selectivity.
Recall that a topological space is ultraparacompact if every open cover of the space has a

disjoint clopen refinement. A Hausdorff space is ultraparacompact if and only if the space is
paracompact and strongly zero-dimensional.

Proposition 3.2 Let X and Y be T1-spaces. If X is ultraparacompact and X ⊕ Y is
s-reflexive, then every lsc carrier X → F(Y ) has a continuous selection.

Proof We assume that X and Y have no common points. Let Φ : X → F(Y ) be an
lsc carrier. Define a carrier Ψ on the space Z=X ⊕ Y by setting Ψ(z) = {z} ∪ Φ(z) for each
z ∈ X and Ψ(z) = {z} for each z ∈ Y . To see that Ψ is a csl-carrier, it suffices to show that
Ψ

[
A

] ⊂ Ψ[A] for every A ⊂ X ⊕ Y . Let A ⊂ X ⊕ Y , and set A1 = A ∩ X and A2 = A ∩ Y .
Then

Ψ
[
A

]
= Ψ

[
A1 ∪ A2

]
= Ψ

[
A1

] ∪ Ψ
[
A2

]
= A1 ∪ Φ

[
A1

] ∪ A2

⊂ A1 ∪ Φ[A1] ∪ A2 = A1 ∪ Φ[A1] ∪ A2 = Ψ[A1] ∪ Ψ[A2]

= Ψ[A1] ∪ Ψ[A2] = Ψ[A].

Let x ∈ X . Pick yx ∈ Φ(x), and note that yx ∈ Ψ(x). By Proposition 2.2, there exists
fx ∈ Sel(Ψ) such that fx(x) = yx. Let Ux = f−1

x (Y )∩X . Note that Ux is an open neighborhood
of x in X and fx|Ux is a continuous mapping Ux → Y with fx(z) ∈ Φ(z) for each z ∈ Ux. Let
V be a disjoint clopen refinement of the open cover {Ux : x ∈ X} of X . For each V ∈ V , let
pV ∈ X such that V ⊂ UpV . Define f : X → Y by the condition that f(x) = fpV (x) when
x ∈ V ∈ V . It is easy to check that f ∈ Sel(Φ).



On s-Reflexive Spaces and Continuous Selections 187

Corollary 3.1 Every ultraparacompact strongly s-reflexive T1-space is self-selective.

Problem 3.1 Is every self-selective space paracompact?

V. Gutev obtained a partial solution to the above problem. An argument from Gutev’s
proof establishes the following result.

Lemma 3.1 Let X be a self-selective space, D a closed discrete subset of X and {Ud : d ∈
D} an open cover of X such that d ∈ Ud for every d ∈ D. Then there exists an open partition
{Gd : d ∈ D} of X such that d ∈ Gd ⊂ Ud for each d ∈ D.

Proof For every d ∈ D, let Vd = Ud\(D\{d}). Note that {Vd : d ∈ D} is an open cover of
X . Define a carrier Φ : X → F(X) by setting Φ(x) = {d ∈ D : x ∈ Vd}. The carrier Φ is lsc,
because {x ∈ X : Φ(x)∩L 
= ∅} = ∪{Vd : d ∈ D∩L} for every L ⊂ X . Since X is self-selective,
there exists f ∈ Sel(Φ). Note that f is a continuous mapping from X to the discrete subspace
D. It follows that the family G =

{
f−1{d} : d ∈ D

}
is an open partition of X . Moreover, we

have d ∈ f−1{d} ⊂ Vd ⊂ Ud for every d ∈ D.

Proposition 3.3 (see [6]) Every self-selective T1-space is countably paracompact.

Proof Let {Un : n ∈ N} be an open cover of a self-selective T1-space X . Set A = {n ∈
N : Un 
⊂ ⋃

i<n

Ui}, and note that the family {Un : n ∈ A} covers X . For every n ∈ A, let

dn ∈ Un\
⋃

i<n

Ui. Note that the set D = {dn : n ∈ A} is closed and discrete in X . By Lemma

3.1, there exists an open partition {Gn : n ∈ A} of X such that Gn ⊂ Un for every n ∈ A.

We shall give another application of Lemma 3.1.
A cover L of a set L is a minimal cover of L if no proper subfamily of L covers L. A

topological space X is irreducible if every open cover of X has a minimal open refinement. For
background on irreducible spaces, see [2]. We only mention here that irreducibility is a rather
weak covering property, and it is implied by such better known properties as submetacompact-
ness and van Douwen’s D-space property.

Proposition 3.4 Every irreducible self-selective T1-space is paracompact.

Proof Let U be an open cover of an irreducible self-selective T1-space X . Let V be a
minimal open refinement of U . For every V ∈ V , the family V\{V } fails to cover X , and hence
there exists a point dV ∈ V \(V\{V }). Note that the set D = {dV : V ∈ V} is closed and
discrete in X . By Lemma 3.1, there exists an open partition {GV : V ∈ V} of X such that
GV ⊂ V for every V ∈ V .

Remark 3.1 The above result remains valid without the T1-assumption.

We give one more partial solution to Problem 3.1.
A space X is called monotonically normal (see [10]) if for each pair of disjoint closed subsets

(A, B), there is an open set G(A, B) with the properties A ⊂ G(A, B) ⊂ G(A, B) ⊂ (X\B) and
G(A, B) ⊂ G(A′, B′), whenever A ⊂ A′ and B′ ⊂ B.

Proposition 3.5 Every monotonically normal self-selective T1-space is paracompact.

Proof Let X be a monotonically normal self-selective T1-space. By Proposition 3.1, X is
s-reflexive. It follows from Proposition 2.4 and Example 5.9 that X contains no closed subspace
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homeomorphic with a stationary subset of a regular uncountable ordinal. Paracompactness of
X now follows from the famous Balogh-Rudin theorem (see [1, Theorem I]) on paracompactness
of monotonically normal spaces.

4 On s-Reflexivity of Metrizable Spaces

We can use results from the theory of selections to study s-reflexivity of metrizable spaces.
The following two classical selection theorems of Michael are especially useful for this purpose.

Zero-Dimensional Selection Theorem (see [15]) Let X be a strongly zero-dimensional
paracompact space and Y be a completely metrizable space. Then every lsc carrier X → F(Y )
has a continuous selection.

Recall that a space X is σ-discrete (Fσ-discrete) if X is the union of countably many (closed
and) discrete subsets. In a metrizable space, these two properties are mutually equivalent.

Fσ-Discrete Selection Theorem (see [16]) Let X be an Fσ-discrete paracompact Haus-
dorff space and Y be a first-countable space. Then every lsc carrier X → F(Y ) has a continuous
selection.

Note that it follows from the two selection theorems above that all strongly zero-dimensional
completely metrizable spaces and all σ-discrete metrizable spaces are self-selective.

In light of Proposition 2.5, Proposition 3.1 and the fact that every locally zero-dimensional
T3-space is zero-dimensional, the following is a direct consequence of the two selection theorems
mentioned above.

Theorem 4.1 A T3-space X is strongly s-reflexive provided that one of the following con-
ditions holds:

(A) Every point of X has a neighborhood which is strongly zero-dimensional and completely
metrizable.

(B) Every point of X has a neighborhood which is σ-discrete and metrizable.

Corollary 4.1 (see [19]) (1) Every countable metrizable space is s-reflexive.
(2) Every strongly zero-dimensional completely metrizable space is s-reflexive.

We do not know if there are any other metrizable s-reflexive spaces except those provided
by Michael’s theorems.

Problem 4.1 Is every s-reflexive metrizable space either completely metrizable or σ-
discrete?

By Corollary 2.4, zero-dimensionality is a necessary condition for a metrizable space to be
s-reflexive. We shall now show that some of the simplest zero-dimensional non-complete and
non-σ-discrete metrizable spaces fail to be s-reflexive.

Example 4.1 The spaces 2ω ⊕ Q, 2ω × Q and Qω are not s-reflexive.

Proof By [7, Theorem 1], there exists an lsc carrier Φ : 2ω → F(Q) without a continuous
selection. It follows from Theorem 3.2 that 2ω ⊕ Q is not s-reflexive. Note that both 2ω × Q

and Qω contain a closed copy of 2ω ⊕ Q. Thus neither of these spaces is s-reflexive.
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Remarks 4.1 (1) The non-s-reflexive space 2ω⊕Q is σ-compact, zero-dimensional, metriz-
able and locally s-reflexive. The space 2ω ⊕ Q can be embedded in the space 2ω ⊕ 2ω and this
space is s-reflexive by Corollary 4.1. This shows that s-reflexivity is not a hereditary property.

(2) It is claimed in [17, Theorem 5.47] that if X is a strongly zero-dimensional GO-space
and Y is a GO-space, then every lsc carrier Φ : X → F(Y ) has a continuous selection. However,
with X = Y = 2ω ⊕ Q we have a counterexample, since 2ω ⊕ Q is linearly orderable.

We have a partial solution to Problem 4.1.

Proposition 4.1 Let X be an absolutely Borel separable metrizable space. If X is s-
reflexive, then X is either completely metrizable or countable.

Proof Let X be an absolutely Borel separable metrizable space. Suppose that X is not
completely metrizable. It follows from the classical Hurewicz theorem (see [11]) that X contains
a closed subspace A homeomorphic to Q. Suppose also that X is uncountable. It follows from
a result of Souslin (see [12, Theorem 94]) that X contains a subspace B homeomorphic to the
Cantor set 2ω. Since A is closed, we have that A\B 
= ∅. It follows that there exists a closed
set A′ ⊂ A\B such that A′ is homeomorphic to Q. As a consequence, X contains a closed copy
of 2ω ⊕ Q. By Proposition 2.4 and Example 4.1, X is not s-reflexive.

Results in [13] show that it is consistent with ZFC that an analytic metrizable space contains
a closed copy of Q provided that the space is not completely metrizable. Similarly as in the
proof of Proposition 4.1, we can then obtain the following consistency result.

Proposition 4.2 It is consistent with ZFC that every s-reflexive analytic metrizable space
is either completely metrizable or countable.

Problems 4.2 (1) Is every Fσ-discrete, first-countable regular space s-reflexive?
(2) Is every zero-dimensional completely metrizable space s-reflexive?

5 Examples

Example 5.1 Every two-point space is s-reflexive.

Proof Let X = {a, b} and let Φ be a csl-carrier on X with b ∈ Φ(a). Then the constant
mapping f : X → {b} is a continuous selection for Φ with f(a) = b. By Proposition 2.1, we see
that X is s-reflexive.

Example 5.2 There exists a T0-space with three points, which is not s-reflexive.

Proof Let X = {a, b, c} with the topology {∅, {a}, {b}, {a, b}, {a, c},X}. Define a carrier
Φ on X by setting Φ(a) = X , Φ(b) = {b} and Φ(c) = {c}. Then Φ is a csl-carrier. Note that Φ
has no continuous selection f with f(a) = b. By Proposition 2.1, X is not s-reflexive.

Example 5.3 There exists a strongly s-reflexive separable regular space which is not
normal.

Proof Let L = {(x, y) : x, y ∈ R and y ≥ 0} be the Niemytzki plane (see [5, Example
1.2.4]) and let X be the subspace {(x, y) ∈ L : y = 0 or x, y ∈ Q}. The space X is separable
and regular. Moreover, X is first countable and locally countable, and it follows from Theorem
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4.1 that X is strongly s-reflexive. Similarly as in [5, Example 1.5.10], we see that X is not
normal.

Our next example describes a normal s-reflexive space which is not strongly zero-dimensional.
We shall modify an example of a normal zero-dimensional, but not strongly zero-dimensional
space constructed by Dowker. We shall make the space locally completely metrizable and hence
s-reflexive. For this purpose, we need the following result.

Lemma 5.1 There exists an ascending transfinite sequence 〈Sα〉α<ω1 of zero-dimensional
Gδ-subsets of the interval I = [0, 1] such that I = ∪{Sα : α < ω1}.

Proof Without “zero-dimensional”, this result is due to Hausdorff. The proof below is
a slight modification of Hausdorff’s (see [9, 18]). Let A, B ∈ [N]ω. Write A ⊂∗ B if B\A is
finite. If A ⊂∗ B but B 
⊂∗ A, then write A ≺ B. In [9], Hausdorff constructed two transfinite
sequences {Aα : α < ω1} and {Bα : α < ω1} in [N]ω such that

(i) Aα ≺ Aβ ≺ Bβ ≺ Bα for all α < β < ω1, and
(ii) there is no E ∈ [N]ω such that Aα ⊂∗ E ⊂∗ Bα for every α < ω1.
Define f : [N]ω → I by the formula

f(E) =
∞∑

n=1

χE(n)2−n,

where χE is the characteristic function of E. Similarly as in [18, p. 173], we can show that, for
each α < ω1, the set Qα = {f(E) : E ∈ [N]ω and Aα ⊂∗ E ⊂∗ Bα} is an Fσ-set, and hence the
set Sα = I\Qα is a Gδ-set.

Let α < ω1. To verify that Sα is zero-dimensional, we need to show that Qα is dense in I.
Let i0 ∈ N such that Aα\{n ∈ N : n < i0} ⊂ Bα. Let G ⊂ I be open and nonempty. There

exist i, k ∈ N such that i ≥ i0 and [k2−i, (k + 1)2−i] ⊂ G. We can write k as
i∑

j=1

kj2i−j , where

kj ∈ {0, 1} for each j ≤ i. Let E = (Aα\{n ∈ N : n < i}) ∪ {j ≤ i : kj = 1} and note that
Aα ⊂∗ E ⊂∗ Bα. Now f(E) ∈ Qα and f(E) ∈ [k2−i, (k + 1)2−i] ⊂ G. Hence Qα ∩ G 
= ∅. We
have shown that Qα is dense in I.

Clearly, Sα ⊂ Sβ whenever α < β. By (ii), we have ∩{Qα : α < ω1} = ∅. As a consequence,
I = ∪{Sα : α < ω1}.

Example 5.4 There exists a normal, ℵ1-compact, locally completely metrizable strongly
s-reflexive space which is not strongly zero-dimensional.

Proof We modify an example due to Dowker (see [5, Example 6.2.20]). Let 〈Sα〉α<ω1 be
the sequence constructed in Lemma 5.1. For each α < ω1, let Yα = ∪{{γ} × Sγ : γ ≤ α}.
Consider Y = ∪{{γ} × Sγ : γ < ω1} as a subspace of (ω1 + 1) × I. Similarly as in [5, Example
6.2.20], we see that Y is normal and zero-dimensional, but not strongly zero-dimensional, and
that Yα is clopen in Y for each α < ω1.

Let α < ω1. Then I\Sα is an Fσ-subset of I. It follows that ((α+1)×I)\Yα = ∪{{γ}×(I\Sγ) :
γ ≤ α} is an Fσ-subset of (α + 1) × I. Since (α + 1) × I is compact and metrizable, the space
Yα is separable and completely metrizable. By Theorem 4.1, Y is strongly s-reflexive.

It remains to show that Y is ℵ1-compact. Assume to the contrary that Y contains a closed
discrete subspace D = {(γα, rα) : α < ω1}, where (γα, rα) 
= (γβ , rβ) for α 
= β. There
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exists r ∈ I such that every neighborhood of r contains rα for uncountable many α’s. Let
β = min{δ < ω1 : (δ, r) ∈ Y }. For every δ ≥ β, there exist nδ ∈ N and γδ < δ such that
the neighborhood (γδ, δ] × (r − 1

nδ
, r + 1

nδ
) of (δ, r) contains at most one element of D. There

exists m ∈ N such that the set Em = {δ ≥ β : nδ = m} is stationary. By the pressing down
lemma, there exists ρ < ω1 such that the set {δ ∈ Em : γδ = ρ} is uncountable. Note that the
set [ρ, ω1) × (r − 1

m , r + 1
m ) contains at most one element of D. Since D is closed discrete, the

set D ∩ Yρ is countable. It follows that the set D ∩ (ω1 × (r − 1
m , r + 1

m )) is countable. As a
consequence, the neighborhood (r − 1

m , r + 1
m) of r contains rα for only countably many α’s —

a contradiction.

Remark 5.1 Note that if the continuum hypothesis is assumed, then the space Y can be
defined in a simpler way and Lemma 5.1 is not needed.

Problem 5.1 Is every metrizable s-reflexive space strongly zero-dimensional?

Next we give three examples of regular spaces with only one non-isolated point which are
not strongly s-reflexive. Since the topological sum X ⊕ X is homeomorphic with X × {0, 1},
these examples also show that the product of two s-reflexive spaces is not necessarily s-reflexive.

Example 5.5 There exists a countable s-reflexive regular space which is not strongly
s-reflexive.

Proof The idea of the following construction and proof comes from [19, Example 2].
Let X be the set {x} ∪ {xn : n ∈ N} ∪ {xnm : n, m ∈ N} equipped with the topology in
which x is the only non-isolated point, and a neighborhood base at x is formed by the sets
{x} ∪ {xn : n ∈ N\K} ∪ {xnm : n ∈ N\K and m > ϕ(n)}, where K is finite and ϕ : N → N. It
follows from Corollary 2.1 that X is s-reflexive. Note that the sets X1 = {x}∪{xnm : n, m ∈ N}
and X2 = {x}∪{xn : n ∈ N} are closed in X , and therefore X1⊕X2 is closed in X⊕X . Rewrite
X2 as Y2 = {y} ∪ {yn : n ∈ N}, and let Z = X1 ⊕ Y2. To show that X ⊕ X is not s-reflexive,
it suffices to verify that Z does not have this property. In fact, Z is homeomorphic with the
space X of [19, Example 2], and Yang and Zhou showed that this X is not s-reflexive. For the
sake of convenience, we give a brief proof here. Assume to the contrary that Z is s-reflexive.
For z ∈ Z, we put

Φ(z) =

⎧⎨
⎩
{z}, z ∈ X1,
{x, y}, z = y,
{yn} ∪ {xnm : m ∈ N}, z = yn.

Note that Φ is a csl-carrier on Z. By s-reflexivity, there exists f ∈ Sel(Φ) with f(y) = x.
Since yn → y, we have f(yn) → f(y) = x. This is a contradiction, since {f(yn) : n ∈ N} ⊂
Z\{x} and no sequence from Z\{x} converges to x.

Denote by A(ω1) (by L(ω1)) the one-point compactification (the one-point Lindelöfication)
of the discrete space ω1, that is, the space {∞} ∪ ω1 with base

{{α} : α < ω1

} ∪ {B : ω1\B is
finite} (with base

{{α} : α < ω1

} ∪ {B : ω1\B is countable}).
Example 5.6 The spaces A(ω1) and L(ω1) are retractifiable and s-reflexive, but not

strongly s-reflexive.

Proof It is easy to check that every space with at most one non-isolated point is retrac-
tifiable. It follows from Corollary 2.1 that both A(ω1) and L(ω1) are s-reflexive. Note that
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both A(ω1) and L(ω1) are ultraparacompact. To show that A(ω1) and L(ω1) are not strongly
s-reflexive, it suffices, by Corollary 3.1, to show that neither of them is self-selective.

First we show that A(ω1) is not self-selective. Instead of A(ω1), we consider the homeomor-
phic space A(ω1 × ω1), the one-point compactification {∞} ∪ (ω1 × ω1) of the discrete space
ω1 × ω1. Define Φ : A(ω1 × ω1) → F(A(ω1 × ω1)) by setting

Φ(x) =
{{∞}, x = ∞,
{(α, 0), (0, β)}, x = (α, β) ∈ ω1 × ω1.

It is easy to see that Φ is lsc. We show that Φ has no continuous selection. Suppose to the
contrary that Φ has a continuous selection f . Note that f−1{∞} = {∞}. It follows, since the
point ∞ is in the closure of every infinite subset of A(ω × ω1), that the mapping f is finite-to-
one. As a consequence, the set E = {α < ω1 : f((α, n)) = (0, n) for some n < ω} is countable.
Let γ ∈ ω1\E. Then f(γ, n) = (γ, 0) for every n < ω. This is a contradiction.

To show that L(ω1) is not self-selective, define a carrier Φ : L(ω1) → F(L(ω1)) by setting

Φ(α) =
{{α}, α ∈ {0,∞},

[0, α) , 0 < α < ω1.

Then Φ is lsc. To show that Sel(Φ) = ∅, assume on the contrary that there exists f ∈ Sel(Φ).
Then f(α) < α for every 0 < α < ω1. By the pressing down lemma, there exists an uncountable
set A ⊂ ω1 and β < ω1 such that f(α) = β for every α ∈ A. Since f(∞) = ∞, we have a
contradiction with continuity of f .

Example 5.7 The Arens’ space S2 is retractifiable, but not s-reflexive.

Proof The ground-set of S2 is {y} ∪ {yn : n ∈ N} ∪ {ynm : n, m ∈ N}, and the topology is
defined as follows: (i) each ynm is isolated; (ii) a neighborhood base at yn is formed by the sets
{yn} ∪ {ynm : m ∈ N\K}, where K is finite; (iii) a neighborhood base at y is formed by the
sets {y}∪ {yn : n ∈ N\K}∪ {ynm : n ∈ N\K and m > ϕ(n)}, where K is finite and ϕ : N → N.

To show that S2 is retractifiable, let F be a nonempty closed subset of S2. We define a
mapping f : S2 → F as follows. For every x ∈ F , we set f(x) = x. If y 
∈ F , then we set
f(y) = q, where q ∈ F . For every yn 
∈ F , we set f(yn) = f(y), and for every ynm 
∈ F , we set
f(ynm) = f(yn). It is easy to check that if a sequence 〈pn〉n∈N in S2 converges to p, then the
sequence 〈f(pn)〉n∈N converges to f(p) in F . Since S2 is a sequential space, the mapping f is
continuous, and hence f is a retraction S2 → F .

To prove that S2 is not s-reflexive, let X = {x} ∪ {xm : m ∈ N} be the space formed by a
convergent sequence together with its limit. Set Z = X ⊕ S2. Note that Z is homeomorphic to
S2. It suffices to show that Z is not s-reflexive. Define a carrier Φ on Z by setting

Φ(z) =

⎧⎨
⎩
{x, y}, z = x,
{xm} ∪ {ynm : n ∈ N}, z = xm,
{z}, z ∈ S2.

Then Φ is a csl-carrier. Similarly as in Example 5.5, we see that f(x) 
= y for every f ∈ Sel(Φ).
It follows from Proposition 2.2 that Z is not s-reflexive.

Examples 5.5 and 5.7 show that not all countable regular spaces are s-reflexive.

Example 5.8 The Michael line is not s-reflexive.
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Proof According to [3, Corollary 4.4], the Michael line M is not retractifiable. Hence M

is not self-selective. Note that M is ultraparacompact and the topological sum M ⊕M can be
embedded in M as a closed subspace. It follows from Proposition 2.4 and Corollary 3.1 that
M is not s-reflexive.

Problem 5.2 Is the Sorgenfrey line s-reflexive?

Note that, like the Michael line, the Sorgenfrey line S is ultraparacompact and S⊕S embeds
in S as a closed subspace. Hence Proposition 2.4 and Corollary 3.1 show that if S is s-reflexive,
then S is self-selective.

Example 5.9 Let A be a stationary subset of an uncountable regular cardinal κ. The
subspace A of the ordinal space κ is retractifiable but not self-selective.

Proof By [3, Theorem III.8], every subspace of an ordinal space is retractifable. To show
that A is not self-selective, define a carrier Φ : A → F(A) by the formula Φ(α) = {β ∈ A :
β > α}. It is easy to see that Φ is lsc. However, no selection for Φ is continuous. This is a
consequence of the result that if g : κ → κ is continuous and g(α) ≥ α for every α, then the set
of fixed points of g is a cub set (see [12, Exercise 7.9]). Hence A is not self-selective.

The following is a consequence of the preceding example and Theorem 4.1.

Example 5.10 The ordinal space ω1 is retractifiable and strongly s-reflexive, but not
self-selective.

Example 5.11 The ordinal space γ is s-reflexive when γ ≤ ω1 + ω1.

Proof Let Φ be a csl-carrier on γ, and let α and β be distinct limit ordinals less than γ

with β ∈ Φ(α). We shall prove that there exists f ∈ Sel(Φ) with f(α) = β. It then follows from
Proposition 2.3 that γ is s-reflexive.

Case 1 β = ω1.
If α < ω1, then we set A = {ζ ∈ [0, α) : β 
∈ Φ(ζ)} and if α > ω1, then we set A = {ζ ∈

[ω1 + 1, α) : β 
∈ Φ(ζ)}. The set A is countable and it follows that β 
∈ Φ[A]. Since β ∈ Φ(α),
we have α 
∈ A. As a consequence, there exists a clopen neighborhood (α′, α] of α such that
β ∈ Φ(ζ) for each ζ ∈ (α′, α]. Define f : γ → γ by setting f(ζ) = β for each ζ ∈ (α′, α] and
f(ζ) = ζ for each ζ ∈ γ\(α′, α]. Then f ∈ Sel(Φ) and f(α) = β.

Case 2 β 
= ω1.
Let U be a countable clopen neighborhood of β. Since Φ(α) ∩ U 
= ∅, there exists a clopen

neighborhood V of α such that Φ(ζ) ∩ U 
= ∅ for each ζ ∈ V . The subspace V of γ is
compact and zero-dimensional, and the subspace U is compact and metrizable. Define a carrier
Ψ : V → F(U) by setting Ψ(α) = {β} and Ψ(ζ) = Φ(ζ) ∩ U for ζ ∈ V \{α}. The carrier Ψ is
lsc, because for every G ⊂ U , we have either {δ ∈ V : Ψ(δ) ∩ G 
= ∅} = {δ ∈ V : Φ(δ) ∩ G 
= ∅}
or {δ ∈ V : Ψ(δ) ∩ G 
= ∅} = {δ ∈ V : Φ(δ) ∩G 
= ∅}\{α}. It follows from the zero-dimensional
selection theorem that Ψ has a continuous selection f . Note that f(α) = β. Define g : γ → γ

by setting g(ζ) = f(ζ) for ζ ∈ V and g(ζ) = ζ for ζ 
∈ V . Then g ∈ Sel(Φ) and g(α) = β.

Problem 5.3 Is every ordinal space s-reflexive? In particular, is ω1 + ω1 + 1 s-reflexive?

Note that ω1 + ω1 + 1 is homeomorphic with (ω1 + 1)⊕ (ω1 + 1). It follows, by Proposition
3.1 and Corollary 3.1, that ω1 + ω1 + 1 is s-reflexive, if and only if ω1 + 1 is self-selective.
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We close this paper with a result which provides many examples of non-s-reflexive zero-
dimensional compact spaces.

Proposition 5.1 An s-reflexive dyadic space is metrizable.

Proof Let X be an s-reflexive dyadic space. Suppose that X is not metrizable. Then by
[4, Theorem 15 and Corollary 1 to Theorem 14], X contains a copy of A(ω1) ⊕ A(ω1). This,
however, contradicts Proposition 2.4 and Example 5.6.

Example 5.12 2ω1 is not s-reflexive.
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