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Abstract The author considers the perturbed Riemann problem for a scalar Chapman-
Jouguet combustion model which comes from Majda’s model with a modified, bump-type
ignition function proposed in the results of Lyng and Zumbrun in 2004. Under the entropy
conditions, the unique solution in a neighborhood of the origin on the (x, t) plane (t > 0) is
obtained. It is found that, for some cases, the perturbed Riemann solutions are essentially
different from the corresponding Riemann solutions. The perturbation may transform a
strong detonation into a weak deflagration in the neighborhood of the origin. Especially, it
can be observed that burning happens although the corresponding Riemann solution does
not contain combustion wave, which exhibits the instability for the unburnt state.
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1 Introduction

The Chapman-Jouguet (CJ for short) combustion theory describing the combustible gas
with an infinite reaction rate plays an important role in gas dynamics (see [2, 5, 22]). Because
of the difficulty of combustion problems in gas dynamics, there are few results for the CJ
gas dynamic combustion except for the Riemann problems in [4] (a solution involving only
detonation), [21] (a solution involving only deflagration), and [25] (a solution satisfying the
so-called geometrical entropy conditions).

In [13], from the one-dimensional combustion equation written in Lagrangian coordinates for
the simple reactant to the product mechanism, Majda proposed the simplified scalar combustion
model as {

(u+ qz)t + f(u)x = βuxx,

zt = −kϕ(u)z.
(1.1)

It is hoped that this qualitative model retains most of the essential features of the Lagrangian
equations, except the species diffusion (see [14]). Here u is a lumped gas-dynamical variable
combining aspects of specific volume, particle velocity and temperature, z measures the mass
fraction of unburnt gas, and the flux f(u) is required to satisfy

f ′(u) > 0, f ′′(u) > 0. (1.2)
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The viscosity coefficient β, the chemical binding energy q and the reaction rate k are all positive
constants. The ignition function ϕ(u) is the Heaviside function as follows:

ϕ(u) = 0 for u ≤ ui, ϕ(u) = 1 for u > ui, (1.3)

where ui is the ignition temperature. This model was extensively studied as it is perhaps the
most amenable one of all the models to rigorous mathematical analysis. Ying and Teng [23]
studied the Riemann solution of (1.1) at β = 0 where the flux f(u) was relaxed to satisfy
f ′′(u) > 0. They obtained the limit of the solution as k tends to infinity and defined the limit
function as the solution of the Riemann problem for the corresponding CJ model⎧⎪⎨⎪⎩

(u+ qz)t + f(u)x = 0,

z(x, t) =

{
z(x, 0), sup

0≤τ≤t
u(x, τ) ≤ ui,

0, otherwise.

(1.4)

Based on Ying and Teng’s results, Liu and Zhang [9] summarized a set of entropy conditions,
including pointwise and global entropy conditions, with which they obtained the uniqueness of
the Riemann solution of the CJ model (1.4). The CJ model (1.4) with convex or nonconvex
fluxes f(u) was also considered in [1, 6–7, 16–17, 19–20, 24].

Although there is some good qualitative agreement between the behaviors of solutions of
the model system (1.1) and the observed phenomena such as the appearance of “detonation
spikes” in Majda model solutions, unfortunately deflagration waves do not occur in the Majda
model and this is one limit of its utility. In [10], Lyng and Zumbrun developed a stability index
for weak and strong detonation waves in the context of the Majda model with a modified,
bump-type ignition function

ϕ(u) = 0 for u ≤ ui or u ≥ ui, ϕ(u) > 0 for ui < u < ui, (1.5)

instead of the step-type function in [13], where ui and ui denote lower and upper ignition
thresholds respectively. Here u can be interpreted more precisely as a particle velocity, and
then ϕ takes the form ϕ = ψ(T (u)), where T (u) denotes temperature, ψ is a standard, step-
type ignition function, ψ = 0 below some ignition temperature Ti and positive above, and T (u)
is quadratic and concave-down with T (ui) = T (ui) = Ti. This agrees qualitatively with the
physical dependence of temperature on velocity along the one-dimensional flow of the traveling
wave ODE for the Zeldovich-von Neumann-Döring (ZND for short) model (see [10–12] for more
detailed physical background). Under the same requirement (1.2), the Majda model allows
for the existence of weak deflagration profiles when choosing this bump-type ignition function,
while the step-type ignition function does not [10].

In this paper, we consider the CJ model for which β is set zero, k is taken to be infinite and
ϕ(u) has a bump-type form as

ϕ(u) = 0 for u ≤ ui or u ≥ ui, ϕ(u) = 1 for ui < u < ui (1.6)

in (1.1). So it can be expressed as⎧⎪⎪⎨⎪⎪⎩
(u+ qz)t + f(u)x = 0,

z(x, t) =

{
0, ui < sup

0≤τ≤t
u(x, τ) < ui,

z(x, 0), otherwise,

(1.7)
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where f(u) satisfies (1.2) throughout the present paper following [13]. The Riemann problem
for (1.7) was studied in [18].

For reactive gas, it is very interesting to study the nonlinear stability and instability of flows
with combustion waves. In this paper, our purpose is to investigate whether the combustion
waves in the Riemann solutions are stable or not due to the perturbation of the initial data.
Therefore we deal with the perturbed Riemann problem (1.7) and the following initial data:

(u, z)(x, 0) = (u±0 (x), z±0 (x)), ±x > 0, (1.8)

where u±0 (x) are arbitrary smooth functions with u±0 (0±) = u±, and z±0 (x) equal a constant 1
for unburnt gas and 0 for burnt gas. The initial data (1.8) is a perturbation of the corresponding
Riemann data

(u, z)(x, 0) = (u±, z±), ±x > 0 (1.9)

in the neighborhood of the origin. There is another motivation to study the perturbed Riemann
problem (1.7)–(1.8). As is well-known that an error is unavoidable in numerical simulation and
the error forms a perturbation of the initial data. So there may exist some numerical results
which are unreadable and puzzle numerical analysts. For instance, the error may transform
a strong detonation to a weak deflagration in the numerical solutions in [1, 26], while the
theoretical results in [16] give a reasonable explanation for this phenomenon. Thus the results
of the present paper provide a preparation of theoretical analysis for the numerical simulation
for the Majda model with a bump-type ignition function.

Under the entropy conditions proposed in [18], we obtain the unique perturbed Riemann
solution of (1.7)–(1.8) by using the method of characteristic analysis (also called planar phase
portrait analysis). We find that for most cases, the combustion waves in the corresponding
Riemann solutions retain their forms after perturbation, while for some other cases, the per-
turbation brings essential changes to the combustion waves. That is, the perturbation may
transfer a Chapman-Jouguet detonation into a strong detonation, a strong detonation into a
weak deflagration following a shock wave under some conditions which does not happen for
(1.4) with convex flux. The interesting phenomenon that burning happens although the cor-
responding Riemann solution does not contain combustion waves can also be observed, which
exhibits the instability for the unburnt state. The perturbed Riemann problem for (1.4) was
investigated in [16, 20], and the perturbation on initial binding energy for (1.7) was considered
in [15].

This paper is organized as follows. In Section 2, we present some preliminaries including
the pointwise and global entropy conditions, and the Riemann solutions of (1.7) and (1.9).
In Section 3, the construction of the perturbed Riemann solution of (1.7)–(1.8) is exhibited.
Finally, the conclusion and discussion are drawn in Section 4.

2 Preliminaries

In this section, we sketch some results on the Riemann solutions of (1.7) and (1.9) for
completeness, and the detailed study can be found in [18].

We seek self-similar solutions (u(ξ), z(ξ)) of the Riemann problem for (1.7) and (1.9) where
ξ = x

t . It is easy to show that z(ξ) is piecewise constant, 0 or 1, and the smooth solutions u(ξ)
are constant states or rarefaction waves (abbr. R): u(ξ) = (f ′)−1(ξ).
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A jump of the solution (u, z) = (u, z)(x, t) at x = x(t) should satisfy the Rankine-Hugoniot
condition

s[u+ qz] = [f ], (2.1)

where s := dx
dt , [f ] = f(ur) − f(ul), ur = u(x(t) + 0, t), ul = u(x(t) − 0, t), etc., and the

assumption (1.2) determines that s ≥ 0 if [z] = 0.
Besides (2.1), we need some criteria to determine which kinds of discontinuities are admis-

sible. Then the following pointwise entropy conditions are suggested in [10, 18].
(1) Pointwise entropy conditions.
(A) For noncombustion discontinuities across which particles do not burn, the following two

kinds are admissible:
(a) [z] = 0, [u] �= 0 ⇒ s = [f ]

[u] , it is a shock (abbr. S) supplemented by the Lax characteristic
condition f ′(ul) > s > f ′(ur);

(b) [z] �= 0, [u] = 0 ⇒ s = 0, it is a contact discontinuity (abbr. J);
(B) For combustion jumps across which particles burn: [z] �= 0, [u] �= 0, the following four

kinds are admissible. Two states (ul, zl) and (ur, zr) connected by a combustion wave with
s > 0 must satisfy zl = 0, ui < ul < ui and zr = 1, ur ≥ ui or ur ≤ ui.

(a) If ul > ur, it is compressive, called
(i) a strong detonation (abbr. SDT) for f ′(ul) > s > f ′(ur);
(ii) a Chapman-Jouguet detonation (abbr. CJDT) for f ′(ul) = s > f ′(ur).
(b) If ul < ur, it is expansive, called
(i) a weak deflagration (abbr. WDF) for s < f ′(ul), f ′(ur) and ur = ui;
(ii) a Chapman-Jouguet deflagration (abbr. CJDF) for f ′(ul) = s < f ′(ur) and ur = ui.
We call R, S, J, SDT, CJDT, WDF and CJDF elementary waves for (1.7).
In [18], we find that the aforementioned entropy conditions cannot guarantee the uniqueness

of Riemann solutions of (1.7) and (1.9). Therefore the global entropy condition analogous to
[7, 9, 25] is needed.

(2) Global entropy condition.
If the Riemann problem for (1.7) and (1.9) has several solutions satisfying the pointwise

entropy conditions, we choose the one for which the propagation speed of the combustion wave
is as slow as possible.

In all, a combustion solution (u, z) is admissible, if it satisfies both the pointwise entropy
conditions and the global entropy condition. The Riemann problem of (1.7) and (1.9) subject
to the above entropy conditions can be solved uniquely.

Now we briefly review the Riemann solutions of (1.7) and (1.9) for the most interesting
situation z+ = 1, z− = 0, u+ ≤ ui < u−. Here and below, w(u, v) := f(u)−f(v)

u−v , “+” means
“following”, R(ul, zl;ur, zr) means the rarefaction wave varying from (ul, zl) to (ur, zr), and
CJDT(ul, zl;ur, zr) means the combustion wave CJDT with states (ul, zl) and (ur, zr) on its
left and right sides respectively, etc.

For the case u+ ≤ ui < u− < ui, the structure of the solution will strongly depend on the
value of q, which can be described as follows.

When u+ ≤ ui < u− < ui as well as q ≤ q∗, the structure of the solution can be denoted by
(i) R(u−, 0;u1, 0) + CJDT(u1, 0;u+, 1), if ui < u− ≤ u1;
(ii) SDT(u−, 0;u+, 1), if u1 < u− ≤ u2;
(iii) WDF(u−, 0;ui, 1) + S(ui, 1;u+, 1), if u2 < u− < ui,
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where the notations q∗ > 0, u∗ ∈ (u+, ui), u1 and u2 satisfy

f ′(u∗) = w(u+, ui) =
f(u+) − f(u∗)
u+ + q∗ − u∗

, (2.2)

f ′(u1) =
f(u+) − f(u1)
u+ + q − u1

, w(u+, ui) =
f(u+) − f(u2)
u+ + q − u2

, (2.3)

respectively, and u+ < u1 ≤ u∗ ≤ u2 < ui for q ≤ q∗ (see Figures 2.2–2.3 in [18]).
When u+ ≤ ui < u− < ui as well as q > q∗, the structure of the solution can be denoted by
(i) R(u−, 0; û, 0) + CJDF(û, 0;ui, 1) + S(ui, 1;u+, 1), if ui < u− ≤ û;
(ii) WDF(u−, 0;ui, 1) + S(ui, 1;u+, 1), if û < u− < ui,

where the notation û < u∗ is defined by f ′(û) = f(ui)−f(û)
ui+q−û (see Figure 2.5 in [18]).

For the case u+ ≤ ui, u− ≥ ui, the unique admissible solution of (1.7) and (1.9) is the
noncombustion solution which can be denoted by J(u−, 0;u−, 1) + S(u−, 1;u+, 1) (see Figure
1).
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u+

�ui

�u−

S

�

x

t

�

0

(u+,1)

(u−,0)

Figure 1 Solution for u+ ≤ ui, u− ≥ ui.
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3 Solution of the Perturbed Riemann Problem

We will investigate the solutions for the discontinuous initial value problem (1.7)–(1.8) in
a neighborhood of the origin (t > 0) in the (x, t) plane. In fact, for the smooth solution
(z = constant), (1.7) reduces to the scalar conservation law

ut + f(u)x = 0, (3.1)

for which the perturbed Riemann problem was studied in [3]. Hence by [8], the classical solution
(ul, zl)(x, t) (resp. (ur, zr)(x, t)) can be defined in a strip domain Dl (resp. Dr) locally in time.
The strip domain Dl has the characteristic OA: x = λ(u−)t as the right boundary, and Dr has
the characteristic OB : x = λ(u+)t as the left boundary, where λ(u) := f ′(u). For example, see
Figure 2 for the case 0 < λ(u−) < λ(u+).
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Figure 2 The strip domain Dl,r for 0 < λ(u−) < λ(u+).
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By the one-side nature of model (1.7), we find that only three situations as follows are
interesting (see [18]):

(i) u+
0 (x) ≤ ui < u−, z−0 (x) = 0 < z+

0 (x) = 1;
(ii) u+

0 (x) ≥ ui > u−, z−0 (x) = 0 < z+
0 (x) = 1;

(iii) u+
0 (x) ≥ ui, u− ≤ ui, z−0 (x) = z+

0 (x) = 1.
In the following, we focus our attention just on the typical case (i), for the reason that the

discussions for the other two cases can be reduced to that of this typical one. In fact, for cases
(ii) and (iii), a combustion wave CJDF or WDF appears in the corresponding Riemann solution
(see [18]), so the discussions for these two cases are the same as those of the following Cases
3–4.

We will construct the perturbed Riemann solution of (1.7)–(1.8) case by case according to
the different solutions of the corresponding Riemann problem (1.7) and (1.9).

Case 1 A combustion wave CJDT appears in the corresponding Riemann solution.
The occurrence of this case depends on the condition u+ ≤ ui < u− ≤ u1 and q ≤ q∗ (see

Figure 2.2 in [18]).
It can be proved that the perturbation of the initial data has influence on the CJDT which

turns to be an SDT for u̇+
0 (0) < 0, whereas the CJDT remains for u̇+

0 (0) > 0. Hereafter, the
dot (·) means derivative.

Lemma 3.1 The perturbed solution of (1.7)–(1.8) is an SDT if and only if u̇+
0 (0) < 0.

Proof Suppose that there is a combustion jump x = x(t) with ẋ(0) = λ(u1) and ẍ(0) ≤ 0
in the domain λ(u−)t < x < λ(u1)t, where x = x(t) satisfies⎧⎨⎩

dx
dt

=
f(ur(x, t)) − f(ul(x, t))
ur(x, t) + q − ul(x, t)

,

x(0) = 0,
(3.2)

and ul(x, t) is a centered rarefaction wave defined by

x

t
= λ(ul(x, t)), λ(u−) ≤ x

t
≤ λ(u1). (3.3)

We now prove that u̇+
0 (0) ≤ 0. In fact, ẍ(0) can be calculated as follows. We may write the

first equation in (3.2) in the form

(ur(x, t) + q − ul(x, t))
dx
dt

= f(ur(x, t)) − f(ul(x, t)). (3.4)

Then differentiating (3.4) with respect to t, one obtains

(ur(x, t) + q − ul(x, t))ẍ(t) = (λ(ur) − ẋ(t))
dur

dt
− (λ(ul) − ẋ(t))

dul

dt
. (3.5)

Note that along x = x(t),

lim
t→0

λ(ul(x, t)) = lim
t→0

x

t
= ẋ(0) = λ(u1),

which means
lim
t→0

ul(x(t), t) = u1.
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Thus if we consider (3.5) at t = 0, we find

(u+ + q − u1)ẍ(0) = (λ(u+) − ẋ(0))
dur

dt

∣∣∣
t=0

− (λ(u1) − ẋ(0))
dul

dt

∣∣∣
t=0

, (3.6)

where we have

dur

dt

∣∣∣
t=0

=
∂ur

∂t
+
∂ur

∂x
ẋ(0) = (ẋ(0) − λ(u+))

∂ur

∂x
= (λ(u1) − λ(u+))u̇+

0 (0). (3.7)

As for dul

dt

∣∣
t=0

, by differentiating (3.3) with respect to t along x = x(t) and setting t = 0, we
get

λ′(u1)
dul

dt

∣∣∣
t=0

= lim
t→0

tẋ(t) − x(t)
t2

=
ẍ(0)

2
, (3.8)

which implies

dul

dt

∣∣∣
t=0

=
ẍ(0)

2λ′(u1)
�= ∞. (3.9)

Substituting (3.7) and (3.9) into (3.6) yields

(u+ + q − u1)ẍ(0) = −(λ(u1) − λ(u+))2u̇+
0 (0), (3.10)

which shows that ẍ(0) has the same sign as u̇+
0 (0) by noticing that u+ + q < u1.

Conversely, if u̇+
0 (0) < 0, it is possible by the analysis above to construct a combustion

jump x = x(t), which is a solution of (3.2) and lies in the domain λ(u−)t < x < λ(u1)t near
the origin. The combustion jump x = x(t) is an SDT because it satisfies the entropy condition
λ(ur) < dx

dt < λ(ul) near the origin (see Figure 3(a)).
We turn our attention now to the perturbed solution of (1.7)–(1.8) for u̇+

0 (0) > 0.

Lemma 3.2 The perturbed solution of (1.7)–(1.8) is a CJDT if and only if u̇+
0 (0) > 0.

Proof If u̇+
0 (0) > 0, by the entropy conditions, such a CJDT: x = x(t) with ẋ(0) = λ(u1)

as ⎧⎨⎩
dx
dt

=
f(ur(x, t)) − f(u(x, t))
(ur(x, t) + q) − u(x, t)

= λ(u(x, t)), λ(u1)t ≤ x(t) < +∞,

x(0) = 0,
(3.11)

should be constructed near the origin. Similarly the sign of ẍ(0) can be determined as follows.
We consider the equation

(ur(x, t) + q − u(x, t))
dx
dt

= f(ur(x, t)) − f(u(x, t)),

differentiate with respect to t along x = x(t), and set t = 0. This gives (3.10), where we have
used the fact that along x = x(t),

lim
t→0

λ(u(x, t)) = ẋ(0) = λ(u1),

namely,
lim
t→0

u(x(t), t) = u1.
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Thus, from (3.10), we see that ẍ(0) > 0. A solution of (1.7)–(1.8) can then be defined as
(ur(x, t), 1) on the right-hand side of x = x(t) and (ul(x, t), 0) on the left-hand side of x =
λ(u−)t. The state on the left-hand side of x = x(t) between x = λ(u−)t and x = x(t) is
(u(x, t), 0). The characteristic of the solution in the domain λ(u1)t ≤ x < x(t) is the tangent
of x = x(t) (see Figure 3(b)).

x x�

O

Figure 3 The perturbed solutions for Case 1, where OC: x = λ(u1)t.
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In the same way as in Lemma 3.1, it can be proved that the condition u̇+
0 (0) > 0 is necessary

for a solution constructed as above.
Case 2 A combustion wave SDT appears in the corresponding Riemann solution.
This case happens if and only if u+ ≤ ui, u1 < u− ≤ u2 and q ≤ q∗ (see Figure 2.3 in [18]).
It is obvious that the SDT retains its form when u1 < u− < u2. Namely, a strong detonation

x = x(t) satisfying (3.2) can be constructed in the interior of the domain AOB.
Now we consider the complicated case u− = u2. Motivated by the Riemann solution, it

is possible to define a combustion jump x = x(t) by solving the problem (3.2). Whether an
x = x(t) so defined is an SDT depends on whether the stability condition λ(ur) < dx

dt < λ(ul)
holds for it.

Let us do some analysis first. For any ur(x, t), we may define ũ(ur) > u∗, such that⎧⎨⎩w(ur, u
i) =

f(ui) − f(ũ)
ui + q − ũ

,

ũ(u+) = u2.

(3.12)

Then x = x(t) is an SDT if and only if along the curve x = x(t), it holds that

dul

dt

∣∣∣
t=0

≤ dũ
dt

∣∣∣
t=0

. (3.13)

Differentiating the first equation in (3.12), we can get

dũ
dur

= −f(ui) − f(ũ) − λ(ur)(ui + q − ũ)
f(ur) − f(ui) − λ(ũ)(ur − ui)

,

which, by letting ur = u+, becomes

dũ
dur

∣∣∣
ur=u+

=
(w(ui, u+) − λ(u+))(ui + q − u2)

(λ(u2) − w(ui, u+))(u+ − ui)
. (3.14)

Using the condition ẋ(0) = w(u+, ui), we have

dul

dt

∣∣∣
t=0

= (w(ui, u+) − λ(u2))u̇−0 (0), (3.15)

dur

dt

∣∣∣
t=0

= (w(ui, u+) − λ(u+))u̇+
0 (0), (3.16)
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so that

dũ
dt

∣∣∣
t=0

=
dũ
dur

∣∣∣
ur=u+

dur

dt

∣∣∣
t=0

=
(w(ui, u+) − λ(u+))2(ui + q − u2)

(λ(u2) − w(ui, u+))(u+ − ui)
u̇+

0 (0). (3.17)

In view of (3.15) and (3.17), we see that (3.13) can be written as

(w(ui, u+) − λ(u2))2

ui + q − u2
u̇−0 (0) ≥ (w(ui, u+) − λ(u+))2

ui − u+
u̇+

0 (0). (3.18)

(i) When u̇+
0 (0) < 0 and u̇−0 (0) > 0, (3.18) obviously holds. Moreover, we can derive

ẍ(0) < 0 for the SDT by noticing that u+ + q < u2 and

(u+ + q − u2)ẍ(0) = (w(ui, u+) − λ(u−))2u̇−0 (0) − (w(ui, u+) − λ(u+))2u̇+
0 (0) > 0 (3.19)

(see Figure 4(a)).

x x�

O O

Figure 4 The perturbed solutions for Case 2, where OC: x = w(ui, u+)t.
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(ii) When u̇+
0 (0) > 0 and u̇−0 (0) < 0, (3.18) certainly fails. Therefore, we should not expect

the combustion jump to be SDT. By the entropy conditions, a WDF : x = x1(t) should be
constructed in the domain λ(u+)t < x1(t) < w(ui, u+)t near the origin, which is determined by⎧⎨⎩

dx1(t)
dt

=
f(ui) − f(ul(x, t))
(ui + q) − ul(x, t)

,

x1(0) = 0.
(3.20)

Then we construct a shock wave S : x = x2(t) in front of the WDF to connect ui and ur(x, t),
i.e., ⎧⎨⎩

dx2(t)
dt

= w(ui, ur(x, t)),

x2(0) = 0,
(3.21)

which lies in the domain w(ui, u+)t ≤ x2(t) < +∞. We now determine the sign of ẍ1(0) and
ẍ2(0). With a similar calculation, it can be obtained from (3.20)–(3.21) that

ẍ1(0) =
(w(ui, u+) − λ(u2))2

ui + q − u2
u̇−0 (0), ẍ2(0) =

(w(ui, u+) − λ(u+))2

ui − u+
u̇+

0 (0), (3.22)

where the condition ẋ1(0) = ẋ2(0) = w(ui, u+) is used. Since ui + q > u2 and ui > u+, we see
from (3.22) that ẍ1(0) < 0 and ẍ2(0) > 0. The solution is illustrated in Figure 4(b).

(iii) It remains to discuss the cases: u̇+
0 (0) < 0 and u̇−0 (0) < 0; u̇+

0 (0) > 0 and u̇−0 (0) >
0. Since the discussions for these two cases are similar, we here just give the discussion for
u̇+

0 (0) < 0 and u̇−0 (0) < 0 in detail.
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If (3.18) is satisfied, the perturbed solution contains an SDT: x = x(t) satisfying (3.2), and
it can be claimed that ẍ(0) < 0. In fact, note that 0 < ui + q − u2 < ui − u+ which, together
with u̇+

0 (0) < 0 gives that

ui + q − u2

ui − u+
(w(ui, u+) − λ(u+))2u̇+

0 (0) > (w(ui, u+) − λ(u+))2u̇+
0 (0). (3.23)

Combining (3.18) and (3.23), we have

(w(ui, u+) − λ(u2))2u̇−0 (0) > (w(ui, u+) − λ(u+))2u̇+
0 (0),

so that (3.19) holds. Thus the statement ẍ(0) < 0 follows.
If (3.18) is invalid, a WDF : x = x1(t) following a shock wave S : x = x2(t) appears

near the origin by the entropy conditions, where the WDF and S are given by (3.20)–(3.21),
respectively. In order to show the existence of the shock x = x2(t), we need the priori estimate:
ẍ1(0) < ẍ2(0) < 0. To prove this, we should notice (3.22) and the contrary of (3.18) which give
that ẍ1(0) < 0, ẍ2(0) < 0 and

ẍ1(0) − ẍ2(0) =
(w(ui, u+) − λ(u2))2

ui + q − u2
u̇−0 (0) − (w(ui, u+) − λ(u+))2

ui − u+
u̇+

0 (0) < 0.

Hence there exists a solution x = x2(t) of (3.21) by virtue of x1(0) = x2(0) = 0, ẋ1(0) = ẋ2(0) =
w(ui, u+), ẍ1(0) < ẍ2(0) < 0 (see Figure 5(a)). We remark that in the case of u̇+

0 (0) > 0 and
u̇−0 (0) > 0, 0 < ẍ1(0) < ẍ2(0) can be obtained in the same way (see Figure 5(b)).

x x�

O O

Figure 5 The perturbed solutions for Case 2, where OC: x = w(ui, u+)t.
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0 (0)<0 and (3.18) fails.

Thus we have finished the discussion for Case 2. In brief, the solution of (1.7)–(1.8) may
contain an SDT if (3.18) holds; otherwise a WDF following a shock may appear.

Case 3 A combustion wave WDF appears in the corresponding Riemann solution.
In this case, the initial data have two possibilities: u+ ≤ ui, u2 < u− < ui and q ≤ q∗;

u+ ≤ ui, û < u− < ui and q > q∗ (see Figures 2.3 and 2.5 in [18]).
It is easy to find that the perturbed solution for this case is governed by the corresponding

Riemann solution at the origin. That is, a WDF: x = x1(t) with ẋ1(0) = f(ui)−f(u−)
ui+q−u− satisfying

(3.20) should be constructed near the origin due to the entropy conditions, ahead of which is a
shock x = x2(t) with ẋ2(0) = w(ui, u+) satisfying (3.21).

Case 4 A combustion wave CJDF appears in the corresponding Riemann solution.
The appearance of this case depends on the condition u+ ≤ ui, ui < u− ≤ û and q > q∗

(see Figure 2.5 in [18]).
We can see that, for this case, the perturbation has no influence on the combustion wave

CJDF : x = f(ui)−f(û)
ui+q−û t, which propagates with the speed λ(û) in the neighborhood of the
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origin. Furthermore, it can be derived similarly as before that u̇+
0 (0) < 0 (resp. u̇+

0 (0) > 0),
corresponds to the shock S1 (resp. S2), which connects ui and ur(x, t) (see Figure 6(a)).

Case 5 The corresponding Riemann solution is J + S.
This case occurs when u+ ≤ ui, u− ≥ ui are satisfied (see Figure 2.1).
It is obvious that the structure for the perturbed solution is still J + S if u− > ui. For the

boundary case u− = ui, there exist two possibilities as follows.
(i) When u̇−0 (0) < 0 which indicates that ul(x, t) > ui as t > 0, burning does not happen,

and the solution J+S can be constructed in the neighborhood of the origin.
(ii) When u̇−0 (0) > 0, the perturbation gives birth to a combustion wave WDF by the

entropy conditions. This phenomenon may owe to the instability of the unburnt state. The
combustion wave WDF: x = x1(t) with ẋ1(0) = 0 satisfies (3.20), from which it can be derived
that qẍ1(0) = (λ(ui))2u̇−0 (0) > 0, so ẍ1(0) > 0 (see Figure 6(b)).

x x� �

O O

Figure 6 The perturbed solutions for Cases 4–5, where OC: x = w(ui, u+)t,
OD: x = 0, S1 corresponds to u̇+

0 (0) < 0, S2 corresponds to u̇+
0 (0) > 0.
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4 Conclusion

So far we have finished constructing the solution of (1.7)–(1.8) completely. Our result can
be summarized as follows.

Under the pointwise and global entropy conditions, there exists the unique solution of the
perturbed Riemann problem (1.7)–(1.8) near the origin. We can see that the combustion waves
WDF and CJDF are stable since they can retain their forms after perturbation. The combustion
wave CJDT is unstable if u̇+

0 (0) < 0 under which the perturbation transforms it into an SDT,
whereas the CJDT is stable if u̇+

0 (0) > 0. As for an SDT, it is unstable just for the boundary
case: u− = u2 and (3.18) fails, under which the perturbation transforms an SDT into a WDF
following a shock wave. Especially, we can observe the interesting phenomenon that burning
happens although the corresponding Riemann solution does not contain combustion waves,
which exhibits the instability of the unburnt state.
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