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Abstract The concepts of hypercontinuous posets and generalized completely continuous
posets are introduced. It is proved that for a poset P the following three conditions
are equivalent: (1) P is hypercontinuous; (2) the dual of P is generalized completely
continuous; (3) the normal completion of P is a hypercontinuous lattice. In addition, the
relational representation and the intrinsic characterization of hypercontinuous posets are
obtained.
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1 Introduction

To generalize Dedekind’s pioneer construction of the real line by cuts of rational numbers
(see [3]), MacNeille [12] introduced the famous normal completion for arbitrary posets. It is
well-known that modularity and distributivity are not preserved under the formation of normal
completions (see [2]). However, other notions of distributivity, such as Boolean algebras and
Heyting algebras, are closed under normal completions (see [5–7, 11, 13, 18–19]). In [4], Erné
observed that continuity was not completion-invariant (see [5]), that is, the normal completion
of a continuous domain is not always a continuous lattice. To obtain the completion-invariant
property, Erné introduced a new concept of precontinuous posets by taking Frink ideals (see
[8]) instead of directed lower sets, and proved that a poset is precontinuous if and only if its
normal completion is a continuous lattice. Generally speaking, continuity defined by the usual
way is not completion-invariant.

As a common generalization of completely distributive lattices (see [14]) and generalized
continuous lattices (see [10]) which were called quasicontinuous lattices in [9], Venugopalan
introduced the concept of generalized completely distributive lattices which have many prop-
erties similar to those of completely distributive lattices (see [15]). In [10], Gierz and Lawson
introduced the concept of a hypercontinuous lattice, which is also among the most successful
generalizations of continuous lattices, to characterize a continuous lattice with the Hausdorff
interval topology. In [17], Yang and Xu proved that a complete lattice is hypercontinuous if
and only if its order dual is generalized completely distributive.
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In this paper, we generalize the concepts of hypercontinuous lattices and generalized com-
pletely distributive lattices to the setting of posets, and introduce the concepts of hypercon-
tinuous posets and generalized completely continuous posets. It is proved that for a poset P

the following three conditions are equivalent: (1) P is hypercontinuous; (2) the dual of P is
generalized completely continuous; (3) the normal completion of P is a hypercontinuous lattice.
So the hypercontinuity and generalized complete continuity are completion-invariant. Also in
this paper, the relational representation and the intrinsic characterization of hypercontinuous
posets are obtained.

For a poset P , let P (<ω) = {F ⊆ P : F is finite}. The order dual of P is written as P op.
For all x ∈ P , A ⊆ P , let ↑ x = {y ∈ P : x ≤ y} and ↑ A =

⋃

a∈A

↑ a; ↓ x and ↓ A are

defined dually. A↑ and A↓ denote the sets of all upper and lower bounds of A, respectively.
Let Aδ = (A↑)↓ and δ(P ) = {Aδ : A ⊆ P}. (δ(P ),⊆) is called the normal completion, or the
Dedekind-MacNeille completion of P . By a completion-invariant property, we mean a property
that holds for a poset P if and only if it holds for the normal completion of P . For all U ∈ δ(P )
and F ⊆ δ(P ), let ↑δ(P ) {U} = {V ∈ δ(P ) : U ⊆ V } and ↑δ(P ) F = {V ∈ δ(P ) : there exists
U ∈ F with U ⊆ V }; ↓δ(P ) {U} and ↓δ(P ) F are defined dually.

Let P be a poset. The topology generated by the collection of sets P\ ↓ x (as a subbase)
is called the upper topology and denoted by υ(P ); the lower topology ω(P ) on P is defined
dually. The topology θ(P ) = υ(P ) ∨ ω(P ) is called the interval topology on P . For x, y ∈ P ,
define a relation ≺ on P by x ≺ y ⇔ y ∈ intυ(P ) ↑ x.

The following lemma is well-known (see [5]).

Lemma 1.1 Let P be a poset.
(1) The maps (−)↑ : (2P )op → 2P , A �→ A↑ and (−)↓ : 2P → (2P )op, A �→ A↓ are order

preserving.
(2) ((−)↑, (−)↓) is a Galois connection between (2P )op and 2P , that is, for all A,B ⊆ P ,

B↑ ⊇ A ⇔ B ⊆ A↓. Thus both δ : 2P → 2P , A �→ Aδ = (A↑)↓ and δ∗ : 2P → 2P , A �→ (A↓)↑

are closure operators.
(3) For all {Cj : j ∈ J} ⊆ 2P ,

( ⋃

j∈J

Cj

)↑ =
⋂

j∈J

Cj
↑,

( ⋃

j∈J

Cj

)↓ =
⋂

j∈J

Cj
↓.

(4) Let L = δ(P ). For all {Ai
δ : i ∈ I} ⊆ L,

∧

L

{Ai
δ : i ∈ I} = ∩{Ai

δ : i ∈ I},
∨

L

{Ai
δ : i ∈ I} =

( ∪ {Ai
δ : i ∈ I})δ =

( ⋃

i∈I

Ai

)δ.

Corollary 1.1 Let P be a poset. Then the map eP : P → δ(P ), x �→↓ x is an order
embedding of P in the normal completion δ(P ) and

(1) eP preserves all existing joins and meets;
(2) for all Aδ ∈ δ(P ), Aδ =

∨

a∈A

eP (a) =
∨

a∈Aδ

eP (a).

Definition 1.1 (see [16]) A binary relation ρ on X is called finitely regular if for all
(x, y) ∈ ρ, there exist u ∈ X and {v1, v2, · · · , vk} ∈ X(<ω) such that

(1) (u, y) ∈ ρ, and (x, vi) ∈ ρ for each i ∈ {1, 2, · · · , k}, and
(2) for all {s1, s2, · · · , sk} ∈ X(<ω) and t ∈ X, if (u, t) ∈ ρ, (si, vi) ∈ ρ for each i ∈

{1, 2, · · · , k}, then there exists j ∈ {1, 2, · · · , k} such that (sj , t) ∈ ρ.

Definition 1.2 (see [9–10]) A complete lattice L is called hypercontinuous if and only if
x = ∨{y ∈ L : y ≺ x} for all x ∈ L.
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Definition 1.3 (see [15]) For a complete lattice L, define a relation � on 2L by A � B if
and only if for all S ⊆ L, ∨S ∈ ↑ B implies S ∩ ↑ A �= ∅. L is called a generalized completely

distributive lattice if and only if ↑ x = ∩{↑ F : F ∈ P (<ω) and F � x}.

2 Hypercontinuous Posets

In this section, the concept of hypercontinuous posets is introduced, and we give intrinsic
characterizations of hypercontinuous posets and show that a poset is hypercontinuous if and
only if its normal completion is a hypercontinuous lattice.

Definition 2.1 A poset P is called hypercontinuous if x ∈ {u ∈ P : u ≺ x}δ for all x ∈ P .
Let i(x) = {u ∈ P : u ≺ x}.

Remark 2.1 If X ⊆ ↓ x, then x = supX if and only if x ∈ Xδ. Thus for complete lattices,
the preceding definition of hypercontinuity is equivalent to Definition 1.2.

Theorem 2.1 Let P be a poset. Then the following conditions are equivalent:
(1) P is hypercontinuous;
(2) If x, y ∈ P with x �≤ y, then there exist F ∈ P (<ω) and u ∈ P such that (i) x �∈ ↓ F ,

y �∈ ↑ u, and (ii) ↓ F ∪ ↑ u = P ;
(3) The relation � on P is finitely regular.

Proof (1) ⇒ (2). Let x, y ∈ P with x �≤ y. Then by (1), there exists u ∈ P with u ≺ x such
that u � y. Thus x ∈ intυ(P ) ↑ u. Choose F ∈ P (<ω) such that x ∈ P\ ↓ F ⊆ intυ(P ) ↑ u ⊆ ↑ u.
Then F and u satisfy the conditions of (i) and (ii) in (2).

(2) ⇒ (1). Suppose that there exists x ∈ P with x /∈ i(x)δ, and then there exists y ∈ P

with i(x) ⊆ ↓ y such that x � y. By (2), there exist F ∈ P (<ω) and u ∈ P that satisfy the
conditions (i)–(ii) in (2). Then u ≺ x and u �≤ y, a contradiction to i(x) ⊆ ↓ y. Therefore P is
hypercontinuous.

(2) ⇒ (3). Let x, y ∈ P with x �≤ y. By (2), there exist F = {v1, v2, · · · , vk} ∈ P (<ω) and
u ∈ P that satisfy the conditions (i)–(ii) in (2). For all {s1, s2, · · · , sk} ∈ P (<ω) and t ∈ P , if
u � t and si � vi for each i ∈ {1, 2, · · · , k}, then there exists j ∈ {1, 2, · · · , k} such that t ≤ vj .
Thus sj � t since sj � vj .

(3) ⇒ (2). Let x, y ∈ P with x �≤ y. By (3), there exist F = {v1, v2, · · · , vk} ∈ P (<ω) and
u ∈ P such that 1◦ u � y, x /∈ ↓ F , and 2◦ for all {s1, s2, · · · , sk} ∈ P (<ω) and t ∈ P , if u � t,
si � vi for each i ∈ {1, 2, · · · , k}, then there exists j ∈ {1, 2, · · · , k} such that sj � t.

For all z ∈ P , let t = z, and si = z for all i ∈ {1, 2, · · · , k}. By 2◦, we have u ≤ t = z or
there exists j ∈ {1, 2, · · · , k} such that z = sj ≤ vj , i.e., ↑ u ∪ ↓ F = P .

Corollary 2.1 Let P be a hypercontinuous poset. Then (P, θ(P )) is T2.

Theorem 2.2 For a poset P , the following two conditions are equivalent:
(1) P is hypercontinuous;
(2) (δ(P ),⊆) is a hypercontinuous lattice.

Proof (1) ⇒ (2). If Aδ, Bδ ∈ δ(P ) with Aδ � Bδ, then A � Bδ. Thus there exists x ∈ A

with x /∈ Bδ. Hence there exists y ∈ P with B ⊆ ↓ y such that x � y. By Theorem 2.1, there
exist F ∈ P (<ω) and u ∈ P such that (i) x �∈ ↓ F , y �∈ ↑ u, and (ii) ↓ F ∪ ↑ u = P .

Let F = {↓ a : a ∈ F}. Then F ∈ δ(P )(<ω). We show that F and ↓ u satisfy the conditions
(i)–(ii) in (2) of Theorem 2.1. Firstly, if Aδ ∈ ↓δ(P ) F , then there exists a ∈ F with Aδ ⊆ ↓ a.
Thus x ∈ A ⊆ Aδ ⊆ ↓ a, a contradiction to x /∈ ↓ F ; if Bδ ∈ ↑δ(P ) {↓ u}, then u ∈ ↓ u ⊆ Bδ ⊆
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↓ y, a contradiction to y �∈ ↑ u. Then we show that ↓δ(P ) F ∪ ↑δ(P ) {↓ u} = δ(P ). For all
Cδ ∈ δ(P ), if ↓ u � Cδ, i.e., u /∈ Cδ, then there exists m ∈ P with C ⊆ ↓ m such that u � m.
Thus m ∈ ↓ F . Then there exists a ∈ F such that m ≤ a. Therefore, Cδ ⊆ ↓ m ⊆ ↓ a, which
implies Cδ ∈ ↓δ(P ) F .

(2) ⇒ (1). If x, y ∈ P with x � y, then ↓ x � ↓ y. By Theorem 2.1, there exist F =
{Aδ

1, A
δ
2, · · · , Aδ

k} ∈ δ(P )(<ω) and Bδ ∈ δ(P ) such that (i) ↓ x �∈ ↓δ(P ) F , ↓ y �∈ ↑δ(P ) {Bδ}, and
(ii) ↓δ(P ) F ∪ ↑δ(P ) {Bδ} = δ(P ).

Since ↓ x �∈ ↓δ(P ) F , x /∈ Aδ
i for all i ∈ {1, 2, · · · , k}. Thus there exists mi ∈ P with

Ai ⊆ ↓ mi such that x � mi. Let F = {m1, m2, · · · , mk}. Since ↓ y �∈ ↑δ(P ) {Bδ}, there
exists u ∈ Bδ with u � y. Then we show that F and u satisfy the conditions of (i)–(ii) in
(2) of Theorem 2.1. Obviously, x /∈ ↓ F and y /∈ ↑ u. We show that ↓ F ∪ ↑ u = P . For
all z ∈ P , if u � z, then Bδ � ↓ z since u ∈ Bδ. Thus there exists i ∈ {1, 2, · · · , k} with
z ∈ ↓ z ⊆ Aδ

i ⊆ ↓ mi. So z ∈ ↓ F . Therefore, ↓ F ∪ ↑ u = P .

Definition 2.2 (see [5]) A map f between posets P and Q is said to be cut-stable if
f [A↑]↓ = f [A]↑↓ and f [A↓]↑ = f [A]↓↑ for all A ⊆ P .

Proposition 2.1 (see [5]) A map f from a poset P into a complete lattice L is cut-stable
if and only if there exists a (unique) complete homomorphism g from δ(P ) into L such that
f = g ◦ eP .

A subcategory A of a category C is called a reflective subcategory (see [1]) of C, if for each
C-object C, there exists an A-object A0 and a C-morphism r : C → A0 such that for each
A-object A and C-morphism f : C → A there exists a unique A-morphism g : A0 → A such
that f = g ◦ r.

By Proposition 2.1 and Theorem 2.2, we immediately have the following theorem.

Theorem 2.3 The category of hypercontinuous lattices with complete homomorphisms is a
full reflective subcategory of the category of hypercontinuous posets with cut-stable maps.

3 Generalized Completely Continuous Posets

In this section, the concept of generalized completely continuous posets is introduced, and
we give intrinsic characterizations of generalized completely continuous posets and show that a
poset is generalized completely continuous if and only if its normal completion is a generalized
completely distributive lattice if and only if its order dual is a hypercontinuous poset.

Definition 3.1 Let P be a poset, x ∈ P , A, B ⊆ P . We say that:
(1) A is completely way below B, in symbols A � B if for all S ⊆ P ↑ B ∩ Sδ �= ∅ implies

↑ A ∩ S �= ∅. We write F � {x} for F � x. Let ∇(x) = {F ∈ P (<ω) : F � x}.
(2) P is generalized completely continuous if for all x ∈ P , ↑ x = ∩{↑ F : F ∈ ∇(x)}.
Remark 3.1 For complete lattices, the preceding definition of generalized completely con-

tinuity is equivalent to Definition 1.3.

Proposition 3.1 For a poset P , x ∈ P , A ⊆ P , the following conditions are equivalent:
(1) A � x;
(2) x /∈ (P\ ↑ A)δ;
(3) x ∈ P\(P\ ↑ A)δ ⊆ ↑ A.
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Proof (1) ⇒ (2). If x ∈ (P\ ↑ A)δ, then by the definition of �, ↑ A ∩ (P\ ↑ A) �= ∅, which
is impossible.

(2) ⇒ (1). If there exists S ⊆ P with x ∈ Sδ such that ↑ A ∩ S = ∅, then x ∈ Sδ ⊆ (P\ ↑
A)δ, a contradiction to (2).

(2) ⇔ (3). Obviously.

Proposition 3.2 For a poset P , A ⊆ P , the following two conditions are equivalent:
(1) A � A;
(2) ↑ A = P\(P\ ↑ A)δ.

Proof (1) ⇒ (2). Obviously, P\(P\ ↑ A)δ ⊆ ↑ A by Lemma 1.1. If there exists y ∈ ↑ A

but y /∈ P\(P\ ↑ A)δ, then by (1), ↑ A ∩ (P\ ↑ A) �= ∅, which is impossible.
(2) ⇒ (1). If there exists S ⊆ P with ↑ A ∩ Sδ �= ∅ such that ↑ A ∩ S = ∅, then

Sδ ⊆ (P\ ↑ A)δ. By (2), we have ↑ A ⊆ P\Sδ, a contradiction to ↑ A ∩ Sδ �= ∅.
Theorem 3.1 For a poset P , the following two conditions are equivalent:
(1) P is generalized completely continuous;
(2) (δ(P ),⊆) is a generalized completely distributive lattice.

Proof (1) ⇒ (2). We show that ↑δ(P ) {Aδ} = ∩{↑δ(P ) F : F ∈ δ(P )(<ω),F � Aδ} for
all Aδ ∈ δ(P ). Obviously, ↑δ(P ) {Aδ} ⊆ ∩{↑δ(P ) F : F ∈ δ(P )(<ω),F � Aδ}. We show that
∩{↑δ(P ) F : F ∈ δ(P )(<ω),F � Aδ} ⊆ ↑δ(P ) {Aδ}. If Aδ � Bδ, then A � Bδ. Thus there
exists x ∈ A with x /∈ Bδ. Hence there exists y ∈ P with B ⊆ ↓ y such that x � y. By
(1), there exists F ∈ P (<ω) with F � x such that y /∈ ↑ F . Let F = {↓ u : u ∈ F}. Then
F ∈ δ(P )(<ω). We show that F � Aδ and Bδ /∈ ↑δ(P ) F . If Bδ ∈ ↑δ(P ) F , then there exists
u ∈ F with ↓ u ⊆ Bδ. Thus u ∈ Bδ ⊆ ↓ y, a contradiction to y /∈ ↑ F . Then we show that
F � Aδ. For all {Aδ

i : i ∈ I} ⊆ δ(P ) with Aδ ⊆ ∨

i∈I

Aδ
i , we have Aδ ⊆ ( ⋃

i∈I

Aδ
i

)δ by Lemma 1.1.

Since x ∈ A ⊆ Aδ and F � x, we have F ∩ ⋃

i∈I

Aδ
i �= ∅. Thus there exist u ∈ F and i ∈ I with

u ∈ Ai
δ. Since Ai

δ is a lower set, ↓ u ⊆ Ai
δ. Hence ↑δ(P ) F ∩ {Ai

δ : i ∈ I} �= ∅. Therefore,
δ(P ) is a generalized completely distributive lattice.

(2) ⇒ (1). Obviously, ↑ x ⊆ ∩{↑ F : F ∈ ∇(x)} for all x ∈ P . If x � y, then ↓ x � ↓ y. By
(2), there exists F = {A1, A2, · · · , Ak} ∈ δ(P )(<ω) with F � ↓ x such that ↓ y /∈ ↑δ(P ) F , i.e.,
Ai � ↓ y for all i ∈ {1, 2, · · · , k}. Thus there exists yi ∈ Ai with yi � y for all i ∈ {1, 2, · · · , k}.
Let F = {y1, y2, · · · , yk}. Obviously, y /∈ ↑ F . We show that F � x for all S ⊆ P with
x ∈ Sδ. Since Sδ is a lower set, ↓ x ⊆ Sδ =

( ⋃

s∈S

↓ s
)δ =

∨

s∈S

↓ s. Since F � ↓ x,

↑δ(P ) F∩{↓ s : s ∈ S} �= ∅. Thus there exist i ∈ {1, 2, · · · , k} and s ∈ S such that yi ∈ Ai ⊆ ↓ s.
So ↑ F ∩ S �= ∅. Hence F � x. Since y /∈ ↑ F , y /∈ ∩{↑ F : F ∈ ∇(x)}. Therefore,
↑ x = ∩{↑ F : F ∈ ∇(x)}.

Theorem 3.2 (see [17]) A complete lattice L is a hypercontinuous lattice if and only if
Lop is a generalized completely distributive lattice.

By Theorems 2.2, 3.1–3.2, we obtain the following result.

Corollary 3.1 A poset P is hypercontinuous if and only if P op is generalized completely
continuous.

By Theorem 2.1 and Corollary 3.1, we obtain the following result.

Corollary 3.2 For a poset P , the following conditions are equivalent:
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(1) P is generalized completely continuous;
(2) for all x, y ∈ P with x � y, there exist u ∈ P and finite set F ∈ P (<ω) such that (i)

x /∈ ↓ u, y /∈ ↑ F , and (ii) ↓ u ∪ ↑ F = P ;
(3) � on P is finitely regular.

Corollary 3.3 Let P be a generalized completely continuous poset. Then (P, θ(P )) is T2.

Corollary 3.4 The category of generalized completely distributive lattices with complete ho-
momorphisms is a full reflective subcategory of the category of generalized completely continuous
posets with cut-stable maps.
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