Chinese Annals of Mathematics, Series B © The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2015

Some Remarks on Hom-Modules and Hom-Path Algebras^{*}

Sujuan ZHANG¹ Hailou YAO²

Abstract This paper deals with injective and projective right Hom-H-modules for a Hom-algebra H. In particular, Baer Criterion of injective Hom-module is obtained, and it is shown that HomModH is an Abelian category. Next, the authors define Hom-path algebras and construct Hom-path algebras of some quivers.

Keywords Hom-Module, Hom-Algebra, Quiver2000 MR Subject Classification 16G20, 16D99, 17A30

1 Introduction

A Hom-algebra structure is a multiplication on a vector space where the structure is twisted by a homomorphism. Hom-Lie algebras and general quasi-Hom-Lie and quasi-Lie algebras were introduced by Hartwig, Larsson and Silvestrov as algebras embracing Lie algebras, super and color Lie algebras and their quasi-deformations by twisted derivations. Makhlouf and Silvestrov introduced and studied Hom-associative, Hom-Leibniz and Hom-Lie admissible algebraic structures generalizing associative, Leibniz and Lie admissible algebras in [1]. At the same time, they developed the theory of Hom-coalgebras and related structures in [2]. In [3–5], Yau constructed enveloping algebras of Hom-Lie and Hom-Leibniz algebras, researched G-Hom-associative algebras as deformations of G-associative algebras along algebra endomorphisms, and studied Hom-bialgebras and objects admitting coactions by Hom-bialgebras.

In this paper, we extend Hom-modules and Hom-algebras to the category of modules and the representation of quivers respectively, by using the ideas of [6–8]. This paper is organized as follows. In Section 2, we summarize the definitions of Hom-algebra, Hom-module and path algebra of quivers. In Section 3, we define right Hom-*H*-module for a Hom-algebra *H* and prove that HomMod_H is an Abelian category. For injective and projective right Hom-*H*-modules, we research some of their essential properties and give the Baer Criterion of injective Hom-module. In Section 4, we define the concept of Hom-path algebra and give the types of quivers whose path algebras can be made into (nontrivial) Hom-path algebras.

2 Preliminaries

Throughout this paper, let K denote a field of characteristic 0. Firstly, we introduce the definitions of Hom-algebra and Hom-module as follows.

Manuscript received October 22, 2013. Revised February 24, 2014.

¹College of Applied Sciences, Beijing University of Technology, Beijing 100124, China; Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043, China.

E-mail: zhangsujuan@emails.bjut.edu.cn

²College of Applied Sciences, Beijing University of Technology, Beijing 100124, China. E-mail: yaohl@bjut.edu.cn

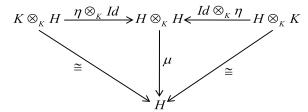
^{*}This work was supported by the National Natural Science Foundation of China (Nos.11271119, 11201314) and the Natural Science Foundation of Beijing (No. 1122002).

Definition 2.1 (see [3]) A Hom-algebra is a triple (H, μ, α, η) in which:

(1) H is a K-module;

- (2) $\mu: H \otimes_K H \longrightarrow H$ is a bilinear map;
- (3) $\alpha: H \longrightarrow H$ is a linear endomorphism;

(4) $\eta: K \longrightarrow H$, the unit, is a linear map such that the following diagram commutes.



When there is no danger of confusion, we will denote a Hom-algebra (H, μ, α, η) simply by H.

Definition 2.2 (see [3]) By a Hom-module, we mean a pair (V, α) consisting of

- (1) a K-module V, and
- (2) a linear endomorphism $\alpha: V \longrightarrow V$.

A morphism $f : (M, \alpha_M) \longrightarrow (N, \alpha_N)$ of Hom-modules is a linear map $f : M \longrightarrow N$ such that $f \circ \alpha_M = \alpha_N \circ f$.

Next, we recall some points about quivers and path (co)algebras. By a quiver Q, we mean a quadruple (Q_0, Q_1, h, s) , where Q_0 is the set of vertices (points), Q_1 is the set of arrows and for each arrow $a \in Q_1$, the vertices h(a) and s(a) are the source (or start point) and the sink (or end point) of a, respectively. If i and j are vertices in Q, an (oriented) path in Q of length m from i to j is a formal composition of arrows

$$p = a_m \cdots a_2 a_1,$$

where $h(a_1) = i$, $s(a_m) = j$ and $s(a_{k-1}) = h(a_k)$, for $k = 2, \dots, m$. To any vertex $i \in Q_0$, we attach a trivial path of length 0, say e_i , starting and ending at i such that $ae_i = a$ (resp. $e_ib = b$) for any arrow a (resp. b) with h(a) = i (resp. s(b) = i). We identify the set of vertices and the set of trivial paths. An (oriented) cycle is a path in Q which starts and ends at the same vertex. Q is said to be acyclic if there is no oriented cycle in Q.

Let KQ be the K-vector space generated by the set of all paths in Q. Then KQ can be endowed with the structure of a (unnecessarily unitary) K-algebra with multiplication induced by concatenation of paths, that is,

$$(a_m \cdots a_2 a_1)(b_n \cdots b_2 b_1) = \begin{cases} a_m \cdots a_2 a_1 b_n \cdots b_2 b_1, & \text{if } s(b_n) = h(a_1), \\ 0, & \text{otherwise.} \end{cases}$$

KQ is the path algebra of the quiver Q. The algebra KQ can be graded by

$$KQ = KQ_0 \oplus KQ_1 \oplus \cdots \oplus KQ_m \oplus \cdots,$$

where Q_m is the set of all paths of length m.

Following [9], the path algebra KQ can be viewed as a K-coalgebra with comultiplication induced by the decomposition of path, that is, if $p = a_m \cdots a_1$ is a path from the vertex i to the vertex j, then $\Delta(p) = \sum_{\eta \tau = p} \eta \otimes \tau$ and for a stationary path e_i , we have $\Delta(e_i) = e_i \otimes e_i$. The counit of KQ is defined by the formula

$$\epsilon(a) = \begin{cases} 1, & \text{if } a \in Q_0, \\ 0, & \text{if } a \text{ is a path of length} \ge 1. \end{cases}$$

The coalgebra (KQ, Δ, ϵ) (shortly KQ) is called the path coalgebra of the quiver Q.

Definition 2.3 (see [10]) A relation subcoalgebra of a path coalgebra KQ is any subcoalgebra S of KQ satisfying the following two conditions:

- (a) The subcoalgebra $KQ_{\leq 1} = KQ_0 \oplus KQ_1$ of KQ is a subcoalgebra of S;
- (b) $S = \bigoplus_{i,j \in Q_0} S(i,j)$, where $S(i,j) = S \cap KQ(i,j)$.

3 Injective and Projective Hom-Modules

The main purpose of this section is to study injective and projective Hom-modules and some of their fundamental properties which are similar to those in the homological algebra. First we need some preliminary concepts.

Definition 3.1 Let H be a Hom-algebra. By a right Hom-H-module, we mean a Hommodule (M, α_M) equipped with a right H-action, $\rho_M : M \otimes_K H \longrightarrow M(m \otimes h \longmapsto mh)$, such that $\alpha_M(mh) = \alpha_M(m)\alpha_H(h)$ for $m \in M$, $h \in H$.

A morphism $f : (M, \alpha_M) \longrightarrow (N, \alpha_N)$ of right Hom-H-modules is a morphism of Hommodules such that f(mh) = f(m)h for $m \in M$, $h \in H$.

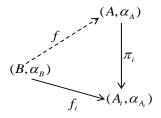
Remark 3.1 The morphism f is well defined, that is, $f \circ \alpha_M(mh) = f(\alpha_M(m)\alpha_H(h)) = f(\alpha_M(m))\alpha_H(h) = f \circ \alpha_M(m)\alpha_H(h) = \alpha_N \circ f(m)\alpha_H(h) = \alpha_N(f(m))\alpha_H(h) = \alpha_N(f(m)h) = \alpha_N \circ f(mh)$. We denote the set of morphisms of right Hom-*H*-modules from (M, α_M) to (N, α_N) by Hom_{*H*} $((M, \alpha_M), (N, \alpha_N))$.

All right Hom-H-modules and their morphisms form a category which is denoted by HomMod_H.

Definition 3.2 For a right Hom-H-module (M, α_M) , we define that (U, α_U) is a Homsubmodule of (M, α_M) if

- (1) $U \subseteq M$ is a K-submodule;
- (2) $\alpha_U = \alpha_M|_U$, and $\alpha_U(U) \subseteq U$;
- (3) $\rho_U = \rho_M|_U$ and $\rho_U(U \otimes_K H) \subseteq U$.

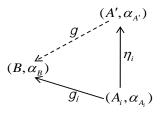
Definition 3.3 A (direct) product of a family of right Hom-H-modules (A_i, α_{A_i}) is (A, α_A) , if there exist morphisms $\pi_i : (A, \alpha_A) \longrightarrow (A_i, \alpha_{A_i})$ such that for any (B, α_B) and $f_i : (B, \alpha_B) \longrightarrow$ (A_i, α_{A_i}) , there is a unique morphism $f : B \longrightarrow A$ such that the following diagram commutes for all $i \in I$, where I is an index set.



Remark 3.2 By the category of modules, we know $A = \prod_{i \in I} A_i$. Define $\prod_{i \in I} \alpha_{A_i}(a) = \prod_{i \in I} \alpha_{A_i}(a_i)$ for $a \in A$, $a_i \in A_i$. It is easy to see that $\alpha_A = \prod_{i \in I} \alpha_{A_i}$. Then (A, α_A) is the (direct) product $(\prod_{i \in I} A_i, \prod_{i \in I} \alpha_{A_i})$.

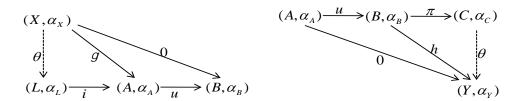
Similarly, we can define the concept of coproduct.

Definition 3.4 A coproduct of a family of right Hom-H-modules (A_i, α_{A_i}) is $(A', \alpha_{A'})$, if there exist morphisms $\eta_i : (A_i, \alpha_{A_i}) \longrightarrow (A', \alpha_{A'})$ such that for any (B, α_B) and $g_i :$ $(A_i, \alpha_{A_i}) \longrightarrow (B, \alpha_B)$, there is a unique morphism $g : A' \longrightarrow B$ such that the following diagram commutes for all $i \in I$.



Remark 3.3 In the category of modules, we know $A' = \coprod_{i \in I} A_i$ and $\coprod_{i \in I} A_i \subseteq \prod_{i \in I} A_i$. Define $\alpha_{A'} = \alpha_A|_{A'}$ and $\coprod_{i \in I} \alpha_{A_i}(a') = \sum_{i \in I} \alpha_{A_i}(a_i)$ for $a' \in A'$, $a_i \in A_i$. It is easy to see that $\alpha_{A'} = \coprod_{i \in I} \alpha_{A_i}$. Then $(A', \alpha_{A'})$ is the coproduct $(\coprod_{i \in I} A_i, \coprod_{i \in I} \alpha_{A_i})$. Normally, we also denote $(A', \alpha_{A'})$ by the direct sum $(\bigoplus_{i \in I} A_i, \bigoplus_{i \in I} \alpha_{A_i})$.

Definition 3.5 If $u : (A, \alpha_A) \longrightarrow (B, \alpha_B)$ is a morphism of right Hom-H-modules, then its kernel Keru is a morphism $i : (L, \alpha_L) \longrightarrow (A, \alpha_A)$ that satisfies the following universal mapping property: ui = 0 and for every $g : (X, \alpha_X) \longrightarrow (A, \alpha_A)$ with ug = 0, there exists a unique $\theta : (X, \alpha_X) \longrightarrow (L, \alpha_L)$ with $i\theta = g$. There is a dual definition for cokernel (the morphism π in the diagram).



Theorem 3.1 HomMod_H is an Abelian category.

Proof Firstly, let us show that HomMod_H is an additive category. For any $f_1, f_2 \in$ Hom_H((A, α_A), (B, α_B)), we define $(f_1 + f_2)(a) = f_1(a) + f_2(a)$ for $a \in A$, then

$$\begin{split} (f_1+f_2)(a_1+a_2) &= f_1(a_1+a_2) + f_2(a_1+a_2) \\ &= f_1(a_1) + f_1(a_2) + f_2(a_1) + f_2(a_2) = (f_1+f_2)(a_1) + (f_1+f_2)(a_2), \\ (f_1+f_2)(ah) &= f_1(ah) + f_2(ah) = f_1(a)h + f_2(a)h = (f_1+f_2)(a)h \end{split}$$

for $a_1, a_2 \in A$, $h \in H$.

$$(f_1 + f_2) \circ \alpha_A = f_1 \circ \alpha_A + f_2 \circ \alpha_A = \alpha_B \circ f_1 + \alpha_B \circ f_2 = \alpha_B \circ (f_1 + f_2).$$

Thus, $f_1 + f_2 \in \text{Hom}_H((A, \alpha_A), (B, \alpha_B))$ and $\text{Hom}_H((A, \alpha_A), (B, \alpha_B))$ is an additive Abelian group; zero morphism is the zero element, and -f is the negative element of f. It is easy to see that the distribution laws are established and any finite right Hom-H-module has a coproduct (see Remark 3.3).

Next, we will show that the additive category $\operatorname{Hom}Mod_H$ is an Abelian category. Suppose $f \in \operatorname{Hom}_H((A, \alpha_A), (B, \alpha_B))$, and let

$$N = \{a \in A \mid f(a) = 0\}, \quad \alpha_N = \alpha_A|_N,$$

Some Remarks on Hom-Modules and Hom-Path Algebras

where $f(\alpha_N(a)) = f \circ \alpha_A|_N(a) = f \circ \alpha_A(a) = \alpha_B \circ f(a) = \alpha_B(f(a)) = 0$ for $a \in N$, that is, $\alpha_N(N) \subseteq N$;

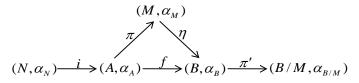
 $M = \{b \in B \mid \text{there is an } a \text{ in } A, \text{ such that } f(a) = b\}, \quad \alpha_M = \alpha_B|_M,$

where $\alpha_M(b) = \alpha_B|_M(b) = \alpha_B(f(a)) = \alpha_B \circ f(a) = f \circ \alpha_A(a) = f(\alpha_A(a))$ for $b \in M$, that is, $\alpha_M(M) \subseteq M$. Then (N, α_N) is a Hom-submodule of (A, α_A) and (M, α_M) is a Hom-submodule of (B, α_B) because f(ah) = f(a)h = 0 and bh = f(a)h = f(ah). Note that $(N, \alpha_N) = \text{Ker}f$ is the kernel of f. We denote $(M, \alpha_M) = \text{Im}f$ and the cokernel of f is $\text{Cok}f = (B/M, \alpha_{B/M})$, where $\alpha_{B/M}(b + M) = \alpha_B(b) + M$, which is well defined. In fact, if b + M = b' + M, then $b - b' \in M$ and $\alpha_B(b - b') \in M$, so $\alpha_B(b) + M = \alpha_B(b') + M$, as desired.

If N = 0, f is a monomorphism; if M = B, f is an epimorphism; and if M = 0, f is a zero morphism. We define

$$i: (N, \alpha_N) \longrightarrow (A, \alpha_A)$$
, such that $i(a) = a \in N$;
 $\pi: (A, \alpha_A) \longrightarrow (M, \alpha_M)$, such that $\pi(a) = f(a) \in M$;
 $\eta: (M, \alpha_M) \longrightarrow (B, \alpha_B)$, such that $\eta(b) = b \in B$;
 $\pi': (B, \alpha_B) \longrightarrow (B/M, \alpha_{B/M})$ is the natural epimorphism

Then i and η are monomorphisms; π and π' are epimorphisms. Since $f = \eta \pi$, the following diagram commutes.



Thus, $i = \operatorname{Ker} f = \operatorname{Ker} \pi$, and $\pi' = \operatorname{Cok} f = \operatorname{Cok} \eta$.

Definition 3.6 A covariant functor T is an exact functor if for every exact sequence

$$0 \longrightarrow (A, \alpha_A) \xrightarrow{i} (B, \alpha_B) \xrightarrow{\pi} (C, \alpha_C) \longrightarrow 0$$

in HomMod_H , the sequence

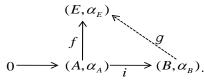
$$0 \longrightarrow (T(A), \alpha_{T(A)}) \xrightarrow{T(i)} (T(B), \alpha_{T(B)}) \xrightarrow{T(\pi)} (T(C), \alpha_{T(C)}) \longrightarrow 0$$

 $is \ also \ exact.$

A contravariant functor F is an exact functor if there is always exactness of

$$0 \longrightarrow (F(C), \alpha_{F(C)}) \xrightarrow{F(\pi)} (F(B), \alpha_{F(B)}) \xrightarrow{F(i)} (F(A), \alpha_{F(A)}) \longrightarrow 0.$$

Definition 3.7 A right Hom-H-module (E, α_E) is injective if, whenever *i* is an injection, a dashed arrow exists such that the following diagram commutes.



Remark 3.4 If (E, α_E) is an injective right Hom-*H*-module, then *E* is an injective right *H*-module.

Proposition 3.1 A right Hom-H-module (E, α_E) is injective if and only if

$$\operatorname{Hom}_H(-, (E, \alpha_E))$$

is an exact functor.

Proof If (E, α_E) is injective, for an exact sequence of right Hom-*H*-modules

$$0 \longrightarrow (A, \alpha_A) \stackrel{i}{\longrightarrow} (B, \alpha_B) \stackrel{\pi}{\longrightarrow} (C, \alpha_C) \longrightarrow 0,$$

we can get that

$$0 \longrightarrow \operatorname{Hom}_{H}(C, E) \xrightarrow{\pi^{*}} \operatorname{Hom}_{H}(B, E) \xrightarrow{i^{*}} \operatorname{Hom}_{H}(A, E) \longrightarrow 0$$

is an exact sequence. We must prove the exactness of

$$0 \longrightarrow \operatorname{Hom}_{H}((C, \alpha_{C}), (E, \alpha_{E})) \xrightarrow{\pi^{*}} \operatorname{Hom}_{H}((B, \alpha_{B}), (E, \alpha_{E}))$$
$$\xrightarrow{i^{*}} \operatorname{Hom}_{H}((A, \alpha_{A}), (E, \alpha_{E})) \longrightarrow 0.$$

For $f: (C, \alpha_C) \longrightarrow (E, \alpha_E)$, i.e., $f: C \longrightarrow E$, $f \circ \alpha_C = \alpha_E \circ f$, and f(ch') = f(c)h'for $c \in C$, $h' \in H$, let $\pi^*(f) = f \circ \pi$, and then $f \circ \pi \circ \alpha_B = f \circ \alpha_C \circ \pi = \alpha_E \circ f \circ \pi$ and $f \circ \pi(bh') = f(\pi(b)h') = f(\pi(b)h' = f \circ \pi(b)h'$.

For $g: (A, \alpha_A) \longrightarrow (E, \alpha_E)$, i.e., $g: A \longrightarrow E$, $g \circ \alpha_A = \alpha_E \circ g$, and g(ah') = g(a)h' for $a \in A, h' \in H$, there exists a map $h: B \longrightarrow E$, such that $i^*(h) = g = h \circ i$. Since (E, α_E) is injective and i is an injection, by the definition, we obtain $h \circ \alpha_B = \alpha_E \circ h$ and h(bh') = h(b)h' for $b \in B, h' \in H$. Therefore, $\operatorname{Hom}_H(-, (E, \alpha_E))$ is an exact functor.

For the converse, assume that $\operatorname{Hom}_H(-, (E, \alpha_E))$ is an exact functor. For any $g \in \operatorname{Hom}_H((A, \alpha_A), (E, \alpha_E))$, there exists a morphism $h \in \operatorname{Hom}_H((B, \alpha_B), (E, \alpha_E))$ such that $g = h \circ i$, that is, (E, α_E) is an injective right Hom-*H*-module.

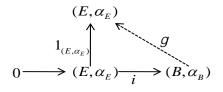
Corollary 3.1 For any right Hom-H-module (M, α_M) , Hom_H $(-, (M, \alpha_M))$ is a left exact contravariant functor.

Proposition 3.2 If a right Hom-H-module (E, α_E) is injective, then every short exact sequence

$$0 \longrightarrow (E, \alpha_E) \xrightarrow{i} (B, \alpha_B) \xrightarrow{\pi} (C, \alpha_C) \longrightarrow 0$$

splits.

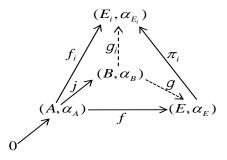
Proof Since (E, α_E) is injective, there exists a morphism $g : (B, \alpha_B) \longrightarrow (E, \alpha_E)$ such that the following diagram commutes,



that is, $g \circ i = 1_{(E,\alpha_E)}$.

Theorem 3.2 $(E, \alpha_E) = \left(\prod_{i \in I} E_i, \prod_{i \in I} \alpha_{E_i}\right)$ is injective if and only if every right Hom-Hmodule (E_i, α_{E_i}) is injective.

Proof Consider the diagram



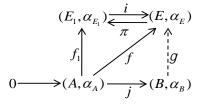
If (E_i, α_{E_i}) is injective, then there exists a morphism g_i such that $f_i = g_i \circ j$. Since (E, α_E) is the product of (E_i, α_{E_i}) , $i \in I$, there is a unique morphism f such that $\pi_i \circ f = f_i$ and a unique morphism g such that $\pi_i \circ g = g_i$. So $g \circ j = f$ and (E, α_E) is injective.

Conversely, if (E, α_E) is injective, then there exists a morphism g such that $g \circ j = f$. For $f_i : (A, \alpha_A) \longrightarrow (E_i, \alpha_{E_i})$, we must prove that there is a morphism g_i such that $g_i \circ j = f_i$. Since (E, α_E) is the product of (E_i, α_{E_i}) , $i \in I$, there is a unique morphism f such that $\pi_i \circ f = f_i$. We set $g_i = \pi_i \circ g$. Then $g_i \circ \alpha_B = \pi_i \circ g \circ \alpha_B = \pi_i \circ \alpha_E \circ g = \alpha_{E_i} \circ \pi_i \circ g = \alpha_{E_i} \circ g_i$ and $g_i(bh) = \pi_i \circ g(bh) = \pi_i(g(b)h) = \pi_i(g(b))h = \pi_i \circ g(b)h = g_i(b)h$ for $b \in B$, $h \in H$. Thus $g_i \circ j = f_i$ and (E_i, α_{E_i}) is injective.

Corollary 3.2 (1) Every direct summand of an injective right Hom-H-module (E, α_E) is injective.

(2) A finite direct sum of an injective right Hom-H-module is injective.

Proof (1) Assume that $(E, \alpha_E) = (E_1, \alpha_{E_1}) \oplus (E_2, \alpha_{E_2}), i : (E_1, \alpha_{E_1}) \longrightarrow (E, \alpha_E)$ is the inclusion and $\pi : (E, \alpha_E) \longrightarrow (E_1, \alpha_{E_1})$ is the projection. From the following diagram



we can conclude that (E_1, α_{E_1}) is injective. Similarly, (E_2, α_{E_2}) is also injective.

(2) Let I be a finite set, and then $\bigoplus_{i \in I} E_i = \prod_{i \in I} E_i$. So the conclusion holds.

Definition 3.8 Let (M, α_M) be a right Hom-H-module. A right Hom-H-module (E, α_E) containing (M, α_M) , that is, $M \subseteq E$ and $\alpha_E|_M = \alpha_M$, is an injective envelope of (M, α_M) , if (E, α_E) is injective and there is no proper injective Hom-submodule $(E', \alpha_{E'})$ such that $(M, \alpha_M) \subseteq (E', \alpha_{E'}) \subsetneq (E, \alpha_E)$.

Definition 3.9 (see [11]) Let $H = (H, \mu, \alpha, \eta)$ be a Hom-algebra. A Hom-subalgebra S of H is a triple $(S, \mu|_S, \alpha|_S, \eta|_S)$ in which:

- (1) $S \subseteq H$ is a K-submodule;
- (2) $\mu|_S : S \otimes_K S \longrightarrow S$ is a bilinear map;
- (3) $\alpha|_S : S \longrightarrow S$ is a linear endomorphism;
- (4) $\eta|_S: K \longrightarrow S$ is the unit.

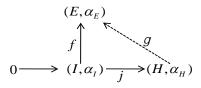
Definition 3.10 (see [11]) Let $H = (H, \mu, \alpha, \eta)$ be a Hom-algebra. A right Hom-ideal D of H is a triple $(D, \mu_D, \alpha_D, \eta_D)$ in which:

- (1) $D \subseteq H$ is a K-submodule;
- (2) $\mu_D = \mu|_D$ and $\mu_D(D \otimes_K H) \subseteq D$;

(3) $\alpha|_D = \alpha_D$.

Theorem 3.3 (Baer Criterion of Injective Hom-Module) A right Hom-H-module (E, α_E) is injective if and only if every right Hom-H-module morphism $f : (D, \alpha_D) \longrightarrow (E, \alpha_E)$, where D is a right Hom-ideal of H, which can be extended to (H, α_H) .

Proof Assume that (E, α_E) is injective, and there exists a morphism $g : (H, \alpha_H) \longrightarrow (E, \alpha_E)$ such that $g \circ j = f$.



Conversely, consider the diagram

where (A, α_A) is a Hom-submodule of (B, α_B) such that $\alpha_A = \alpha_B|_A$. Let X be the set of all ordered pairs $((A_i, \alpha_{A_i}), g_i)$, where $A \subseteq A_i \subseteq B$, and $g_i : (A_i, \alpha_{A_i}) \longrightarrow (E, \alpha_E)$ extends f, that is, $g_i|_{(A,\alpha_A)} = f$, $g_i \circ \alpha_{A_i} = \alpha_E \circ g_i$ and $g_i(a_ih) = g_i(a_i)h$ for $a_i \in A_i$, $h \in H$. Note that $X \neq \emptyset$ because $((A, \alpha_A), f) \in X$. The partial order on X is defined by

$$((A_i, \alpha_{A_i}), g_i) \le ((A_l, \alpha_{A_l}), g_l)$$

in which $A_i \subseteq A_l$, g_l extends g_i and $\alpha_{A_l}|_{A_i} = \alpha_{A_i}$. By Zorn's lemma, there exists a maximal element $((A_n, \alpha_{A_n}), g_n)$ in X.

If $A_n = B$, we are done. Otherwise, we may assume that there is some $b \in B$ with $b \notin A_n$. Define

$$D = \{ x \in H : bx \in A_n \}, \quad \alpha_D = \alpha_H |_D.$$

It is easy to see that (D, α_D) is a right Hom-ideal of (H, α_H) . In fact, for $x \in D$, $h \in H$, $bxh \in A_n$, because (A_n, α_{A_n}) is a Hom-submodule of (B, α_B) , we have $xh \in D$. Define $q : (D, \alpha_D) \longrightarrow (E, \alpha_E)$ by $q(x) = g_n(bx)$ and $b\alpha_D(x) = \alpha_{A_n}(bx)$. By the hypothesis, there is a map $q^* : (H, \alpha_H) \longrightarrow (E, \alpha_E)$ extending q. We set $A' = A_n + \langle b \rangle$ and $g' : A' \longrightarrow E$ is given by $g'(a_n + bx) = g_n(a_n) + q^*(1)x$. It is easy to see that g' is well defined by [6]. Clearly, $g'(a_n) = g_n(a_n)$ for all $a_n \in A_n$.

We set $\alpha_{A'}(a_n + bx) = \alpha_{A_n}(a_n) + b\alpha_D(x)$. Let us show that $\alpha_{A'}$ is well defined. If $a_n + bx = a'_n + bx'$, then $b(x - x') = a'_n - a_n \in A_n$ and $x - x' \in D$. We have

$$\alpha_{A_n}(a'_n - a_n) = \alpha_{A_n}(b(x - x')) = b\alpha_D(x - x').$$

Thus, $\alpha_{A_n}(a'_n) - \alpha_{A_n}(a_n) = b\alpha_D(x) - b\alpha_D(x')$ and $\alpha_{A_n}(a'_n) + b\alpha_D(x') = \alpha_{A_n}(a_n) + b\alpha_D(x)$, as desired.

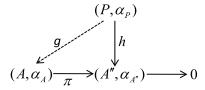
$$g' \circ \alpha_{A'}(a_n + bx) = g'(\alpha_{A_n}(a_n) + b\alpha_D(x)) = g_n(\alpha_{A_n}(a_n)) + q^*(1)\alpha_D(x),$$

$$\alpha_E \circ g'(a_n + bx) = \alpha_E(g_n(a_n) + q^*(1)x) = \alpha_E(g_n(a_n)) + q^*(1)\alpha_D(x).$$

So $g' \circ \alpha_{A'} = \alpha_E \circ g'$ and $g'((a_n + bx)h) = g_n(a_n)h + b\alpha_D(x)h = g'(a_n + bx)h$. We conclude that $((A_n, \alpha_{A_n}), g_n) \leq ((A', \alpha_{A'}), g')$, contradicting the maximality of $((A_n, \alpha_{A_n}), g_n)$. Therefore $A_n = B$, g_n extends f and (E, α_E) is injective.

Next we consider the projective right Hom-H-module which is dual to the injective right Hom-H-module.

Definition 3.11 A right Hom-H-module (P, α_P) is projective if, whenever π is surjective and h is any map, there exists a map g such that the following diagram commutes.



Remark 3.5 If (P, α_P) is a projective right Hom-*H*-module, then *P* is a projective right *H*-module.

Proposition 3.3 A right Hom-H-module (P, α_P) is projective if and only if

$$\operatorname{Hom}_H((P, \alpha_P), -)$$

is an exact functor.

Proof Assume that there exists an exact sequence in $HomMod_H$

$$0 \longrightarrow (A', \alpha_{A'}) \xrightarrow{i} (A, \alpha_A) \xrightarrow{\pi} (A'', \alpha_{A''}) \longrightarrow 0.$$

Since P is projective, we have an exact sequence

$$0 \longrightarrow \operatorname{Hom}_{H}(P, A') \xrightarrow{i_{*}} \operatorname{Hom}_{H}(P, A) \xrightarrow{\pi_{*}} \operatorname{Hom}_{H}(P, A'') \longrightarrow 0$$

We must prove the exactness of

$$0 \longrightarrow \operatorname{Hom}_{H}((P, \alpha_{P}), (A', \alpha_{A'})) \xrightarrow{\imath_{*}} \operatorname{Hom}_{H}((P, \alpha_{P}), (A, \alpha_{A}))$$
$$\xrightarrow{\pi_{*}} \operatorname{Hom}_{H}((P, \alpha_{P}), (A'', \alpha_{A''})) \longrightarrow 0.$$

For a morphism $f \in \text{Hom}_H((P, \alpha_P), (A', \alpha_{A'}))$, i.e., $f : P \longrightarrow A'$ such that $f \circ \alpha_P = \alpha_{A'} \circ f$, f(ph') = f(p)h' for $p \in P$, $h' \in H$. Let $i_*(f) = i \circ f$. Then $i \circ f \circ \alpha_P = i \circ \alpha_{A'} \circ f = \alpha_A \circ i \circ f$ and $i \circ f(ph') = i(f(p)h') = i(f(p))h' = i \circ f(p)h'$.

For a morphism $g \in \text{Hom}_H((P, \alpha_P), (A'', \alpha_{A''}))$, i.e., $g: P \longrightarrow A''$ such that $g \circ \alpha_P = \alpha_{A''} \circ g$ and g(ph') = g(p)h', there is a morphism $h: P \longrightarrow A$ such that $\pi \circ h = g$. Since (P, α_P) is projective, we have $h \circ \alpha_P = \alpha_A \circ h$ and h(ph') = h(p)h'. So $\text{Hom}_H((P, \alpha_P), -)$ is an exact functor.

Conversely, assume that $\operatorname{Hom}_H((P, \alpha_P), -)$ is an exact functor. So π_* is surjective: If $g \in \operatorname{Hom}_H((P, \alpha_P), (A'', \alpha_{A''}))$ and there exists a morphism $h \in \operatorname{Hom}_H((P, \alpha_P), (A, \alpha_A))$ with $g = \pi_*(h) = \pi \circ h$, $h \circ \alpha_P = \alpha_A \circ h$ and h(ph') = h(p)h' for $p \in P$, $h' \in H$, then (P, α_P) is a projective right Hom-*H*-module.

Corollary 3.3 For any right Hom-H-module (N, α_N) , Hom_H $((N, \alpha_N), -)$ is a covariant left exact functor.

Corollary 3.4 A right Hom-H-module (P, α_P) is projective, and then every short exact sequence $0 \longrightarrow (A, \alpha_A) \xrightarrow{i} (B, \alpha_B) \xrightarrow{\pi} (P, \alpha_P) \longrightarrow 0$ splits.

Dual to Theorem 3.2, we get the following theorem.

Theorem 3.4 $(P, \alpha_P) = \left(\bigoplus_{i \in I} P_i, \bigoplus_{i \in I} \alpha_{P_i}\right)$ is projective if and only if every right Hom-Hmodule (P_i, α_{P_i}) is projective.

4 Hom-Path Algebras

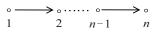
The purpose of this section is to define the concept of Hom-path algebra and give the types of quivers whose path algebras can be made into (nontrivial) Hom-path algebras.

Definition 4.1 A Hom-path algebra is a pair (KQ, α) in which: (1) KQ is a path algebra of a quiver Q, and (2) $\alpha : KQ \longrightarrow KQ$ is a linear endomorphism.

In the following, we consider the Hom-path algebras of some Dynkin diagrams and other quiver diagrams.

1. A_n -type

(1) Let Q be the quiver



and let KQ be the path algebra. $\alpha : KQ \longrightarrow KQ$ is an endomorphism. It is easy to see that (KQ, α) is a Hom-path algebra if and only if $\alpha = \mathrm{Id}_{KQ}$.

Remark 4.1 If the arrows are all reversed in the quiver *Q* above, the conclusion also holds.

(2) Let Q be the quiver

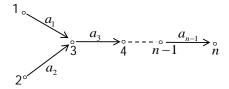
$$\stackrel{\circ}{\xrightarrow{a}} \stackrel{\circ}{\xrightarrow{b}} \stackrel{\circ}{\xrightarrow{b}} \stackrel{\circ}{\xrightarrow{a}} \stackrel{}{\xrightarrow{a}} \stackrel{\circ}{\xrightarrow{a}} \stackrel{\circ}{\xrightarrow{a}}$$

and let KQ be the path algebra. We construct $\alpha : KQ \longrightarrow KQ$, the endomorphism of KQ, by $\alpha(e_1) = e_3$, $\alpha(e_2) = e_2$, $\alpha(e_3) = e_1$, $\alpha(a) = b$ and $\alpha(b) = a$. Then (KQ, α) is the nontrivial Hom-path algebra and this case can be extended to all situations of centrosymmetry.

The indecomposable injective Hom-KQ-modules are $(E_1, \alpha|_{E_1})$, $(E_2, \alpha|_{E_2})$ and $(E_3, \alpha|_{E_3})$, where E_1 has a K-basis $\{e_1\}$, E_2 has a K-basis $\{e_2, a, b\}$ and E_3 has a K-basis $\{e_3\}$. The indecomposable projective Hom-KQ-modules are $(P_1, \alpha|_{P_1})$, $(P_2, \alpha|_{P_2})$ and $(P_3, \alpha|_{P_3})$, where P_1 has a K-basis $\{e_1, a\}$, P_2 has a K-basis $\{e_2\}$ and P_3 has a K-basis $\{e_3, b\}$.

2. D_n -type

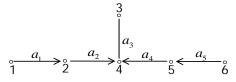
Let Q be the quiver



and let KQ be the path algebra. We set $\alpha : KQ \longrightarrow KQ$ by $\alpha(e_1) = e_2$, $\alpha(e_2) = e_1$, $\alpha(e_3) = e_3$, \cdots , $\alpha(e_n) = e_n$, $\alpha(a_1) = a_2$, $\alpha(a_2) = a_1$, $\alpha(a_3) = a_3$, \cdots , and $\alpha(a_{n-1}) = a_{n-1}$. Thus (KQ, α) is the nontrivial Hom-path algebra.

3. E_6 -type

Let Q be the quiver



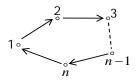
and let KQ be the path algebra. We set $\alpha : KQ \longrightarrow KQ$ by $\alpha(e_1) = e_6$, $\alpha(e_2) = e_5$, $\alpha(e_3) = e_3$, $\alpha(e_4) = e_4$, $\alpha(e_5) = e_2$, $\alpha(e_6) = e_1$, $\alpha(a_1) = a_5$, $\alpha(a_2) = a_4$, $\alpha(a_3) = a_3$, $\alpha(a_4) = a_2$, and $\alpha(a_5) = a_1$. Thus (KQ, α) is the nontrivial Hom-path algebra.

4. Type of A_n with cyclic paths

Let Q be the quiver

$$\stackrel{a}{\stackrel{1}{\longleftarrow}} \stackrel{a}{\stackrel{2}{\longrightarrow}} \stackrel{a}{2}$$

and let KQ be the path algebra. We set $\alpha : KQ \longrightarrow KQ$ by $\alpha(e_1) = e_2$, $\alpha(e_2) = e_1$, $\alpha(a) = b$, and $\alpha(b) = a$. Thus (KQ, α) is the nontrivial Hom-path algebra. This case can be extended to the following situation.



Definition 4.2 (see [2]) A Hom-coalgebra is a triple $(C, \Delta, \beta, \epsilon)$ in which:

(1) C is a K-comodule;

(2) $\Delta: C \longrightarrow C \otimes_K C$ is a bilinear map;

(3) $\beta: C \longrightarrow C$ is a linear endomorphism;

(4) $\epsilon: C \longrightarrow K$, the counit, is a linear map.

Definition 4.3 By a Hom-comodule, we mean a pair (W, β) consisting of

(1) a K-comodule W, and

(2) a linear endomorphism $\beta: W \longrightarrow W$.

A morphism $f: (M, \beta_M) \longrightarrow (N, \beta_N)$ of Hom-comodules is a linear map $f: M \longrightarrow N$ such that $f \circ \beta_M = \beta_N \circ f$.

Definition 4.4 A Hom-path coalgebra is a pair (KQ, β) in which:

(1) KQ is a path coalgebra of Q, and

(2) $\beta: KQ \longrightarrow KQ$ is a linear endomorphism.

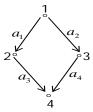
Remark 4.2 The Hom-path algebra can be viewed as a Hom-path coalgebra.

In fact, let Q be a quiver and let (KQ, α) be a Hom-path algebra, that is, KQ is a path algebra of Q and $\alpha : KQ \longrightarrow KQ$ is a linear endomorphism. First, we know that KQ can be a path coalgebra of Q, which is described in the preliminaries. Then, it is only to construct a linear endomorphism $\beta : KQ \longrightarrow KQ$ of the path coalgebra KQ. We can see the case of (2) in A_n -type on the 10th page where the endomorphism α of path algebra is also an endomorphism of path coalgebra by

$$\begin{aligned} \Delta(\alpha(e_i)) &= \alpha(e_i) \times \alpha(e_i), \\ \Delta(\alpha(a)) &= \alpha(a) \otimes \alpha(e_1) + \alpha(e_2) \otimes \alpha(a), \\ \Delta(\alpha(b)) &= \alpha(b) \otimes \alpha(e_3) + \alpha(e_2) \otimes \alpha(b). \end{aligned}$$

Definition 4.5 A Hom-path coalgebra (S, β_S) is said to be a relation Hom-subcoalgebra of a Hom-path Coalgebra (KQ, β_{KQ}) if S is a relation subcoalgebra of a path coalgebra KQ and $\beta_{KQ}|_S = \beta_S$.

Example 4.1 Let Q be the quiver



and let KQ be the path coalgebra. We define $\beta : KQ \longrightarrow KQ$ by $\beta(e_1) = e_1$, $\beta(e_2) = e_3$, $\beta(e_3) = e_2$, $\beta(e_4) = e_4$, $\beta(a_1) = a_2$, $\beta(a_2) = a_1$, $\beta(a_3) = a_4$, and $\beta(a_4) = a_3$. Let S be generated by $\{e_1, e_2, e_3, e_4, a_1, a_2, a_3, a_4\}$ as a K-basis. It is easy to see that S is a relation subcoalgebra of KQ. Then $(S, \beta|_S)$ is a relation Hom-subcoalgebra.

Acknowledgement The authors would like to thank the referees for the careful reading and valuable suggestions.

References

- [1] Makhlouf, A. and Silvestrov, S., Hom-algebra structures, J. Gen. Lie Theory Appl., 2(2), 2008, 51-64.
- [2] Makhlouf, A. and Silvestrov, S., Hom-algebras and Hom-coalgebras, J. Algebra Appl., 9, 2010, 553–589.
- [3] Yau, D., Enveloping algebras of Hom-Lie algebras, J. Gen. Lie Theory Appl., 2(2), 2008, 95–108.
- [4] Yau, D., Hom-algebras and homology, J. Lie Theory, 19, 2009, 409-421.
- [5] Yau, D., Hom-bialgebras and comodule Hom-algebras, International Electronic Journal of Algebra, 8, 2010, 45–64.
- [6] Rotman, J. J., An Introduction to Homological Algebra (2nd Edition), Springer-Verlag, New York, 2009.
- [7] Zhou, B. X., Homological Algebra, Science Press, Beijing, 1998 (in Chinese).
- [8] Makhlouf, A., Reiteni, I. and Smal\u03c6, S. O., Representation Theory of Artin Algebras, Cambridge University Press, Cambridge, 1995.
- Woodcock, D., Some categorical remarks on the representation theory of coalgebras, Comm. Algebra, 25(9), 1997, 2775–2794.
- [10] Simson, D., Path coalgebras of quiver with relations and a tame-wild dichotomy problem for coalgebras, Lecture Notes in Pure and Appl. Math., Marcel-Dekker, 236, 2004, 465–492.
- [11] Makhlouf, A., Paradigm of nonassociative Hom-algebras and Hom-superalgebras, arXiv:1001.4240v1.