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Abstract Let D be an integer at least 3 and let H(D, 2) denote the hypercube. It is
known that H(D, 2) is a Q-polynomial distance-regular graph with diameter D, and its
eigenvalue sequence and its dual eigenvalue sequence are all {D − 2i}D

i=0. Suppose that �
denotes the tetrahedron algebra. In this paper, the authors display an action of � on the
standard module V of H(D, 2). To describe this action, the authors define six matrices in
MatX(C), called

A, A∗, B, B∗, K, K∗.

Moreover, for each matrix above, the authors compute the transpose and then compute
the transpose of each generator of � on V .
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1 Introduction

Throughout this paper, C denotes the field of complex numbers and R denotes the field of
real numbers.

In [20], Hartwig and Terwilliger found a presentation for the three-point sl2 loop algebra
via generators and relations. To obtain this presentation, they defined a Lie algebra � by
generators and relations, and displayed an isomorphism from � to the three-point sl2 loop
algebra. In [15], Elduque found an attractive decomposition of � into a direct sum of three
abelian subalgebras, and showed how these subalgebras are related to the Onsager subalgebras.
In [19], Hartwig classified the finite-dimensional irreducible �-modules over an algebraically
closed field F with characteristic 0. In [22], Itô and Terwilliger described the finite-dimensional
irreducible �-modules from multiple points of view.

Let D be an integer at least 3 and let H(D, 2) denote the hypercube. It is known that
H(D, 2) is a Q-polynomial distance-regular graph with diameter D, and its eigenvalue sequence
and its dual eigenvalue sequence are all {D−2i}D

i=0. In this paper, we display an action of � on
the standard module V of H(D, 2). To describe this action we define six matrices in MatX(C),
called

A, A∗, B, B∗, K, K∗.
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Moreover, for each matrix above we compute the transpose and then compute the transpose of
each generator of � on V .

2 Tetrahedron Algebra � and Onsager Algebra O
In this section, we recall the definitions of the tetrahedron algebra � and the Onsager algebra

O and show how the finite-dimensional irreducible modules for � and O are related.

Definition 2.1 (see [20, Definition 1.1]) Let � denote the Lie algebra over C with gener-
ators

{xrs | r, s ∈ I, r �= s}, I = {0, 1, 2, 3}
and the following relations:

(i) For all distinct r, s ∈ I,

xrs + xsr = 0. (2.1)

(ii) For all mutually distinct r, s, t ∈ I,

[xrs, xst] = 2xrs + 2xst. (2.2)

(iii) For all mutually distinct r, s, t, u ∈ I,

[xrs, [xrs, [xrs, xtu]]] = 4[xrs, xtu]. (2.3)

We call � the tetrahedron algebra.

Remark 2.1 (2.3) is the Dolan-Grady relation.

Definition 2.2 (see [19, Definition 1.2]) Let O denote the Lie algebra over C with gener-
ators X, Y satisfying relations

[X, [X, [X, Y ]]] = 4[X, Y ], (2.4)

[Y, [Y, [Y, X ]]] = 4[Y, X ]. (2.5)

We call O the Onsager algebra. We call X, Y the standard generators for O.

Proposition 2.1 (see [20, Proposition 4.7]) Let r, s, t, u denote mutually distinct elements
of I. Then there exists a unique Lie algebra homomorphism from O to � that sends

X → xrs, Y → xtu.

Note 2.1 (see [20, Note 4.8]) The homomorphism in Proposition 2.1 is an injection.

Let V denote a finite-dimensional irreducible O-module. Then by [19, Theorem 2.4], the
standard generators X, Y are diagonalizable on V . Moreover, there exist an integer d ≥ 0 and
scalars α, α∗ ∈ C such that the set of distinct eigenvalues of X (resp. Y ) on V is {d − 2i + α |
0 ≤ i ≤ d} (resp. {d − 2i + α∗ | 0 ≤ i ≤ d}). We call the ordered pair (α, α∗) the type
of V . Replacing X, Y by X − αI, Y − α∗I, respectively, the type becomes (0, 0). Let V

denote a finite-dimensional irreducible �-module. Then by [19, Theorem 3.8], each generator
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xrs of � is diagonalizable on V . Moreover, there exists an integer d ≥ 0 such that the set of
distinct eigenvalues of xrs on V is {d − 2i | 0 ≤ i ≤ d}. We call d the diameter of V . The
finite-dimensional irreducible modules for � and O are related according to the following two
propositions and the subsequent remark.

Proposition 2.2 (see [19, Theorem 1.7]) Let V denote a finite-dimensional irreducible �-
module. Then there exists a unique O-module structure on V such that the standard generators
X, Y act on V as x01, x23 respectively. This O-module structure is irreducible and has type
(0, 0).

Proposition 2.3 (see [19, Theorem 1.8]) Let V denote a finite-dimensional irreducible O-
module of type (0, 0). Then there exists a unique �-module structure on V such that the standard
generators X, Y act on V as x01, x23 respectively. This �-module structure is irreducible.

Remark 2.2 (see [19, Remark 1.9]) Combining the previous two propositions, we obtain
a bijection between the following two sets:

(i) The isomorphism classes of finite-dimensional irreducible O-modules of type (0, 0).
(ii) The isomorphism classes of finite-dimensional irreducible �-modules.

3 Terwilliger Algebra of a Distance-Regular Graph

In this section, we review some definitions and basic results concerning the distance-regular
graphs. For more background information, we refer the readers to [1, 3, 18, 29].

Let X denote a nonempty finite set. Let MatX(C) denote the C-algebra consisting of all
matrices whose rows and columns are indexed by X and whose entries are in C. Let V = CX

denote the vector space over C consisting of column vectors whose coordinates are indexed by
X and whose entries are in C. We observe that MatX(C) acts on V by left multiplication. We
call V the standard module. We endow V with the Hermitian inner product 〈 , 〉 that satisfies
〈u, v〉 = utv for u, v ∈ V , where t denotes transpose and − denotes complex conjugation. For
all y ∈ X , let ŷ denote the element of V with 1 in y coordinate and 0 in all other coordinates.
We observe that {ŷ | y ∈ X} is an orthonormal basis for V .

Let Γ = (X, R) denote a finite, undirected, connected graph, without loops or multiple
edges, but with a vertex set X and an edge set R. Let ∂ denote the path-length distance
function for Γ, and set D := max{∂(x, y) | x, y ∈ X}. We call D the diameter of Γ. We say Γ
is distance-regular whenever for all integers h, i, j (0 ≤ h, i, j ≤ D) and for all vertices x, y ∈ X

with ∂(x, y) = h, the number

ph
ij = |{z ∈ X | ∂(x, z) = i, ∂(z, y) = j}|

is independent of x and y. The ph
ij are called the intersection numbers of Γ.

For the rest of this paper, we assume that Γ is a distance-regular graph with diameter D ≥ 3.
We mention a fact for later use. By the triangle inequality, for 0 ≤ h, i, j ≤ D, we have

ph
ij = 0 (resp. ph

ij �= 0), whenever one of h, i, j is greater than (resp. equal to) the sum of the
other two.

We recall the Bose-Mesner algebra of Γ. For 0 ≤ i ≤ D, let Ai denote the matrix in MatX(C)
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with the (x, y)-entry:

(Ai)xy =
{

1, if ∂(x, y) = i,
0, if ∂(x, y) �= i,

x, y ∈ X. (3.1)

We call Ai the ith distance matrix of Γ. The matrix A1 is often called the adjacency matrix of Γ.

We observe that (i) A0 = I; (ii)
D∑

i=0

Ai = J ; (iii) Ai = Ai (0 ≤ i ≤ D); (iv) At
i = Ai (0 ≤ i ≤ D);

(v) AiAj =
D∑

h=0

ph
ijAh (0 ≤ i, j ≤ D), where I (resp. J) denotes the identity matrix (resp. all

1s matrix) in MatX(C). Using these facts, we find that A0, A1, · · · , AD form a basis for a
commutative subalgebra M of MatX(C). We call M the Bose-Mesner algebra of Γ. It turns
out that A1 generates M (see [1, p. 190]). By [3, p. 45], M has a second basis E0, E1, · · · , ED

such that (i) E0 = |X |−1J ; (ii)
D∑

i=0

Ei = I; (iii) Ei = Ei (0 ≤ i ≤ D); (iv) Et
i = Ei (0 ≤ i ≤ D);

(v) EiEj = δijEi (0 ≤ i, j ≤ D). We call E0, E1, · · · , ED the primitive idempotents of Γ.
We recall the eigenvalues of Γ. Since E0, E1, · · · , ED form a basis for M , there exist complex

scalars θ0, θ1, · · · , θD such that A1 =
D∑

i=0

θiEi. Observe that A1Ei = EiA1 = θiEi for 0 ≤ i ≤ D.

By [1, p. 197], the scalars θ0, θ1, · · · , θD are in R. Observe that θ0, θ1, · · · , θD are mutually
distinct since A1 generates M . We call θi the eigenvalue of Γ associated with Ei (0 ≤ i ≤ D).
Observe that

V = E0V + E1V + · · · + EDV (an orthogonal direct sum).

For 0 ≤ i ≤ D, the space EiV is the eigenspace of A1 associated with θi.
We now recall the Krein parameters. Let ◦ denote the entrywise product in MatX(C).

Observe that Ai ◦ Aj = δijAi for 0 ≤ i, j ≤ D, so M is closed under ◦. Thus, there exist
complex scalars qh

ij (0 ≤ h, i, j ≤ D) such that

Ei ◦ Ej = |X |−1
D∑

h=0

qh
ijEh, 0 ≤ i, j ≤ D.

By [2, p. 170], qh
ij is real and nonnegative for 0 ≤ h, i, j ≤ D. The qh

ij are called the Krein
parameters of Γ. The graph Γ is said to be Q-polynomial (with respect to the given ordering
E0, E1, · · · , ED of the primitive idempotents) whenever for 0 ≤ h, i, j ≤ D, qh

ij = 0 (resp.
qh
ij �= 0), whenever one of h, i, j is greater than (resp. equal to) the sum of the other two (see

[4, p. 235]). See [3, 5–7, 10, 12–13, 26] for the background information on the Q-polynomial
property.

For the rest of this section, we assume Γ is a Q-polynomial distance-regular graph with
respect to E0, E1, · · · , ED.

We recall the dual Bose-Mesner algebra of Γ. For the rest of this paper, we fix a vertex
x ∈ X . We view x as a “base vertex”. For 0 ≤ i ≤ D, let E∗

i = E∗
i (x) denote the diagonal

matrix in MatX(C) with the (y, y)-entry

(E∗
i )yy =

{
1, if ∂(x, y) = i,
0, if ∂(x, y) �= i,

y ∈ X. (3.2)
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We call E∗
i the ith dual idempotent of Γ with respect to x (see [28, p. 378]). We observe that

(i)
D∑

i=0

E∗
i = I; (ii) E∗

i = E∗
i (0 ≤ i ≤ D); (iii) E∗t

i = E∗
i (0 ≤ i ≤ D); (iv) E∗

i E∗
j = δijE

∗
i (0 ≤

i, j ≤ D). By these facts, E∗
0 , E∗

1 , · · · , E∗
D form a basis for a commutative subalgebra M∗

of MatX(C). We call M∗ the dual Bose-Mesner algebra of Γ with respect to x (see [28, p.
378]). For 0 ≤ i ≤ D, let A∗

i = A∗
i (x) denote the diagonal matrix in MatX(C) with (y, y)-

entry (A∗
i )yy = |X |(Ei)xy for y ∈ X . Then A∗

0, A
∗
1, · · · , A∗

D is a basis for M∗ (see [28, p.
379]). Moreover, (i) A∗

0 = I; (ii) A∗
i = A∗

i (0 ≤ i ≤ D); (iii) A∗t
i = A∗

i (0 ≤ i ≤ D); (iv)

A∗
i A

∗
j =

D∑
h=0

qh
ijA

∗
h (0 ≤ i, j ≤ D) (see [28, p. 379]). We call A∗

0, A
∗
1, · · · , A∗

D the dual distance

matrices of Γ with respect to x. The matrix A∗
1 is often called the dual adjacency matrix of Γ

with respect to x. The matrix A∗
1 generates M∗ (see [28, Lemma 3.11]).

We recall the dual eigenvalues of Γ. Since E∗
0 , E∗

1 , · · · , E∗
D form a basis for M∗, there exist

complex scalars θ∗0 , θ∗1 , · · · , θ∗D such that A∗
1 =

D∑
i=0

θ∗i E∗
i . Observe that A∗

1E
∗
i = E∗

i A∗
1 = θ∗i E∗

i

for 0 ≤ i ≤ D. By [28, Lemma 3.11], the scalars θ∗0 , θ∗1 , · · · , θ∗D are in R. Observe that
θ∗0 , θ

∗
1 , · · · , θ∗D are mutually distinct since A∗

1 generates M∗. We call θ∗i the dual eigenvalue of
Γ associated with E∗

i (0 ≤ i ≤ D).
We recall the subconstituents of Γ. From (3.2) we find

E∗
i V = span{ŷ | y ∈ X, ∂(x, y) = i}, 0 ≤ i ≤ D. (3.3)

By (3.3) and since {ŷ | y ∈ X} is an orthonormal basis for V , we find

V = E∗
0V + E∗

1V + · · · + E∗
DV (the orthogonal direct sum).

For 0 ≤ i ≤ D, the space E∗
i V is the eigenspace of A∗

1 associated with θ∗i . We call E∗
i V the ith

subconstituent of Γ with respect to x.
We recall the Terwilliger algebra of Γ. Let T = T (x) denote the subalgebra of MatX(C)

generated by M and M∗. We call T the Terwilliger algebra (or the subconstituent algebra) of
Γ with respect to x (see [29, Definition 3.3]). We observe that T is generated by A1, A

∗
1 and has

finite dimension. Moreover, T is semisimple since it is closed under the conjugate transponse
map (see [11, p. 157]). By [29, Lemma 3.2], the following are relations in T :

E∗
hAiE

∗
j = 0 if and only if ph

ij = 0, 0 ≤ h, i, j ≤ D, (3.4)

EhA∗
i Ej = 0 if and only if qh

ij = 0, 0 ≤ h, i, j ≤ D. (3.5)

See [8–10, 14, 16–17, 21, 27–30] for more information on the Terwilliger algebra.
For the rest of this paper, we adopt the following notation convention.

Notation 3.1 Assume that Γ = (X ; R) is a distance-regular graph with diameter D ≥ 3
and has a Q-polynomial structure with respect to the ordering E0, E1, · · · , ED of the primitive
idempotents. We fix x ∈ X and write A∗

1 = A∗
1(x), E∗

i = E∗
i (x) (0 ≤ i ≤ D), T = T (x). We

use the abbreviation V = C
X .

With reference to Notation 3.1, we recall some useful results on T -modules. By a T -module,
we mean a subspace W ⊆ V such that BW ⊆ W for all B ∈ T . Let W denote a T -module
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and let W ′ denote a T -module contained in W . Then the orthogonal complement of W ′ in W

is a T -module (see [17, p. 802]). It follows that each T -module is an orthogonal direct sum of
irreducible T -modules. In particular, V is an orthogonal direct sum of irreducible T -modules.

Let W denote an irreducible T -module. Observe that W is the direct sum of the nonzero
spaces among E∗

0W, · · · , E∗
DW . Similarly, W is the direct sum of the nonzero spaces among

E0W, · · · , EDW . By the endpoint of W , we mean min{i | 0 ≤ i ≤ D, E∗
i W �= 0}. By the

diameter of W , we mean |{i | 0 ≤ i ≤ D, E∗
i W �= 0}| − 1. By the dual endpoint of W , we

mean min{i | 0 ≤ i ≤ D, EiW �= 0}. By the dual diameter of W , we mean |{i | 0 ≤ i ≤
D, EiW �= 0}|− 1. It turns out that the diameter of W is equal to the dual diameter of W (see
[26, Corollary 3.3]).

Lemma 3.1 (see [28, Lemmas 3.4, 3.9, 3.12]) With reference to Notation 3.1, let W

denote an irreducible T -module with endpoint ρ, dual endpoint τ , and diameter d. Then ρ, τ, d

are nonnegative integers such that ρ + d ≤ D and τ + d ≤ D. Moreover, the following (i)–(iv)
hold:

(i) E∗
i W �= 0 if and only if ρ ≤ i ≤ ρ + d (0 ≤ i ≤ D).

(ii) W =
d∑

h=0

E∗
ρ+hW (the orthogonal direct sum).

(iii) EiW �= 0 if and only if τ ≤ i ≤ τ + d (0 ≤ i ≤ D).

(iv) W =
d∑

h=0

Eτ+hW (the orthogonal direct sum).

We finish this section with a comment.

Lemma 3.2 (see [23, Lemma 12.1]) With reference to Notation 3.1, for Y ∈ MatX(C),
the following are equivalent:

(i) Y ∈ T .
(ii) Y W ⊆ W for all irreducible T -modules W .

4 Split Decompositions of Standard Module

In this section, we recall the split decompositions for the standard module and define some
useful matrices by using these decompositions.

Definition 4.1 (see [23, Definition 10.1]) With reference to Notation 3.1, for −1 ≤ i, j ≤
D, we define

V ↓↓
i,j = (E∗

0V + · · · + E∗
i V ) ∩ (E0V + · · · + EjV ),

V ↑↓
i,j = (E∗

DV + · · · + E∗
D−iV ) ∩ (E0V + · · · + EjV ),

V ↓↑
i,j = (E∗

0V + · · · + E∗
i V ) ∩ (EDV + · · · + ED−jV ),

V ↑↑
i,j = (E∗

DV + · · · + E∗
D−iV ) ∩ (EDV + · · · + ED−jV ).

In each of the above four equations, we interpret the right-hand side as being 0 if i = −1 or
j = −1.

Definition 4.2 (see [23, Definition 10.2]) With reference to Notation 3.1 and Definition
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4.1, for μ, ν ∈ {↓, ↑} and 0 ≤ i, j ≤ D, we have V μν
i−1,j ⊆ V μν

i,j and V μν
i,j−1 ⊆ V μν

i,j . Therefore,

V μν
i−1,j + V μν

i,j−1 ⊆ V μν
i,j .

Referring to the above inclusion, we define Ṽ μν
i,j to be the orthogonal complement of the left-hand

side in the right-hand side; that is,

Ṽ μν
i,j = (V μν

i−1,j + V μν
i,j−1)

⊥ ∩ V μν
i,j .

Lemma 4.1 (see [23, Definition 10.3]) With reference to Notation 3.1 and Definition 4.2,
we have that for μ, ν ∈ {↓, ↑},

V =
D∑

i=0

D∑
j=0

Ṽ μν
i,j (the direct sum). (4.1)

Definition 4.3 (see [25, Definition 6.4]) We call the sum (4.1) the (μ, ν)-split decomposi-
tion of V with respect to x. This decomposition is not orthogonal in general.

Definition 4.4 (see [24, Definition 4.1]) With reference to Notation 3.1 and Definition 4.2,
for μ, ν ∈ {↓, ↑} and 0 ≤ i, j ≤ D, we define Eμν

i,j ∈ MatX(C) so that

(Eμν
i,j − I)Ṽ μν

i,j = 0,

Eμν
i,j Ṽ μν

r,s = 0, if (i, j) �= (r, s), 0 ≤ r, s ≤ D.

Lemma 4.2 (see [24, Theorem 4.7]) With reference to Notation 3.1 and Definition 4.4, for
0 ≤ i, j ≤ D,

(i) (E↓↓
i,j)

t = E↑↑
D−i,D−j.

(ii) (E↑↓
i,j)

t = E↓↑
D−i,D−j.

The following result on irreducible T -modules is a mild generalization of [31, Lemma 6.1].

Lemma 4.3 (see [23, Lemma 11.4]) With reference to Notation 3.1 and Definition 4.2, let
W denote an irreducible T -module with the endpoint ρ, the dual endpoint τ , and the diameter
d. Then the following (i)–(iv) hold for 0 ≤ i, j ≤ d:

(i) The space

(E∗
ρW + · · · + E∗

ρ+d−iW ) ∩ (Eτ+d−iW + · · · + Eτ+dW )

is contained in Ṽ ↓↑
ρ+d−i,D−d−τ+i.

(ii) The space

(E∗
ρ+d−iW + · · · + E∗

ρ+dW ) ∩ (Eτ W + · · · + Eτ+d−iW )

is contained in Ṽ ↑↓
D−d−ρ+i,τ+d−i.

(iii) The space

(E∗
ρW + · · · + E∗

ρ+d−iW ) ∩ (EτW + · · · + Eτ+iW )
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is contained in Ṽ ↓↓
ρ+d−i,τ+i.

(iv) The space

(E∗
ρ+iW + · · · + E∗

ρ+dW ) ∩ (Eτ+d−iW + · · · + Eτ+dW )

is contained in Ṽ ↑↑
D−ρ−i,D−d−τ+i.

5 Displacement Decompositions of Standard Module

In this section, we recall the displacement decompositions for the standard module and
discuss their basic properties.

Definition 5.1 (see [31, Definition 4.1]) With reference to Notation 3.1, let W denote an
irreducible T -module with the endpoint ρ, the dual endpoint τ , and the diameter d. By the
displacement of W of the first kind (resp. the second kind), we mean the integer ρ + τ + d −D

(resp. ρ − τ).

Lemma 5.1 (see [24, Corollary 3.2]) With reference to Notation 3.1, let W denote an
irreducible T -module. Then the following hold:

(i) Let η denote the displacement of Wof the first kind. Then 0 ≤ η ≤ D.
(ii) Let ζ denote the displacement of Wof the second kind. Then −D ≤ ζ ≤ D.

Definition 5.2 (see [31, Definitions 4.3, 4.5]) With reference to Notation 3.1, for 0 ≤ η ≤
D, let Vη denote the subspace of V spanned by the irreducible T -modules, for which η is the
displacement of the first kind. Observe that Vη is a T -module. By [31, Lemma 4.4], we have

V =
D∑

η=0

Vη (the direct sum). (5.1)

We call the sum (5.1) the displacement decomposition of V of the first kind with respect to x.

Definition 5.3 (see [24, Definitions 3.7, 3.9]) With reference to Notation 3.1, for −D ≤
ζ ≤ D, let Vζ denote the subspace of V spanned by the irreducible T -modules, for which ζ is the
displacement of the second kind. Observe that Vζ is a T -module. By [24, Lemma 3.8], we have

V =
D∑

ζ=−D

Vζ (the direct sum). (5.2)

We call the sum (5.2) the displacement decomposition of V of the second kind with respect to x.

Lemma 5.2 (see [24, Theorem 3.20]) With reference to Notation 3.1 and Definitions 4.2
and 5.2, the following hold for 0 ≤ η ≤ D:

(i) Vη =
∑

Ṽ ↓↓
i,j , where the sum is over all ordered pairs i, j such that 0 ≤ i, j ≤ D and

i + j = D + η.
(ii) Vη =

∑
Ṽ ↑↑

i,j , where the sum is over all ordered pairs i, j such that 0 ≤ i, j ≤ D and
i + j = D − η.

Lemma 5.3 (see [24, Theorem 3.21]) With reference to Notation 3.1 and Definitions 4.2
and 5.3, the following hold for −D ≤ ζ ≤ D:
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(i) Vζ =
∑

Ṽ ↓↑
i,j , where the sum is over all ordered pairs i, j such that 0 ≤ i, j ≤ D and

i + j = D + ζ.
(ii) Vζ =

∑
Ṽ ↑↓

i,j , where the sum is over all ordered pairs i, j such that 0 ≤ i, j ≤ D and
i + j = D − ζ.

6 Hypercube H(D, 2) and Matrices A, A∗, B, B∗, K, K∗

In this section, we recall some facts concerning the hypercube, and define some useful
matrices by using its split decompositions.

Definition 6.1 Let D denote a positive integer, and let {1,−1}D denote the set of sequences
ε1ε2 · · · εD, where εi ∈ {1,−1} for 1 ≤ i ≤ D. We let H(D, 2) denote the graph with a vertex
set

X = {1,−1}D

and an edge set

R = {xy | x, y ∈ X, x, y differ in exactly one coordinate}.

We refer to H(D, 2) the hypercube. H(D, 2) is also known as a D-cube or a Hamming cube.

For the rest of this paper, we always assume that the diameter D of the hypercube H(D, 2)
is at least 3.

Definition 6.2 For the hypercube H(D, 2), let E0, E1, · · · , ED denote the primitive idem-
potents and let A be the adjacency matrix. Let V be the standard module. Fix a vertex x ∈ X

of H(D, 2). Let E∗
0 , E∗

1 , · · · , E∗
D denote the dual primitive idempotents with respect to x and let

A∗ be the dual adjacency matrix with respect to x. Let T be the Terwilliger algebra with respect
to x.

Lemma 6.1 With reference to Definition 6.2, the hypercube H(D, 2) is a Q-polynomial
distance-regular graph whose eigenvalue sequence and dual eigenvalue sequence are all {D −
2i}D

i=0. Moreover, the space EiV (resp. E∗
i V ) is the eigenspace of A (resp. A∗) associated with

the eigenvalue D − 2i for 0 ≤ i ≤ D.

Proof Immediate from [3, p. 261] and [16, Theorems 3.7, 12.1].

Lemma 6.2 With reference to Definition 6.2, the matrices A and A∗ satisfy the Dolan-
Grady relations

[A, [A, [A, A∗]]] − 4[A, A∗] = 0, (6.1)

[A∗, [A∗, [A∗, A]]] − 4[A∗, A] = 0. (6.2)

Proof Immediate from [16, Theorem 4.2].

Lemma 6.3 (see [16, Theorems 6.1, 8.1]) With reference to Definition 6.2, let W denote
an irreducible T -module with the endpoint ρ, the dual endpoint τ , and the diameter d. Then
the endpoint and the dual endpoint are equal. Moreover, we have

d = D − 2ρ = D − 2τ.
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Corollary 6.1 With reference to Definition 6.2, let W denote an irreducible T -module.
Then the displacements of Wof the first kind and the second kind are zero.

Proof Immediate from Definition 5.1 and Lemma 6.3.

Lemma 6.4 With reference to Definitions 4.2, 4.4 and 6.2, for μ, ν ∈ {↓, ↑} and 0 ≤ i, j ≤
D, we have Ṽ μν

i,j = 0 and Eμν
i,j = 0 unless i + j = D.

Proof From Lemmas 5.2 and 5.3 and Corollary 6.1, for μ, ν ∈ {↓, ↑} and 0 ≤ i, j ≤ D, we
have Ṽ μν

i,j = 0 unless i + j = D. Then by Definition 4.4, we have Eμν
i,j = 0 unless i + j = D.

Corollary 6.2 With reference to Definitions 4.2 and 6.2, the following holds for μ, ν ∈
{↓, ↑}:

V =
D∑

i=0

Ṽ μν
D−i,i (the direct sum).

Proof Immediate from Lemmas 4.1 and 6.4.

Definition 6.3 With reference to Definitions 4.2 and 6.2, by Corollary 6.2 we define
B, B∗, K, K∗ to be the unique matrices in MatX(C), which satisfy the requirements of the
following Table 1 for 0 ≤ i ≤ D.

Table 1

The matrix is 0 on

B − (D − 2i)I Ṽ ↓↑
D−i,i

B∗ + (D − 2i)I Ṽ ↑↓
D−i,i

K − (D − 2i)I Ṽ ↓↓
D−i,i

K∗ − (D − 2i)I Ṽ ↑↑
D−i,i

Lemma 6.5 With reference to Definitions 4.4 and 6.3, the following (i)–(iv) hold:

(i) B =
D∑

i=0

(D − 2i)E↓↑
D−i,i.

(ii) B∗ = −
D∑

i=0

(D − 2i)E↑↓
D−i,i.

(iii) K =
D∑

i=0

(D − 2i)E↓↓
D−i,i.

(iv) K∗ =
D∑

i=0

(D − 2i)E↑↑
D−i,i.

Proof Immediate from Definitions 4.4 and 6.3 and Corollary 6.2.

Lemma 6.6 With reference to Definitions 6.2 and 6.3, the following (i)–(iv) hold:
(i) A is symmetric.
(ii) A∗ is symmetric.
(iii) Bt = B∗.
(iv) Kt = −K∗.

Proof (i)–(ii) are from the definitions of A and A∗.
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(iii) Combining Lemma 4.2(ii) and Lemma 6.5(i)–(ii), we have

Bt =
D∑

i=0

(D − 2i)(E↓↑
D−i,i)

t =
D∑

i=0

(D − 2i)E↑↓
i,D−i =

D∑
i=0

(2i − D)E↑↓
D−i,i = B∗.

(iv) Combining Lemma 4.2(i) and Lemma 6.5(iii)–(iv), we have

Kt =
D∑

i=0

(D − 2i)(E↓↓
D−i,i)

t =
D∑

i=0

(D − 2i)E↑↑
i,D−i =

D∑
i=0

(2i − D)E↑↑
D−i,i = −K∗.

7 An Action of � on the Standard Module of H(D, 2)

In this section, we continue our discussion for the hypercube H(d, 2), and state our main
result of this paper, in which we will display an action of � on the standard module V of
H(D, 2).

Lemma 7.1 With reference to Definitions 2.1 and 6.2, let Wdenote an irreducible T -module
with the endpoint ρ, and recall that W has diameter d = D − 2ρ. Then there exists a unique
�-module structure on W such that the generators x01 and x23 act as A and A∗, respectively.
This �-module structure is irreducible.

Proof The matrices A and A∗ satisfy the Dolan-Grady relations (6.1) and (6.2) by Lemma
6.2. Therefore, there exists an O-module structure on W such that the standard generators
act as A and A∗, respectively. The O-module W is irreducible since A and A∗ generate T

and the T -module W is irreducible. By Lemmas 3.1 and 6.1, and since the endpoint and the
dual endpoint of W are equal, the actions of A and A∗ on W are semisimple with the same
eigenvalues D − 2ρ − 2i (0 ≤ i ≤ d). Therefore, by Lemma 6.3, the actions of A and A∗ on W

are semisimple with the same eigenvalues d − 2i (0 ≤ i ≤ d). Thus, the O-module W has type
(0, 0). So far we have shown that the O-module W is irreducible and has type (0, 0). Combining
this with Proposition 2.3, we obtain the result.

Lemma 7.2 With reference to Definitions 2.1 and 6.2, let W denote an irreducible T -
module with the endpoint ρ, and recall that W has diameter d = D−2ρ. Consider the �-module
structure on W from Lemma 7.1. For each generator xrs of � and for 0 ≤ i ≤ d, the eigenspace
of xrs on W associated with the eigenvalue d − 2i is given in the following Table 2.

Table 2

r s the eigenspace of xrs for the eigenvalue d − 2i

0 1 Eρ+iW
1 2 (E∗

ρW + · · · + E∗
ρ+d−iW ) ∩ (Eρ+d−iW + · · · + Eρ+dW )

2 3 E∗
ρ+iW

3 0 (E∗
ρ+d−iW + · · · + E∗

ρ+dW ) ∩ (EρW + · · · + Eρ+d−iW )
0 2 (E∗

ρW + · · · + E∗
ρ+d−iW ) ∩ (EρW + · · · + Eρ+iW )

1 3 (E∗
ρ+iW + · · · + E∗

ρ+dW ) ∩ (Eρ+d−iW + · · · + Eρ+dW )

Proof Referring to the table, we first verify row (r, s) = (0, 1). By Lemma 7.1, the
generator x01 acts on W as A. By Lemma 3.1(iii)–(iv) and Lemma 6.1, the space Eρ+iW is
the eigenspace of A on W for the eigenvalue D − 2ρ− 2i. By these comments and Lemma 6.3,
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the space Eρ+iW is the eigenspace of x01 on W for the eigenvalue d− 2i. We have verified row
(r, s) = (0, 1). Next, we verify row (r, s) = (2, 3). By Lemma 7.1, the generator x23 acts on
W as A∗. By Lemma 3.1(i)–(ii) and Lemma 6.1 the space E∗

ρ+iW is the eigenspace of A∗ on
W for the eigenvalue D − 2ρ − 2i. By these comments and Lemma 6.3, the space E∗

ρ+iW is
the eigenspace of x23 on W for the eigenvalue d − 2i. We have verified row (r, s) = (2, 3). The
remaining rows are valid by [19, Lemma 5.7].

Lemma 7.3 With reference to Definitions 2.1 and 6.2–6.3, let W denote an irreducible T -
module with the endpoint ρ, and recall that W has diameter d = D−2ρ. Consider the �-module
structure on W from Lemma 7.1. In Table 3 below, each row contains an element of � and a
matrix in MatX(C). The actions of these two objects on W coincide.

Table 3

matrix element of �
x01 A
x12 B
x23 A∗

x30 B∗

x02 K
x13 K∗

Proof By Lemma 7.1, the expressions A−x01 and A∗−x23 are all 0 on W . Next, we show
that B − x12 is 0 on W . To this end, we pick w ∈ W and show

Bw = x12w.

Recall that x12 is semisimple on W with eigenvalues d−2i (0 ≤ i ≤ d). Therefore, without loss of
generality, we may assume that there exists an integer i (0 ≤ i ≤ d) such that x12w = (d−2i)w.
By row (r, s) = (1, 2) in Table 2 of Lemma 7.2 and by Lemma 4.3(i) and Lemma 6.3, we find
w ∈ Ṽ ↓↑

ρ+d−i,D−d−ρ+i. By this and the first row in the table of Definition 6.3 we find

Bw = (2(ρ + d − i) − D)w = (d − 2i)w.

So we find Bw = x12w as desired. Similarly, by rows (r, s) = (3, 0), (0, 2), (1, 3) in Table 2
of Lemma 7.2 and by Lemma 4.3(ii)–(iv), one can show that each of B∗ − x30, K − x02 and
K∗ − x13 is 0 on W . The results follow.

Theorem 7.1 With reference to Definitions 2.1 and 6.2–6.3, there exists a �-module struc-
ture on V such that the generators xij act as follows (see Table 4).

Table 4

generator action on V

x01 A
x12 B
x23 A∗

x30 B∗

x02 K
x13 K∗
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Proof Note that the standard module V decomposes into a direct sum of irreducible T -
modules. Since each irreducible T -module in this decomposition supports a �-module structure
from Lemma 7.1, the assertion holds by Lemma 7.3.

Theorem 7.2 With reference to Definitions 2.1 and 6.2, the following hold on V

xt
01 = x01, xt

12 = x30, xt
23 = x23,

xt
30 = x12, xt

02 = x31, xt
13 = x20.

Proof Immediate from Definition 2.1, Lemma 6.6 and Theorem 7.1.

Let U(�) denote the universal enveloping algebra of �. In Theorem 7.1 we displayed
an action of � on the standard module of V ; observe that this action induces a C-algebra
homomorphism from U(�) to MatX(C) which we will denote by ϑ. Now we clarify how the
image ϑ(U(�)) is related to the Terwilliger algebra T .

Theorem 7.3 With reference to Definition 6.2, then T is equal to the image ϑ(U(�)).

Proof Note that T is generated by A, A∗ and ϑ(U(�)) is generated by A, A∗, B, B∗, K, K∗.
To prove that the two subalgebras of MatX(C) are equal, it suffices to verify that each of
B, B∗, K, K∗ is contained in T . Clearly those follow from Lemma 3.2 and Lemma 7.3.
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