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Derivations of the Even Part of Finite-Dimensional
Simple Modular Lie Superalgebra M∗

Lili MA1 Liangyun CHEN2

Abstract Let F be the underlying base field of characteristic p > 3 and denote by M the
even part of the finite-dimensional simple modular Lie superalgebra M. In this paper, the
generator sets of the Lie algebra M which will be heavily used to consider the derivation
algebra Der(M) are given. Furthermore, the derivation algebra of M is determined by
reducing derivations and a torus of M, i.e.,

Der(M) = ad(M) ⊕ span
F

{ ∏
l

ad(ξr+1ξl)
}
⊕ span

F

{
adxi′ad(xiξ

v)
∏

l

ad(ξr+1ξl)
}

.

As a result, the derivation algebra of the even part of M does not equal the even part of
the derivation superalgebra of M.
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1 Introduction

In this paper, we pay our main attention to finite-dimensional Lie superalgebras over a
field of prime characteristic. As is well-known, the theory of Lie superalgebras over a field
of characteristic zero (see [1–4]) has experienced a vigorous development. For example, the
classification by Kac of finite-dimensional simple Lie superalgebras over algebraically closed
fields of characteristic zero was completely obtained (see [4]). However, that is not the case
for modular Lie superalgebras, that is, Lie superalgebras of prime characteristic. The early
work about modular Lie superalgebras was reported in [5]. Recently, eight families of finite-
dimensional Cartan-type modular Lie superalgebras X(m, n, t) were defined and the derivation
superalgebras of X(m, n, t) were discussed, where X = W, S, H, K, HO, KO, Ω and Γ (see [7–
8, 11, 13–17]). The finite-dimensional simple modular Lie superalgebra M and its derivation
superalgebra were investigated in [9]. This paper is a continuation of [9].
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Given a Lie superalgebra M = M0 ⊕M1, it is clear that the derivation superalgebra of M
is still a Lie superalgebra, denoted by Der(M) = Der0(M)⊕Der1(M). An interesting question
naturally arises: Whether the derivation algebra of Lie algebra M0 equals the even part of
derivation superalgebra Der(M) or not, namely, Der(M0) = Der(M)0? In this paper, this
question will be answered for the finite-dimensional simple modular Lie superalgebra M over
a field of prime characteristic.

Let M denote the even part of the Lie superalgebra M. Since M is a Lie algebra, one may
describe the derivation algebra Der(M) in a systematic way. However, in contrast to the case of
Lie superalgebra M, one can not obtain directly the structures of Der(M), since M is neither
transitive nor admissibly graded. [6, 12] may inspire our work on modular Lie algebra M, the
even part of the Lie superalgebra M, in which the even parts of Lie superalgebras W, S, and
Ω were discussed.

The organization of the rest of this paper is as follows. In Section 2, it is necessary to
recall notions concerning Lie algebras, Lie superalgebras and the modular Lie superalgebra
M. In Section 3, the generator sets of M are discussed in order to investigate the derivation
algebra Der(M). In Section 4, the derivation algebra Der(M) is explicitly described by using
the method of reduction on Z-gradations.

2 Preliminaries

Throughout, the ground field F is assumed to be of characteristic p > 3 and F is not equal
to its prime field Π. Let N be the set of positive integers and N0 be the set of non-negative
integers. Given n ∈ N, let r = 2n + 2. Suppose that μ1, · · · , μr−1 ∈ F, such that μ1 = 0,
μj +μn+j = 1, j = 2, · · · , n+1. Set M = {1, · · · , r−1}. Assume that si ∈ N0, i = 1, · · · , r−1,

and s = (s1 + 1, · · · , sr−1 + 1) ∈ N
r−1. We define a truncated polynomial algebra

A = F[x10, x11, · · · , x1s1 , · · · , x(r−1)0, x(r−1)1, · · · , x(r−1)s(r−1)
],

such that
xp

ij = 0, i ∈ M, j = 0, 1, · · · , si.

For i ∈ M , we let πi = psi+1 − 1. If ki ∈ N0 such that 0 ≤ ki ≤ πi, then ki can be uniquely
expressed in a p-adic form as follows:

ki =
si∑

v=0

εv(ki)pv, where 0 ≤ εv(ki) < p.

We set xki

i =
si∏

v=0
x

εv(ki)
iv . For 0 ≤ ki, k

′
i ≤ πi and x

k′
i

i =
si∏

v=0
x

εv(k′
i)

iv , it is easy to verify that

xki

i x
k′

i
i = x

ki+k′
i

i �= 0 ⇔ εv(ki) + εv(k′
i) < p, v = 0, 1, · · · , si .

Let Q = {(k1, · · · , kr−1) | 0 ≤ ki ≤ πi, i ∈ M}. If k = (k1, · · · , kr−1) ∈ Q, then let xk =
xk1

1 · · ·xkr−1
r−1 .

Given q ∈ N \ {1}. Let Λ(q) be the Grassmann superalgebra over F in q variables ξr+1, · · · ,

ξr+q. Denote the tensor product by M̃(r, q, s) := A ⊗ Λ(q). For convenience, M̃(r, q, s) will
be denoted by M̃. Let Z2 := {0, 1} denote the ring of integers modulo 2. Obviously, M̃ is an
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associative superalgebra with a Z2-gradation induced by the trivial Z2-gradation of A and the
natural Z2-gradation of Λ(q) as follows:

M̃0 = A ⊗F Λ(q)0, M̃1 = A ⊗F Λ(q)1.

If f ∈ A, g ∈ Λ(q), then we simply write f ⊗ g as fg. For k ∈ {1, · · · , q}, we set

Bk = {〈i1, i2, · · · , ik〉 | r + 1 ≤ i1 < i2 < · · · < ik ≤ r + q}

and B(q) =
q⋃

k=0

Bk, where B0 = ∅. If u = 〈i1, · · · , ik〉 ∈ Bk, we let |u| = k, {u} = {i1, · · · , ik}

and ξu = ξi1 · · · ξik
. Put |∅| = 0 and ξ∅ = 1. Then {xkξu | k ∈ Q, u ∈ B(q)} is an F-basis of M̃.

If L is a Lie superalgebra, then h(L) denotes the set of all Z2-homogeneous elements of L,

i.e., h(L) = L0 ∪ L1. If |x| occurs in some expression in this paper, we always regard x as a
Z2-homogeneous element and |x| as the Z2-degree of x.

Set s = r + q and T = {r + 1, · · · , s}. Put M1 = {2, · · · , r − 1}. Define ĩ = 0, if i ∈ M1;
and ĩ = 1, if i ∈ T .

Let

i′ =

⎧⎨
⎩

i + n, if 2 ≤ i ≤ n + 1,
i − n, if n + 2 ≤ i ≤ r − 1,
i, if r + 1 ≤ i ≤ s,

[i] =

⎧⎨
⎩

1, if 2 ≤ i ≤ n + 1,
−1, if n + 2 ≤ i ≤ r − 1,
1, if r + 1 ≤ i ≤ s.

Put ei = (δi1, · · · , δi(r−1)), i = 1, · · · , r− 1, and R = M ∪ T . If i ∈ R, then we let Di be the
linear transformations of M̃, such that

Di(xkξu) =
{

k∗
i xk−eiξu, if i ∈ M,

xk(∂ξu

∂ξi
), if i ∈ T,

where k∗
i is the first nonzero number of ε0(ki), ε1(ki), · · · , εsi(ki). Then Di is an even derivation

of M̃ for i ∈ M , and Dj is an odd derivation for j ∈ T . Set

∂ = I −
∑

j∈M1

μjxj 0
∂

∂xj 0
− 2−1

∑
j∈T

ξj
∂

∂ξj
,

where I is the identity mapping of M̃.
For f ∈ h(M̃), g ∈ M̃, we define a bilinear operation [ , ] in M̃, such that

[f, g] = D1(f)∂(g) − ∂(f)D1(g) +
∑

i∈M1∪T

[i](−1)̃i|f |Di(f)Di′(g).

Then M̃ becomes a finite-dimensional Lie superalgebra for the operation [ , ] defined above.
Let xi = x1

i = xi0, i ∈ M . Set π = (π1, · · · , πr−1). Define M = [M̃,M̃]. If 2−1q − n − 2 �≡ 0
(mod p), we obtain that M = M̃.

Recall that M is a Z2-graded Lie superalgebra: M =
⊕

α∈Z2

Mα by Mα = span
F
{xkξu | k ∈

Q, u ∈ B(q), |u| = α}.
For i ∈ Z, we let

Mi := span
F

{
xkξu

∣∣∣ ∑
i∈M1

ki + 2k1 + |u| − 2 = i
}
.
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Then M =
⊕
i∈X

Mi, where X = {−2,−1, · · · , τ} and τ =
∑

i∈M1

πi + 2π1 + q − 2 is a Z-graded

Lie superalgebra. Let f ∈ M. If f ∈ Mi, then f is called a Z-homogeneous element and i is
the Z-degree of f which is denoted by zd(f).

We shall obtain the following fact. The proof is straightforward and is therefore a simple
statement.

Let B := span
F
{ξu | u ∈ B(q), |u| even}, and then B = CM(M−1), the centralizer of M−1

in M. In fact, for any xkξu ∈ CM(M−1), from [xkξu, xi] = 0, i ∈ M1, it follows that

μi′k
∗
1xk−e1+eiξu + [i′]k∗

i′x
k−ei′ ξu = 0. (2.1)

From (2.1), this shows that

μi′k
∗
1xk−e1+eiξu = 0, (2.2)

[i′]k∗
i′x

k−ei′ ξu = 0. (2.3)

According to (2.2)–(2.3), we have

CM(M−1) = span
F
{ξu | u ∈ B(q), |u| even}.

Therefore, B is a Z-graded subalgebra of M.
Put Bi = B ∩ Mi and

E(B) :=
⊕
i∈Z

B2r, O(B) :=
⊕
i∈Z

B2r+1.

Since [O(B), O(B)] = 0, O(B) is an ideal of M. It is easily seen that

BO/(B) � E(B) � M(q)0,

where M(q) ⊂ M satisfying M(q) = span
F
{ξj | j ∈ T }, and M(q)0 is the even part of M(q).

Let G =
s⊕

q=−r
Gq be a Z-graded Lie algebra. Recall that G is called transitive (with respect

to Z-gradation) provided that {x ∈ Gq | [x,G−1] = 0} = 0 for all q ∈ N0. We say that G is
admissibly graded if CG(G−1) = G−r.

By the remarks above, M is neither transitive nor admissibly graded. In particular, M is
not a simple Lie algebra.

3 Generator Sets of M

In this section, the generator sets of M, which will be applied to determine the derivation
superalgebra of M, are given.

Put

P := {xki

i | 0 ≤ ki ≤ πi, i ∈ M},
Q := {x1ξr+1ξl | l �= r + 1 ∈ T }.

For u, v ∈ B(q) with u ∩ v = ∅, define u + v to be w ∈ B(q), such that w = u ∪ v. If
maxu < min v, then we denote u ⊕ v = w.
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Theorem 3.1 M is generated by P ∪Q.

Proof Let Y be the subalgebra of M generated by P ∪ Q. We first prove the following
statements.

(i) Assert that xiξ
u ∈ Y, ξu ∈ Y for all i ∈ M, u ∈ B(q).

In fact, by computation, we know that for i ∈ M1,

xiξr+1ξl = μ−1
i′ [x1ξr+1ξl, xi].

If μi′ �= 0, then xiξr+1ξl ∈ Y. Otherwise, if μi′ = 0, observing that

xiξr+1ξl = 2−1[i][x2
i , [x1ξr+1ξl, xi′ ]],

we get xiξr+1ξl ∈ Y. It follows that xiξr+1ξl ∈ Y for i ∈ M1.

Clearly, for t ∈ T and i ∈ M1,

ξr+1ξt = [i′][xi′ , xiξr+1ξt] ∈ Y.

For |u| = 2,

xiξlξt = [xiξr+1ξl, ξr+1ξt] ∈ Y,

where i ∈ M and l, t ∈ T.

For |u| > 2, we can write u = v ⊕w, where v, w ∈ B(q), such that |w| = 2. By the inductive
hypothesis, we know xiξ

v ∈ Y and xiξ
w ∈ Y for i ∈ M1.

Case 1 |v| �≡ 0 (mod p). For μi′ �= 0, we get

xiξ
u = [i]|v|−1μ−1

i′ [xi, [x2
1, [xiξ

v, xi′ξ
w]]] ∈ Y.

For μi′ = 0, we have
xi′ξ

u = [i]|v|−1[xi′ , [x2
1, [xiξ

v, xi′ξ
w]]] ∈ Y.

Thus,
xiξ

u = [i]2−1[x2
i , xi′ξ

u] ∈ Y.

Moreover,
x1ξ

u = −[i]|v|−1[x2
1, [xiξ

v, xi′ξ
w]] ∈ Y.

Case 2 |v| ≡ 0 (mod p). For μi �= 0, we obtain

xiξ
u = −2−1μ−1

i [[x2
1, ξ

v], xiξ
w] ∈ Y.

For μi = 0, we can get xi′ξ
u ∈ Y. Then

xiξ
u = 2−1[i][x2

i , xi′ξ
u] ∈ Y.

It remains to show that
x1ξ

u = −2−1[[x2
1, ξ

v], x1ξ
w] ∈ Y.

In view of xiξ
u ∈ Y for i ∈ M1, u ∈ B(q) and |u| even, we get

ξu = [i′][xi′ , xiξ
u] ∈ Y
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as desired.
(ii) Assert that xm

i xm′
i′ ∈ Y for m < πi, m′ < πi′ , i ∈ M1.

Clearly,
xm

i xm′
i′ = [i]((m + 1)∗)−1((m′ + 1)∗)−1[xm+1

i , xm′+1
i′ ] ∈ Y.

(iii) Assert that x1xixi′ ∈ Y for all i ∈ M1.

For ui′ �= 0, it follows that x1xi = 2−1μ−1
i′ [x2

1, xi] ∈ Y . If ui′ = 0, then

x1xi = 4−1[i]([x2
i , [x

2
1, xi′ ]] − x2

i xi′) ∈ Y.

Thus, x1xi ∈ Y for all i ∈ M1.

If 1 − 2μi′ �= 0, then

x1xixi′ = (1 − 2μi′)−1([x1xi, x1xi′ ] − [i]x2
1) ∈ Y.

If 1 − 2μi′ = 0, then

x1xixi′ = (2(1 − μi))−1(((3(1 − μi′))−1[[x3
1, xi′ ], xi]) − [i′]x2

1) ∈ Y.

(iv) Assert that xπi

i x
πi′
i′ ∈ Y for all i ∈ M1.

Using (ii)–(iii), it is clear that

xπi

i x
πi′
i′ = 3−1[x1xixi′ , x

πi−1
i x

πi′−1
i′ ] ∈ Y.

(v) Assert that x1xiξ
u ∈ Y for all i ∈ M1, u ∈ B(q).

Case 1 |u| �≡ 1 (mod p). For our purpose, by (i), we first show that

x2
1ξ

u = (1 − |u|)−1[x2
1, x1ξ

u] ∈ Y.

For μi �= 1, we know
x1xiξ

u = (2(1 − μi))−1[x2
1ξ

u, xi] ∈ Y.

For μi = 1, by (ii), we have

x1xiξ
u = 2−1[i′](2−1[[x2

1ξ
u, xi′ ], x2

i ] − [x1ξ
u, x2

i xi′ ]) ∈ Y.

Case 2 |u| ≡ 1 (mod p).
Discussing just as in (iii), we obtain x2

1xi ∈ Y. It is easy to verify the following fact:

x1xiξ
u = [x2

1xi, ξ
u] ∈ Y.

(vi) Assert that xk1
1 ξu ∈ Y for 0 ≤ k1 ≤ π1.

For |u| ≡ 2 (mod p), it follows that xk1
1 ξu = −[xk1

1 , x1ξ
u] ∈ Y.

For |u| �≡ 2 (mod p), k1 < π1, we get

xk1
1 ξu = ((k1 + 1)∗)−1(1 − 2−1|u|)−1[xk1+1

1 , ξu] ∈ Y.

If k1 = π1, the following equation holds:

xπ1
1 ξu = (2−1|u| − 2)−1[xπ1

1 , x1ξ
u].
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For 2−1|u|− 2 �≡ 0 (mod p), it is easy to see that xπ1
1 ξu ∈ Y. Suppose that 2−1|u|− 2 ≡ 0 (mod

p), namely, |u| ≡ 4 (mod p). In view of (iii) and xk1
1 ξu ∈ Y for |u| �= 2, k1 < π1, it follows that

xπ1−1
1 xixi′ξ

u = [xπ1−1
1 ξu, x1xixi′ ] ∈ Y.

Let μi �= 0 (otherwise, μi′ �= 0, the proof is similar). By virtue of (v), we get

xπ1
1 xiξ

u = μ−1
i [xπ1

1 , x1xiξ
u] ∈ Y.

Then
xπ1

1 ξu = [i][xπ1
1 xiξ

u, xi′ ] + [i]μix
π1−1
1 xixi′ξ

u ∈ Y.

(vii) Let

ρ1(k1, u) = xk1
1 ξu, ρi(k1, u) = xk1

1

( i∏
j=2

x
πj

j x
πj′
j′

)
ξu,

where i ≥ 2. Then ρi(k1, u) ∈ Y.

Let us complete the proof of (vii) by induction on i. Using (vi), it is clear that ρ1(k1, u) ∈ Y.

For k1 < π1, we show that ρi(k1, u) ∈ Y by the inductive hypothesis and (iv). In fact,

ρi(k1, u) = (2(k1 + 1)∗)−1[ρi−1(k1 + 1, u), xπi

i x
πi′
i′ ] ∈ Y.

Suppose that k1 = π1. We obtain

ρi(π1, u) = 2−1(i + 1 − 2−1|u|)−1[x2
1, ρi(π1 − 1, u)].

If i + 1 − 2−1|u| �≡ 0 (mod p), then ρi(π, u) ∈ Y. Let i + 1 − 2−1|u| ≡ 0 (mod p), μi+1 �= 0
(otherwise, μi+1 = 0, the proof is similar and is therefore omitted). It is easy to verify the
following equations:

ρi(π1, u)xi+1 = −2−1μ−1
i+1[x

2
1xi+1, ρi(π1 − 1, u)] ∈ Y,

ρi(π1 − 1, u)xi+1x(i+1)′ = [ [x1xi+1x(i+1)′ , x
π1
1 ], ρi(0, u)] ∈ Y,

ρi(π1, u) = [i + 1][ ρi(π1, u)xi+1, x(i+1)′ ] + [i + 1]μi+1ρi(π1 − 1, u)xi+1x(i+1)′ ∈ Y.

Now, we prove the theorem by using (i)–(vii). Let z := xkξu be any basis element of M.
Set lz :=

∑
i∈M1

πi −
∑

i∈M1

ki. We propose to prove that xkξu ∈ Y by induction on lz. For lz = 0,

it follows that z = ρn+1(k1, u) ∈ Y . Let lz > 0. Then there is i ∈ M1, such that ki < πi. By
the assumption of induction, we have z′ := xk+ei ξu ∈ Y and g := xk−e1+eixi′ξ

u ∈ Y. Thus,

xkξu = [i]((ki + 1)∗)−1([z′, xi′ ] − k∗
1μig) ∈ Y.

The induction is complete.

4 Derivations of M

In this section, we shall describe the structure of the derivation algebra of M. Since M is
not a simple modular Lie algebra, we can not obtain the corresponding conclusion for a simple
modular Lie superalgebra M directly. This observation motivates us to pay our attention to the
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gradation component of zero Z-degree. Then, using the generator sets of M which have been
obtained in Section 3, we decompose the derivations of nonzero Z-degree and zero Z-degree. As
the final results, the derivations of the even part for the simple modular Lie superalgebra M
are investigated.

Lemma 4.1 Let ϕ ∈ Der(M), f ∈ M. If ϕ(xi) = ϕ[f, xi] = 0, ∀i ∈ M1, then Di(ϕ(f)) =
0, ∀i ∈ M, that is, ϕ(f) =

∑
u

auξu, where au ∈ F, u ∈ B(q).

Proof Noting that ϕ(xi) = ϕ[f, xi] = 0, it yields that [ϕ(f), xi] = 0, ∀i ∈ M1. Thus,

[ϕ(f), 1] = [i][ϕ(f), [xi, xi′ ]] = 0, ∀i ∈ M1.

It follows that D1(ϕ(f)) = 0 and Di(ϕ(f)) = [i][ϕ(f), xi′ ] = 0, ∀i ∈ M1.

An element f of M is called τ(i)-truncated if D
τ(i)
i (f) = 0, where

τ(i) =
{

πi, if i ∈ M,
1, if i ∈ T.

For i ∈ M, we define a linear mapping ρi, such that

ρi(xkξu) = ((ki + 1)∗)−1xk+eiξu,

where xk+ei = 0 for k + ei �∈ Q.
From the definitions above, we can get the following result directly.

Lemma 4.2 The following statements hold:
(i) If f ∈ M is τ(i)-truncated, then Diρi(f) = f for all i ∈ M .
(ii) Diρj = ρjDi, where i �= j ∈ M .

Lemma 4.3 Let ft1 , · · · , ftk
∈ M, where t1, · · · , tk ∈ M. If fi is τ(i)-truncated, i =

t1, · · · , tk and Di(fj) = Dj(fi), i, j = t1, · · · , tk ∈ M, then there exists f ∈ M, such that
Di(f) = fi, i = t1, · · · , tk ∈ M .

Proof Induction on k. If k = 1, then let f = ρt1(ft1). In view of Lemma 4.2(i), we have
Dt1(f) = Dt1ρt1(ft1) = ft1 . Assume that there exists g ∈ M, such that Di(g) = fi, i =
t1, · · · , tk−1. Let f = g + ρtk

(ftk
− Dtk

(g)). For i = t1, · · · , tk−1, utilizing Lemma 4.2(ii) and
the hypothesis of this lemma, we have

Di(f) = fi + Diρtk
(ftk

− Dtk
(g))

= fi + ρtk
(Di(ftk

) − DiDtk
(g))

= fi + ρtk
(Dtk

(fi) − Dtk
Di(g))

= fi.

Since ftk
− Dtk

(g) is τ(tk)-truncated, by virtue of Lemma 4.2, we have

Dtk
(f) = Dtk

(g) + Dtk
ρtk

(ftk
− Dtk

(g))

= Dtk
(g) + ftk

− Dtk
(g)

= ftk
.

Our assertion follows and this completes the proof.
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Lemma 4.4 Suppose that ϕ ∈ Der(M). Let f1 = ϕ(1) and fi = [i]ϕ(xi′ ) − [i] μif1xi′ for
i ∈ M1. Then there exists f ∈ M, such that Di(f) = fi for i ∈ M.

Proof Considering the definition of τ(ti)-truncated, it is clear that fi (i ∈ M) are τ(ti)-
truncated. It remains to verify that fi (i ∈ M) satisfy the condition of Lemma 4.3, that is,
Di(fj) = Dj(fi), i, j ∈ M.

By the assumption, we have

ϕ(xi′ ) = [i]fi + μif1xi′ for all i ∈ M1. (4.1)

Applying ϕ to the equation [1, xi′ ] = 0, we obtain that

ϕ([1, xi′ ]) = [f1, xi′ ] + [1, [i]fi + [i]μif1xi′ ]

= D1(f1)μixi′ + [i]Di(f1) − [i]D1(fi) − μiD1(f1xi′)

= [i]Di(f1) − [i]D1(fi)

= 0,

that is, Di(f1) = D1(fi), i ∈ M1. Applying ϕ to the equation [xi′ , xj′ ] = δji′ [i′], it follows that

ϕ([xi′ , xj′ ]) = [i′]δji′ϕ(1).

Moreover, Di(fj) = Dj(fi), i, j ∈ M1. Consequently, there exists f ∈ M, such that Di(f) = fi,

i ∈ M.

Proposition 4.1 Let ϕ ∈ Der(M). Then there exists f ∈ M, such that (ϕ−ad f)(M−1) = 0.

Proof It is easily seen that M−1 = span
F
{xi | i ∈ M1}. Let fi be defined as in Lemma 4.4.

Then there exists f ∈ M, such that Di(f) = fi, i ∈ M. Put ϕ1 := ϕ − ad f. It follows from
(4.1) that

ϕ1(xi) = ϕ(xi) − [f, xi]

= ϕ(xi) − (D1(f)μi′xi + [i′]Di′(f))

= ϕ(xi) − (μi′f1xi + [i′]fi′)

= 0,

where i ∈ M1.

Proposition 4.2 Let ϕ ∈ Der(M). If ϕ|M−1 = 0, then ϕ(xixi′ ) = 0, i ∈ M1.

Proof Using Proposition 4.1, we have ϕ(xi) = 0 for i ∈ M1, since xi ∈ M−1. Applying ϕ

to the following equations respectively:

[x2
i , xj ] = 0, [x2

i , xi′ ] = 2[i]xi,

where j �= i′ ∈ M1, we obtain that

ϕ([x2
i , xj ]) = 0, ϕ([x2

i , xi′ ]) = 2[i]ϕ(xi) = 0,
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where j �= i′ ∈ M1. In view of Lemma 4.1, we know ϕ(x2
i ) =

∑
u

auξu, where au ∈ F, u ∈ B(q).

Applying ϕ to the equation [x2
i , x

2
i′ ] = 4[i]xixi′ , it follows that

ϕ(xixi′ ) = 4−1[i]ϕ([x2
i , x

2
i′ ])

= 4−1[i]([ϕ(x2
i ), x

2
i′ ] + [x2

i , ϕ(x2
i′ )])

= 0,

as desired.

The following lemma is from [10, Proposition 8.4].

Lemma 4.5 Let G =
s⊕

i=−r

Gi be a Z-graded centerless Lie algebra, and let T ⊂ G0 be a

torus of G. If ϕ ∈ Der(G) is homogeneous of Z-degree t, then there exists e ∈ Gt, such that
(ϕ − ad e)|T = 0.

It is easily verified that T := span
F
{x1} is a torus of M.

Lemma 4.6 Let ϕ ∈ Dert(M), and suppose that ϕ(M−1) = 0. Then there exists g ∈
(CM(M−1))t, such that (ϕ − ad g)|T = 0.

Proof Recall that

CM(M−1) = span
F
{ξu | u ∈ B(q), |u| even}.

Noting that x1 ∈ M0, we get [x1, M−1] ⊆ M−1. Thus, ϕ(x1) ∈ CM(M−1). By Lemma 4.5,
there is e ∈ Mt, such that (ϕ − ad e)|T = 0. Thus, ϕ(x1) = [e, x1] ∈ (CM(M−1))t. Noticing
that [x1, ξ

u] = (1−2−1|u|)ξu, then there exists an element g ∈ (CM(M−1))t, such that ϕ(x1) =
[g, x1]. Consequently, (ϕ − ad g)|T = 0.

Theorem 4.1 Let ϕ ∈ Dert(M), t �= 0. Then there exists f ∈ M, such that ϕ = ad f.

Proof By Proposition 4.1, there exists f ′ ∈ M, such that (ϕ − ad f ′)(M−1) = 0. In view
of Lemma 4.6, there exists g ∈ (CM(M−1))t, such that (ϕ − ad f ′ − ad g)|T = 0. Recall that
T = span

F
{x1}, and it follows that (ϕ − ad f ′ − ad g)(x1) = 0.

Set
σ := ϕ − ad f ′ − ad g.

It is clear that σ(M−1) = 0.

In the following, recall that P = {xki

i | 0 ≤ ki ≤ πi, i ∈ M} and Q = {x1ξr+1ξl | l �= r +1 ∈
T }, and we proceed in several steps to show that σ(P) = 0, σ(Q) = 0, respectively.

First, it will be proved that σ(xki

i ) = 0 for all i ∈ M, by induction on ki. For ki = 0, from
1 ∈ M−2, σ(1) = 0 holds. Using Proposition 4.2, we get σ(xixi′) = 0. Suppose that ki > 0.

Then σ(xki−1
i ) = 0 by the inductive hypothesis. Applying σ to [xi′ , x

ki

i ] = [i′]k∗
i xki−1

i , we
obtain

[xi′ , σ(xki

i )] = [i′]k∗
i σ(xki−1

i ) = 0.

In view of Lemma 4.1, we have Dj(σ(xki

i )) = 0 for j ∈ M. Applying σ to

[xixi′ , x
ki

i ] = [i′]k∗
i xki

i ,
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it follows that σ(xki

i ) = 0 (for i ∈ M1) from [xixi′ , σ(xki

i )] = [i′]k∗
i σ(xki

i ).
Next, we prove that σ(xk1

1 ) = 0 for 0 ≤ k1 ≤ π1 by induction on k1. To do that, we
assert that σ(x2

1) = 0, σ(x3
1) = 0. To simplify the proof, we only verify σ(x2

1) = 0 as the proof
of σ(x3

1) = 0 is similar. For this propose, we may assume that σ(x2
1) :=

∑
k,u

ak,uxkξu, where

k ∈ Q, u ∈ B(q). One may check that D1(σ(x2
1)) = 0 by applying σ to [x2

1, 1] = 2x1. Similarly,
applying σ to [x2

1, xixi′ ] = 0, we can obtain∑
k,u

ak,u([i]k∗
i + [i′]k∗

i′)x
kξu = 0.

For ak,u �= 0, it is easily verified that k∗
i = k∗

i′ . Applying σ to the following equations:

[xi, x1xi] = −μi′x
2
i ,

[xi′ , x1xi] = −μixixi′ + [i′]x1,

[1, x1xi] = −xi,

respectively, from Proposition 4.2, we have

[xi, σ(x1xi)] = 0, [xi′ , σ(x1xi)] = 0, [1, σ(x1xi)] = 0.

Moreover, the following equations hold by direct computations:

Di′(σ(x1xi)) = 0, Di(σ(x1xi)) = 0, D1(σ(x1xi)) = 0.

Applying σ to the equation [x2
1, xi] = 2μi′x1xi, we get

[i′]Di′σ(x2
1) = 2μi′σ(x1xi). (4.2)

Using (4.2), we may obtain by comparing coefficients that k∗
i = k∗

i′ = 0. Then Dj(σ(x2
1)) = 0,

∀j ∈ M1. So far, we may assume that σ(x2
1) =

∑
u

auξu.

In the following, we will show that σ(ξr+1ξl) = 0, l ∈ T. Using Lemma 4.1, it follows that
Di(σ(ξr+1ξl)) = 0, i ∈ M. We may assume that σ(ξr+1ξl) =

∑
u

auξu, where au ∈ F, u ∈ B(q),

and |u| is even.
Noticing that zd(σ(ξr+1ξl)) = t > 0 or zd(σ(ξr+1ξl)) = t < −1 and applying σ to

[x1, ξr+1ξl] = 0, we obtain ∂(σ(ξr+1ξl)) = 0. Moreover,
∑
u

au(1 − 2−1|u|)ξu = 0. For au �= 0,

we get |u| = 2. Note that zd(σ(ξr+1ξl)) = zd
( ∑
|u|=2

auξu
)

= 0 and zd(σ(ξr+1ξl)) = t �= 0. This

shows σ(ξr+1ξl) = 0. Applying σ to [x2
1, ξr+1ξl] = 0, from σ(ξr+1ξl) = 0, we have

[σ(x2
1), ξr+1ξl] = 0. (4.3)

(4.3) yields that σ(x2
1) = c, c ∈ F. Applying σ to [x2

1, x1] = x2
1, we obtain σ(x2

1) = 0.
Assume that k1 > 3. Applying σ to the following equations:

[x3
1, x

k1−2
1 ] = (3∗ − (k1 − 2)∗)xk1

1 , (4.4)

[x2
1, x

k1−1
1 ] = (2∗ − (k1 − 1)∗)xk1

1 , (4.5)
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respectively, we get

[x3
1, σ(xk1−2

1 )] = (3∗ − (k1 − 2)∗)σ(xk1
1 ), (4.6)

[x2
1, σ(xk1−1

1 )] = (2∗ − (k1 − 1)∗)σ(xk1
1 ). (4.7)

For 2∗−(k1−1)∗ �≡ 0 (mod p), by (4.7), it is clear that σ(xk1
1 ) = 0 holds. For 2∗−(k1−1)∗ ≡ 0

(mod p), that is, (k1 − 1)∗ = 2, we have 3 − (k1 − 2)∗ �≡ 0 (mod p). Using (4.6), we obtain
σ(xk1

1 ) = 0. To sum up, σ(xk1
1 ) = 0 holds.

Now, let us prove that σ(x1ξr+1ξl) = 0, l ∈ T. Apply σ to [xi, xi′ξr+1ξl] = [i]ξr+1ξl and
[xj , xi′ξr+1ξl] = 0, j �= i ∈ M1. Using Lemma 4.1, we get Dj(σ(xi′ξr+1ξl)) = 0, j ∈ M. Applying
σ to

[xixi′ , xi′ξr+1ξl] = [i]xi′ξr+1ξl,

we have σ(xi′ξr+1ξl) = 0, i ∈ M1. Noting that the following equation holds by a direct compu-
tation:

x1ξr+1ξl = [i]([x1xi, xi′ξr+1ξl] − 4−13−1μi′ [x2
i , [x

3
i′ , xiξr+1ξl]]),

we have σ(x1ξr+1ξl) = 0, l ∈ T. The proof is complete.

Theorem 4.2 Let ϕ ∈ Dert(M), t = 0. Then there exists f ∈ M, such that

ϕ = ad f +
∑
|u|=2

au

∏
l

ad(ξr+1ξl) +
∑
|u|=4

buadxi′ad (xiξ
v(u))

∏
l

ad (ξr+1ξl),

where |v(u)| = 2, ui′ �= 0, i ∈ M1, au, bu ∈ F, and l ∈ T.

Proof In view of the proof of Theorem 4.1, there exists σ = ϕ−ad f ′−ad g, where f ′ ∈ M,

g ∈ CM(M−1), such that σ(M−1) = 0, σ(T ) = 0.

We obtain the following results:

σ(P) = 0, σ(Q) = 0, σ(ξr+1ξl) =
∑
|u|=2

cuξu, cu ∈ F.

Set

σ(x1ξr+1ξl) :=
∑
k,u

ak,uxkξu. (4.8)

Applying σ to [xixi′ , x1ξr+1ξl] = 0, we obtain

[i]xi′
(∑

k,u

ak,uk∗
i′x

k−ei′ ξu
)

+ [i′]xi

( ∑
k,u

ak,uk∗
i xk−eiξu

)
= 0. (4.9)

For ak,u �= 0, by (4.8)–(4.9), we have k∗
i = k∗

i′ . Applying σ to

[1, xiξr+1ξl] = 0

and
[xj , xiξr+1ξl] = 0, j �= i′ ∈ M1,

we get

Dj(σ(xiξr+1ξl)) = 0, j �= i ∈ M1. (4.10)
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Applying σ to [xi′ , xiξr+1ξl] = [i′]ξr+1ξl, it follows that

Di(σ(xiξr+1ξl)) = σ(ξr+1ξl). (4.11)

Using (4.10)–(4.11), we have

σ(xiξr+1ξl) = xiσ(ξr+1ξl). (4.12)

Applying σ to [1, x1ξr+1ξl] = −ξr+1ξl, we get

D1(σ(x1ξr+1ξl)) = σ(ξr+1ξl). (4.13)

Applying σ to [xi, x1ξr+1ξl] = −μi′xiξr+1ξl, it follows that

−μi′xiD1(σ(x1ξr+1ξl)) + [i]Di′(σ(x1ξr+1ξl)) = −μi′σ(xiξr+1ξl). (4.14)

Moreover, k∗
i′ = k∗

i = 0.

It is easily verified that each term x1ξ
u is generated by some fm ∈ M and x1ξr+1ξl. Conse-

quently, combining (4.12)–(4.14), we have

σ(x1ξr+1ξl) = x1σ(ξr+1ξl) +
∑
|u|=4

duξu

=
∑
|u|=2

cux1ξ
u +

∑
|u|=4

duξu

=
∑
|u|=2

au

( ∏
m(u)

ad fm(u)(x1ξr+1ξl)
)

+
∑
|u|=4

bu

(
adxi′adxiξ

v(u)
∏
n(u)

ad fn(u)(x1ξr+1ξl)
)
,

where au, bu, cu, du ∈ F, fm(u), fn(u) ∈ M.

Let
Δ := σ +

∑
|u|=2

au

∏
m(u)

ad fm(u) +
∑
|u|=4

bu

(
adxi′adxiξ

v(u)
∏
n(u)

ad fn(u)

)
,

where au, bu ∈ F.

Noticing that the following equations hold by Theorem 3.1:

Δ(P) = 0, Δ(Q) = 0,

we have Δ = 0. Hence, there exists f ∈ M, such that

ϕ = ad f +
∑
|u|=2

au

∏
l

ad (ξr+1ξl) +
∑
|u|=4

buadxi′ad (xiξ
v(u))

∏
l

ad (ξr+1ξl),

where |v(u)| = 2, i ∈ M1, l ∈ T and au, bu ∈ F.

Theorem 4.3

Der(M) = ad (M) ⊕ span
F

{∏
l

ad (ξr+1ξl)
}
⊕ span

F

{
ad xi′ad (xiξ

v)
∏

l

ad (ξr+1ξl)
}

,

where i ∈ M1, l ∈ T, and |v| = 2.
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Proof This is a direct consequence of Theorems 4.1–4.2.

Remark 4.1 Now we can answer the question mentioned in the introduction for the simple
modular Lie superalgebra M. By Theorem 4.3 and [9, Theorem 3], it is easy to see that
the derivation algebra of the even part of M does not equal the even part of the derivation
superalgebra of M, that is, Der(M0) �= Der(M)0.

Acknowledgement The authors thank the referees for their careful reading and helpful
suggestions.
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