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1 Introduction

A Hom-algebra structure is a multiplication on a vector space where the structure is twisted
by a homomorphism. Hom-Lie algebras and general quasi-Hom-Lie and quasi-Lie algebras were
introduced by Hartwig, Larsson and Silvestrov as algebras embracing Lie algebras, super and
color Lie algebras and their quasi-deformations by twisted derivations. Makhlouf and Silvestrov
introduced and studied Hom-associative, Hom-Leibniz and Hom-Lie admissible algebraic struc-
tures generalizing associative, Leibniz and Lie admissible algebras in [1]. At the same time, they
developed the theory of Hom-coalgebras and related structures in [2]. In [3–5], Yau constructed
enveloping algebras of Hom-Lie and Hom-Leibniz algebras, researched G-Hom-associative al-
gebras as deformations of G-associative algebras along algebra endomorphisms, and studied
Hom-bialgebras and objects admitting coactions by Hom-bialgebras.

In this paper, we extend Hom-modules and Hom-algebras to the category of modules and
the representation of quivers respectively, by using the ideas of [6–8]. This paper is organized
as follows. In Section 2, we summarize the definitions of Hom-algebra, Hom-module and path
algebra of quivers. In Section 3, we define right Hom-H-module for a Hom-algebra H and prove
that HomModH is an Abelian category. For injective and projective right Hom-H-modules, we
research some of their essential properties and give the Baer Criterion of injective Hom-module.
In Section 4, we define the concept of Hom-path algebra and give the types of quivers whose
path algebras can be made into (nontrivial) Hom-path algebras.

2 Preliminaries

Throughout this paper, let K denote a field of characteristic 0. Firstly, we introduce the
definitions of Hom-algebra and Hom-module as follows.
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Definition 2.1 (see [3]) A Hom-algebra is a triple (H, μ, α, η) in which:
(1) H is a K-module;
(2) μ : H ⊗K H −→ H is a bilinear map;
(3) α : H −→ H is a linear endomorphism;
(4) η : K −→ H, the unit, is a linear map such that the following diagram commutes.

When there is no danger of confusion, we will denote a Hom-algebra (H, μ, α, η) simply by H.

Definition 2.2 (see [3]) By a Hom-module, we mean a pair (V, α) consisting of
(1) a K-module V , and
(2) a linear endomorphism α : V −→ V .
A morphism f : (M, αM ) −→ (N, αN ) of Hom-modules is a linear map f : M −→ N such

that f ◦ αM = αN ◦ f .

Next, we recall some points about quivers and path (co)algebras. By a quiver Q, we mean
a quadruple (Q0, Q1, h, s), where Q0 is the set of vertices (points), Q1 is the set of arrows and
for each arrow a ∈ Q1, the vertices h(a) and s(a) are the source (or start point) and the sink
(or end point) of a, respectively. If i and j are vertices in Q, an (oriented) path in Q of length
m from i to j is a formal composition of arrows

p = am · · · a2a1,

where h(a1) = i, s(am) = j and s(ak−1) = h(ak), for k = 2, · · · , m. To any vertex i ∈ Q0,
we attach a trivial path of length 0, say ei, starting and ending at i such that aei = a (resp.
eib = b) for any arrow a (resp. b) with h(a) = i (resp. s(b) = i). We identify the set of vertices
and the set of trivial paths. An (oriented) cycle is a path in Q which starts and ends at the
same vertex. Q is said to be acyclic if there is no oriented cycle in Q.

Let KQ be the K-vector space generated by the set of all paths in Q. Then KQ can be
endowed with the structure of a (unnecessarily unitary) K-algebra with multiplication induced
by concatenation of paths, that is,

(am · · · a2a1)(bn · · · b2b1) =
{

am · · ·a2a1bn · · · b2b1, if s(bn) = h(a1),
0, otherwise.

KQ is the path algebra of the quiver Q. The algebra KQ can be graded by

KQ = KQ0 ⊕ KQ1 ⊕ · · · ⊕ KQm ⊕ · · · ,

where Qm is the set of all paths of length m.
Following [9], the path algebra KQ can be viewed as a K-coalgebra with comultiplication

induced by the decomposition of path, that is, if p = am · · ·a1 is a path from the vertex i to
the vertex j, then Δ(p) =

∑
ητ=p

η⊗ τ and for a stationary path ei, we have Δ(ei) = ei ⊗ ei. The

counit of KQ is defined by the formula

ε(a) =
{

1, if a ∈ Q0,
0, if a is a path of length ≥ 1.

The coalgebra (KQ, Δ, ε) (shortly KQ) is called the path coalgebra of the quiver Q.
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Definition 2.3 (see [10]) A relation subcoalgebra of a path coalgebra KQ is any subcoalgebra
S of KQ satisfying the following two conditions:

(a) The subcoalgebra KQ≤1 = KQ0 ⊕ KQ1 of KQ is a subcoalgebra of S;
(b) S =

⊕
i,j∈Q0

S(i, j), where S(i, j) = S ∩ KQ(i, j).

3 Injective and Projective Hom-Modules

The main purpose of this section is to study injective and projective Hom-modules and some
of their fundamental properties which are similar to those in the homological algebra. First we
need some preliminary concepts.

Definition 3.1 Let H be a Hom-algebra. By a right Hom-H-module, we mean a Hom-
module (M, αM ) equipped with a right H-action, ρM : M ⊗K H −→ M(m ⊗ h 	−→ mh), such
that αM (mh) = αM (m)αH(h) for m ∈ M, h ∈ H.

A morphism f : (M, αM ) −→ (N, αN ) of right Hom-H-modules is a morphism of Hom-
modules such that f(mh) = f(m)h for m ∈ M, h ∈ H.

Remark 3.1 The morphism f is well defined, that is, f ◦ αM (mh) = f(αM (m)αH(h)) =
f(αM (m))αH(h) = f ◦ αM (m)αH(h) = αN ◦ f(m)αH(h) = αN (f(m))αH(h) = αN (f(m)h) =
αN ◦f(mh). We denote the set of morphisms of right Hom-H-modules from (M, αM ) to (N, αN )
by HomH((M, αM ), (N, αN )).

All right Hom-H-modules and their morphisms form a category which is denoted by
HomModH .

Definition 3.2 For a right Hom-H-module (M, αM ), we define that (U, αU ) is a Hom-
submodule of (M, αM ) if

(1) U ⊆ M is a K-submodule;
(2) αU = αM |U , and αU (U) ⊆ U ;
(3) ρU = ρM |U and ρU (U ⊗K H) ⊆ U .

Definition 3.3 A (direct) product of a family of right Hom-H-modules (Ai, αAi) is (A, αA),
if there exist morphisms πi : (A, αA) −→ (Ai, αAi) such that for any (B, αB) and fi : (B, αB) −→
(Ai, αAi), there is a unique morphism f : B −→ A such that the following diagram commutes
for all i ∈ I, where I is an index set.

( , )BB

( , )
ii AA

if

( , )AA

f

i

Remark 3.2 By the category of modules, we know A =
∏
i∈I

Ai. Define
∏
i∈I

αAi(a) =∏
i∈I

αAi(ai) for a ∈ A, ai ∈ Ai. It is easy to see that αA =
∏
i∈I

αAi . Then (A, αA) is the (direct)

product
( ∏

i∈I

Ai,
∏
i∈I

αAi

)
.

Similarly, we can define the concept of coproduct.

Definition 3.4 A coproduct of a family of right Hom-H-modules (Ai, αAi) is (A′, αA′),
if there exist morphisms ηi : (Ai, αAi) −→ (A′, αA′) such that for any (B, αB) and gi :
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(Ai, αAi) −→ (B, αB), there is a unique morphism g : A′ −→ B such that the following di-
agram commutes for all i ∈ I.

( , )BB

( , )
ii AA

( , )AA

i

g

gi

Remark 3.3 In the category of modules, we know A′ =
∐
i∈I

Ai and
∐
i∈I

Ai ⊆ ∏
i∈I

Ai.

Define αA′ = αA|A′ and
∐
i∈I

αAi(a′) =
∑
i∈I

αAi(ai) for a′ ∈ A′, ai ∈ Ai. It is easy to see that

αA′ =
∐
i∈I

αAi . Then (A′, αA′) is the coproduct
( ∐

i∈I

Ai,
∐
i∈I

αAi

)
. Normally, we also denote

(A′, αA′) by the direct sum
( ⊕

i∈I

Ai,
⊕
i∈I

αAi

)
.

Definition 3.5 If u : (A, αA) −→ (B, αB) is a morphism of right Hom-H-modules, then
its kernel Keru is a morphism i : (L, αL) −→ (A, αA) that satisfies the following universal
mapping property: ui = 0 and for every g : (X, αX) −→ (A, αA) with ug = 0, there exists
a unique θ : (X, αX) −→ (L, αL) with iθ = g. There is a dual definition for cokernel (the
morphism π in the diagram).

( , )LL ( , )AA ( , )BBu

g

i

( , )XX

0

( , )AA ( , )BBu ( , )CC

( , )YY

h
0

Theorem 3.1 HomModH is an Abelian category.

Proof Firstly, let us show that HomModH is an additive category. For any f1, f2 ∈
HomH((A, αA), (B, αB)), we define (f1 + f2)(a) = f1(a) + f2(a) for a ∈ A, then

(f1 + f2)(a1 + a2) = f1(a1 + a2) + f2(a1 + a2)
= f1(a1) + f1(a2) + f2(a1) + f2(a2) = (f1 + f2)(a1) + (f1 + f2)(a2),

(f1 + f2)(ah) = f1(ah) + f2(ah) = f1(a)h + f2(a)h = (f1 + f2)(a)h

for a1, a2 ∈ A, h ∈ H .

(f1 + f2) ◦ αA = f1 ◦ αA + f2 ◦ αA = αB ◦ f1 + αB ◦ f2 = αB ◦ (f1 + f2).

Thus, f1 + f2 ∈ HomH((A, αA), (B, αB)) and HomH((A, αA), (B, αB)) is an additive Abelian
group; zero morphism is the zero element, and −f is the negative element of f . It is easy to see
that the distribution laws are established and any finite right Hom-H-module has a coproduct
(see Remark 3.3).

Next, we will show that the additive category HomModH is an Abelian category. Suppose
f ∈ HomH((A, αA), (B, αB)), and let

N = {a ∈ A | f(a) = 0}, αN = αA|N ,
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where f(αN (a)) = f ◦ αA|N (a) = f ◦ αA(a) = αB ◦ f(a) = αB(f(a)) = 0 for a ∈ N , that is,
αN (N) ⊆ N ;

M = {b ∈ B | there is an a in A, such that f(a) = b}, αM = αB|M ,

where αM (b) = αB|M (b) = αB(f(a)) = αB ◦ f(a) = f ◦ αA(a) = f(αA(a)) for b ∈ M , that is,
αM (M) ⊆ M . Then (N, αN ) is a Hom-submodule of (A, αA) and (M, αM ) is a Hom-submodule
of (B, αB) because f(ah) = f(a)h = 0 and bh = f(a)h = f(ah). Note that (N, αN ) = Kerf
is the kernel of f . We denote (M, αM ) = Imf and the cokernel of f is Cokf = (B/M, αB/M ),
where αB/M (b + M) = αB(b) + M , which is well defined. In fact, if b + M = b′ + M , then
b − b′ ∈ M and αB(b − b′) ∈ M , so αB(b) + M = αB(b′) + M , as desired.

If N = 0, f is a monomorphism; if M = B, f is an epimorphism; and if M = 0, f is a zero
morphism. We define

i : (N, αN ) −→ (A, αA), such that i(a) = a ∈ N ;
π : (A, αA) −→ (M, αM ), such that π(a) = f(a) ∈ M ;
η : (M, αM ) −→ (B, αB), such that η(b) = b ∈ B;
π′ : (B, αB) −→ (B/M, αB/M ) is the natural epimorphism.

Then i and η are monomorphisms; π and π′ are epimorphisms. Since f = ηπ, the following
diagram commutes.

( , )BB( , )AAi f( , )NN /( / , )B MB M

( , )MM

Thus, i = Ker f = Kerπ, and π′ = Cok f = Cok η.

Definition 3.6 A covariant functor T is an exact functor if for every exact sequence

0 −→ (A, αA) i−→ (B, αB) π−→ (C, αC) −→ 0

in HomModH , the sequence

0 −→ (T (A), αT (A))
T (i)−→ (T (B), αT (B))

T (π)−→ (T (C), αT (C)) −→ 0

is also exact.
A contravariant functor F is an exact functor if there is always exactness of

0 −→ (F (C), αF (C))
F (π)−→ (F (B), αF (B))

F (i)−→ (F (A), αF (A)) −→ 0.

Definition 3.7 A right Hom-H-module (E, αE) is injective if, whenever i is an injection,
a dashed arrow exists such that the following diagram commutes.

0 ( , )AA ( , )BBi

( , )EE

f g

.
Remark 3.4 If (E, αE) is an injective right Hom-H-module, then E is an injective right

H-module.
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Proposition 3.1 A right Hom-H-module (E, αE) is injective if and only if

HomH(−, (E, αE))

is an exact functor.

Proof If (E, αE) is injective, for an exact sequence of right Hom-H-modules

0 −→ (A, αA) i−→ (B, αB) π−→ (C, αC) −→ 0,

we can get that

0 −→ HomH(C, E) π∗−→ HomH(B, E) i∗−→ HomH(A, E) −→ 0

is an exact sequence. We must prove the exactness of

0 −→ HomH((C, αC), (E, αE)) π∗−→ HomH((B, αB), (E, αE))
i∗−→ HomH((A, αA), (E, αE)) −→ 0.

For f : (C, αC) −→ (E, αE), i.e., f : C −→ E, f ◦ αC = αE ◦ f , and f(ch′) = f(c)h′

for c ∈ C, h′ ∈ H , let π∗(f) = f ◦ π, and then f ◦ π ◦ αB = f ◦ αC ◦ π = αE ◦ f ◦ π and
f ◦ π(bh′) = f(π(b)h′) = f(π(b))h′ = f ◦ π(b)h′.

For g : (A, αA) −→ (E, αE), i.e., g : A −→ E, g ◦ αA = αE ◦ g, and g(ah′) = g(a)h′ for
a ∈ A, h′ ∈ H , there exists a map h : B −→ E, such that i∗(h) = g = h ◦ i. Since (E, αE) is
injective and i is an injection, by the definition, we obtain h ◦αB = αE ◦ h and h(bh′) = h(b)h′

for b ∈ B, h′ ∈ H . Therefore, HomH(−, (E, αE)) is an exact functor.
For the converse, assume that HomH(−, (E, αE)) is an exact functor. For any g ∈

HomH((A, αA), (E, αE)), there exists a morphism h ∈ HomH((B, αB), (E, αE)) such that
g = h ◦ i, that is, (E, αE) is an injective right Hom-H-module.

Corollary 3.1 For any right Hom-H-module (M, αM ), HomH(−, (M, αM )) is a left exact
contravariant functor.

Proposition 3.2 If a right Hom-H-module (E, αE) is injective, then every short exact
sequence

0 −→ (E, αE) i−→ (B, αB) π−→ (C, αC) −→ 0

splits.

Proof Since (E, αE) is injective, there exists a morphism g : (B, αB) −→ (E, αE) such
that the following diagram commutes,

0 ( , )EE ( , )BBi

( , )EE

( , )1
EE

g

that is, g ◦ i = 1(E,αE).

Theorem 3.2 (E, αE) =
( ∏

i∈I

Ei,
∏
i∈I

αEi

)
is injective if and only if every right Hom-H-

module (Ei, αEi) is injective.

Proof Consider the diagram
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( , )AA ( , )EE

( , )BB

0

( , )
ii EE

f

j

if i

g

gi

If (Ei, αEi) is injective, then there exists a morphism gi such that fi = gi ◦ j. Since (E, αE)
is the product of (Ei, αEi), i ∈ I, there is a unique morphism f such that πi ◦ f = fi and a
unique morphism g such that πi ◦ g = gi. So g ◦ j = f and (E, αE) is injective.

Conversely, if (E, αE) is injective, then there exists a morphism g such that g ◦ j = f . For
fi : (A, αA) −→ (Ei, αEi), we must prove that there is a morphism gi such that gi◦j = fi. Since
(E, αE) is the product of (Ei, αEi), i ∈ I, there is a unique morphism f such that πi ◦ f = fi.
We set gi = πi ◦ g. Then gi ◦ αB = πi ◦ g ◦ αB = πi ◦ αE ◦ g = αEi ◦ πi ◦ g = αEi ◦ gi and
gi(bh) = πi ◦ g(bh) = πi(g(b)h) = πi(g(b))h = πi ◦ g(b)h = gi(b)h for b ∈ B, h ∈ H . Thus
gi ◦ j = fi and (Ei, αEi) is injective.

Corollary 3.2 (1) Every direct summand of an injective right Hom-H-module (E, αE) is
injective.

(2) A finite direct sum of an injective right Hom-H-module is injective.

Proof (1) Assume that (E, αE) = (E1, αE1) ⊕ (E2, αE2), i : (E1, αE1) −→ (E, αE) is the
inclusion and π : (E, αE) −→ (E1, αE1) is the projection. From the following diagram

j0 ( , )AA ( , )BB

( , )EE
11( , )EE

f1f

i

g

we can conclude that (E1, αE1) is injective. Similarly, (E2, αE2) is also injective.
(2) Let I be a finite set, and then

⊕
i∈I

Ei =
∏
i∈I

Ei. So the conclusion holds.

Definition 3.8 Let (M, αM ) be a right Hom-H-module. A right Hom-H-module (E, αE)
containing (M, αM ), that is, M ⊆ E and αE |M = αM , is an injective envelope of (M, αM ),
if (E, αE) is injective and there is no proper injective Hom-submodule (E′, αE′) such that
(M, αM ) ⊆ (E′, αE′) � (E, αE).

Definition 3.9 (see [11]) Let H = (H, μ, α, η) be a Hom-algebra. A Hom-subalgebra S of
H is a triple (S, μ|S , α|S , η|S) in which:

(1) S ⊆ H is a K-submodule;
(2) μ|S : S ⊗K S −→ S is a bilinear map;
(3) α|S : S −→ S is a linear endomorphism;
(4) η|S : K −→ S is the unit.

Definition 3.10 (see [11]) Let H = (H, μ, α, η) be a Hom-algebra. A right Hom-ideal D
of H is a triple (D, μD, αD, ηD) in which:

(1) D ⊆ H is a K-submodule;
(2) μD = μ|D and μD(D ⊗K H) ⊆ D;
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(3) α|D = αD.

Theorem 3.3 (Baer Criterion of Injective Hom-Module) A right Hom-H-module (E, αE)
is injective if and only if every right Hom-H-module morphism f : (D, αD) −→ (E, αE), where
D is a right Hom-ideal of H, which can be extended to (H, αH).

Proof Assume that (E, αE) is injective, and there exists a morphism g : (H, αH) −→
(E, αE) such that g ◦ j = f .

0 ( , )II ( , )HHj

( , )EE

f g

Conversely, consider the diagram

0 ( , )AA ( , )BBj

( , )EE

f

where (A, αA) is a Hom-submodule of (B, αB) such that αA = αB|A. Let X be the set of all
ordered pairs ((Ai, αAi), gi), where A ⊆ Ai ⊆ B, and gi : (Ai, αAi) −→ (E, αE) extends f , that
is, gi|(A,αA) = f, gi ◦αAi = αE ◦ gi and gi(aih) = gi(ai)h for ai ∈ Ai, h ∈ H . Note that X �= ∅
because ((A, αA), f) ∈ X . The partial order on X is defined by

((Ai, αAi), gi) ≤ ((Al, αAl
), gl)

in which Ai ⊆ Al, gl extends gi and αAl
|Ai = αAi . By Zorn’s lemma, there exists a maximal

element ((An, αAn), gn) in X .
If An = B, we are done. Otherwise, we may assume that there is some b ∈ B with b /∈ An.

Define
D = {x ∈ H : bx ∈ An}, αD = αH |D.

It is easy to see that (D, αD) is a right Hom-ideal of (H, αH). In fact, for x ∈ D, h ∈ H ,
bxh ∈ An, because (An, αAn) is a Hom-submodule of (B, αB), we have xh ∈ D. Define
q : (D, αD) −→ (E, αE) by q(x) = gn(bx) and bαD(x) = αAn(bx). By the hypothesis, there
is a map q∗ : (H, αH) −→ (E, αE) extending q. We set A′ = An + 〈b〉 and g′ : A′ −→ E is
given by g′(an + bx) = gn(an) + q∗(1)x. It is easy to see that g′ is well defined by [6]. Clearly,
g′(an) = gn(an) for all an ∈ An.

We set αA′(an + bx) = αAn(an)+ bαD(x). Let us show that αA′ is well defined. If an + bx =
a′

n + bx′, then b(x − x′) = a′
n − an ∈ An and x − x′ ∈ D. We have

αAn(a′
n − an) = αAn(b(x − x′)) = bαD(x − x′).

Thus, αAn(a′
n)−αAn(an) = bαD(x)− bαD(x′) and αAn(a′

n)+ bαD(x′) = αAn(an)+ bαD(x), as
desired.

g′ ◦ αA′(an + bx) = g′(αAn(an) + bαD(x)) = gn(αAn(an)) + q∗(1)αD(x),
αE ◦ g′(an + bx) = αE(gn(an) + q∗(1)x) = αE(gn(an)) + q∗(1)αD(x).
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So g′ ◦αA′ = αE ◦g′ and g′((an + bx)h) = gn(an)h+ bαD(x)h = g′(an + bx)h. We conclude that
((An, αAn), gn) ≤ ((A′, αA′), g′), contradicting the maximality of ((An, αAn), gn). Therefore
An = B, gn extends f and (E, αE) is injective.

Next we consider the projective right Hom-H-module which is dual to the injective right
Hom-H-module.

Definition 3.11 A right Hom-H-module (P, αP ) is projective if, whenever π is surjective
and h is any map, there exists a map g such that the following diagram commutes.

Remark 3.5 If (P, αP ) is a projective right Hom-H-module, then P is a projective right
H-module.

Proposition 3.3 A right Hom-H-module (P, αP ) is projective if and only if

HomH((P, αP ),−)

is an exact functor.

Proof Assume that there exists an exact sequence in HomModH

0 −→ (A′, αA′) i−→ (A, αA) π−→ (A′′, αA′′) −→ 0.

Since P is projective, we have an exact sequence

0 −→ HomH(P, A′) i∗−→ HomH(P, A) π∗−→ HomH(P, A′′) −→ 0.

We must prove the exactness of

0 −→ HomH((P, αP ), (A′, αA′)) i∗−→ HomH((P, αP ), (A, αA))
π∗−→ HomH((P, αP ), (A′′, αA′′)) −→ 0.

For a morphism f ∈ HomH((P, αP ), (A′, αA′)), i.e., f : P −→ A′ such that f ◦αP = αA′ ◦f ,
f(ph′) = f(p)h′ for p ∈ P, h′ ∈ H . Let i∗(f) = i ◦ f . Then i ◦ f ◦ αP = i ◦ αA′ ◦ f = αA ◦ i ◦ f
and i ◦ f(ph′) = i(f(p)h′) = i(f(p))h′ = i ◦ f(p)h′.

For a morphism g ∈ HomH((P, αP ), (A′′, αA′′)), i.e., g : P −→ A′′ such that g◦αP = αA′′ ◦g
and g(ph′) = g(p)h′, there is a morphism h : P −→ A such that π ◦ h = g. Since (P, αP ) is
projective, we have h ◦ αP = αA ◦ h and h(ph′) = h(p)h′. So HomH((P, αP ),−) is an exact
functor.

Conversely, assume that HomH((P, αP ),−) is an exact functor. So π∗ is surjective: If
g ∈ HomH((P, αP ), (A′′, αA′′)) and there exists a morphism h ∈ HomH((P, αP ), (A, αA)) with
g = π∗(h) = π ◦ h, h ◦ αP = αA ◦ h and h(ph′) = h(p)h′ for p ∈ P, h′ ∈ H , then (P, αP ) is a
projective right Hom-H-module.

Corollary 3.3 For any right Hom-H-module (N, αN ), HomH((N, αN ),−) is a covariant
left exact functor.

Corollary 3.4 A right Hom-H-module (P, αP ) is projective, and then every short exact
sequence 0 −→ (A, αA) i−→ (B, αB) π−→ (P, αP ) −→ 0 splits.
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Dual to Theorem 3.2, we get the following theorem.

Theorem 3.4 (P, αP ) =
( ⊕

i∈I

Pi,
⊕
i∈I

αPi

)
is projective if and only if every right Hom-H-

module (Pi, αPi) is projective.

4 Hom-Path Algebras

The purpose of this section is to define the concept of Hom-path algebra and give the types
of quivers whose path algebras can be made into (nontrivial) Hom-path algebras.

Definition 4.1 A Hom-path algebra is a pair (KQ, α) in which:
(1) KQ is a path algebra of a quiver Q, and
(2) α : KQ −→ KQ is a linear endomorphism.

In the following, we consider the Hom-path algebras of some Dynkin diagrams and other
quiver diagrams.

1. An-type
(1) Let Q be the quiver

1 2 nn 1

and let KQ be the path algebra. α : KQ −→ KQ is an endomorphism. It is easy to see that
(KQ, α) is a Hom-path algebra if and only if α = IdKQ.

Remark 4.1 If the arrows are all reversed in the quiver Q above, the conclusion also holds.

(2) Let Q be the quiver

1 2 3

and let KQ be the path algebra. We construct α : KQ −→ KQ, the endomorphism of KQ, by
α(e1) = e3, α(e2) = e2, α(e3) = e1, α(a) = b and α(b) = a. Then (KQ, α) is the nontrivial
Hom-path algebra and this case can be extended to all situations of centrosymmetry.

The indecomposable injective Hom-KQ-modules are (E1, α|E1), (E2, α|E2) and (E3, α|E3),
where E1 has a K-basis {e1}, E2 has a K-basis {e2, a, b} and E3 has a K-basis {e3}. The
indecomposable projective Hom-KQ-modules are (P1, α|P1), (P2, α|P2) and (P3, α|P3), where
P1 has a K-basis {e1, a}, P2 has a K-basis {e2} and P3 has a K-basis {e3, b}.

2. Dn-type
Let Q be the quiver

1

2

3

1a

4 1n n
2a

3a 1na

and let KQ be the path algebra. We set α : KQ −→ KQ by α(e1) = e2, α(e2) = e1, α(e3) =
e3, · · · , α(en) = en, α(a1) = a2, α(a2) = a1, α(a3) = a3, · · · , and α(an−1) = an−1. Thus
(KQ, α) is the nontrivial Hom-path algebra.

3. E6-type
Let Q be the quiver
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1

3

2
1a

4
2a

3a
4a 5a

5 6

and let KQ be the path algebra. We set α : KQ −→ KQ by α(e1) = e6, α(e2) = e5, α(e3) =
e3, α(e4) = e4, α(e5) = e2, α(e6) = e1, α(a1) = a5, α(a2) = a4, α(a3) = a3, α(a4) = a2, and
α(a5) = a1. Thus (KQ, α) is the nontrivial Hom-path algebra.

4. Type of Ãn with cyclic paths
Let Q be the quiver

a

b1 2

and let KQ be the path algebra. We set α : KQ −→ KQ by α(e1) = e2, α(e2) = e1, α(a) = b,
and α(b) = a. Thus (KQ, α) is the nontrivial Hom-path algebra. This case can be extended to
the following situation.

1

2 3

1n
n

Definition 4.2 (see [2]) A Hom-coalgebra is a triple (C, Δ, β, ε) in which:
(1) C is a K-comodule;
(2) Δ : C −→ C ⊗K C is a bilinear map;
(3) β : C −→ C is a linear endomorphism;
(4) ε : C −→ K, the counit, is a linear map.

Definition 4.3 By a Hom-comodule, we mean a pair (W, β) consisting of
(1) a K-comodule W , and
(2) a linear endomorphism β : W −→ W .
A morphism f : (M, βM ) −→ (N, βN ) of Hom-comodules is a linear map f : M −→ N such

that f ◦ βM = βN ◦ f .

Definition 4.4 A Hom-path coalgebra is a pair (KQ, β) in which:
(1) KQ is a path coalgebra of Q, and
(2) β : KQ −→ KQ is a linear endomorphism.

Remark 4.2 The Hom-path algebra can be viewed as a Hom-path coalgebra.

In fact, let Q be a quiver and let (KQ, α) be a Hom-path algebra, that is, KQ is a path
algebra of Q and α : KQ −→ KQ is a linear endomorphism. First, we know that KQ can be
a path coalgebra of Q, which is described in the preliminaries. Then, it is only to construct a
linear endomorphism β : KQ −→ KQ of the path coalgebra KQ. We can see the case of (2) in
An-type on the 10th page where the endomorphism α of path algebra is also an endomorphism
of path coalgebra by

Δ(α(ei)) = α(ei) × α(ei),
Δ(α(a)) = α(a) ⊗ α(e1) + α(e2) ⊗ α(a),
Δ(α(b)) = α(b) ⊗ α(e3) + α(e2) ⊗ α(b).
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Definition 4.5 A Hom-path coalgebra (S, βS) is said to be a relation Hom-subcoalgebra of
a Hom-path Coalgebra (KQ, βKQ) if S is a relation subcoalgebra of a path coalgebra KQ and
βKQ|S = βS.

Example 4.1 Let Q be the quiver

1a 2a

3a 4a

1

4

2 3

and let KQ be the path coalgebra. We define β : KQ −→ KQ by β(e1) = e1, β(e2) =
e3, β(e3) = e2, β(e4) = e4, β(a1) = a2, β(a2) = a1, β(a3) = a4, and β(a4) = a3. Let S
be generated by {e1, e2, e3, e4, a1, a2, a3, a4} as a K-basis. It is easy to see that S is a relation
subcoalgebra of KQ. Then (S, β|S) is a relation Hom-subcoalgebra.
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