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A Spectral Method for the Electrohydrodynamic Flow in
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Abstract This paper presents a combination of the hybrid spectral collocation technique
and the spectral homotopy analysis method (SHAM for short) for solving the nonlinear
boundary value problem (BVP for short) for the electrohydrodynamic flow of a fluid in
an ion drag configuration in a circular cylindrical conduit. The accuracy of the present
solution is found to be in excellent agreement with the previously published solution. The
authors use an averaged residual error to find the optimal convergence-control parame-
ters. Comparisons are made between SHAM generated results, results from literature and
Matlab ode45 generated results, and good agreement is observed.

Keywords Spectral collocation, Spectral homotopy analysis method, Optimal
convergence-control parameters, Electrohydrodynamic flow

2000 MR Subject Classification 34A12, 34A34, 34B15

1 Introduction

The electrohydrodynamic flow of a fluid in an ion drag configuration in a circular cylindrical
conduit is governed by a nonlinear second-order ordinary differential equation. In [1], McKee
et al. investigated the following boundary value problem:

d2w

dr2
+

1
r

dw

dr
+ H2

(
1 − w

1 − αw

)
= 0, 0 < r < 1, (1.1)

subject to the boundary conditions

w′(0) = 0, w(1) = 0. (1.2)

A fully developed laminar flow in the “ion-drag” configuration is displayed in Figure 1, where
a circular cylindrical conduit of radius has an insulating wall supporting screens at z = 0 and
z = L.

Here w(r) is the fully-developed fluid velocity as a function of the radial distance r from
the center of the cylindrical conduit. The radius of the tube has been scaled to one. H is
the Hartmann electric number and the nondimensional parameter α is a parameter related to
the pressure gradient, the ion mobility, and the current density at the inlet of the conduit.
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Figure 1 Ion-drag flow in a circular cylindrical conduit

Also, the degree of non-linearity in this equation is determined by α and the equation can
be approximated by two different linear equations for very small or very large values of α

respectively. In [1], the authors provide numerical solutions to (1.1)–(1.2) for various values of
H and α along with perturbation solutions of the fluid velocities for α � 1 and α � 1. In [2],
Paullet presented rigorous results concerning the existence and uniqueness of a solution to this
BVP for all relevant values of the parameters. He also showed that the solution is monotonically
decreasing and derived bounds on it in terms of the parameters.

Due to the mathematical complexity of nonlinear partial differential equations, different
methods, such as the homotopy analysis method, the modified mapping method, the extended
mapping method and numerical techniques, have been used for solving PDEs (see [3–6]). In
1992, Liao [7–10] employed the basic ideas of the homotopy in topology to propose a general
analytic method for nonlinear problems, namely, the homotopy analysis method (HAM, for
short). This method has been successfully applied to solve many types of nonlinear problems
in science and engineering, such as the viscous flows of non-Newtonian fluids (see [11]), the
KdV-type equations (see [12]), finance problems (see [13]), and so on.

The HAM contains a certain auxiliary parameter � which provides us with a simple way
to adjust and control the convergence region and rate of convergence of the series solution.
Moreover, by means of the so-called �-curve, it is easy to determine the valid regions of � to
gain a convergent series solution. The HAM, however, suffers from a number of restrictive
measures, such as the requirement that the solution sought should conform to the so-called
rule of solution expression and the rule of coefficient ergodicity. These HAM requirements
are meant to ensure that the implementation of the method results in a series of differential
equations which can be solved analytically.

In a recent study, Motsa et al. [14–17] proposed a spectral modification of the homotopy
analysis method, i.e., the spectral homotopy analysis method (SHAM for short) that seeks
to remove some restrictive assumptions associated with the implementation of the standard
homotopy analysis method. The SHAM approach imports some of the ideas of the HAM, such as
the use of the convergence controlling auxiliary parameter. In the implementation of the SHAM,
the sequence of the so-called “deformation” differential equations is converted into a matrix
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system by applying the Chebyshev pseudospectral method. Recently, Mastroberardino [18]
applied the classical homotopy analysis method to solve the problem of (1.1). His computations
showed that the HAM solutions are in excellent agreement with numerical solutions obtained
with Matlab.

In order to overcome some of the limitations of the standard homotopy analysis method,
in this paper, we apply the SHAM to solve the nonlinear boundary value problem for the
electrohydrodynamic flow of a fluid in an ion drag configuration in a circular cylindrical conduit.
The advantage of this approach is that it eliminates the restriction in the standard HAM of
searching for prescribed solutions that conform to the rule of solution expression and the rule of
coefficient ergodicity. We show that in using the SHAM, any form of initial guess may be used
as long as it satisfies the boundary conditions whereas in HAM one is restricted to choosing an
initial approximation that would make the integration of the higher-order deformation equations
possible. In addition, we show that SHAM is more flexible than HAM as it allows for a wider
range of linear operators and one is not restricted to using the method of higher-order differential
mapping. The range of admissible h values is much wider in SHAM than in HAM. For the
problem considered in this study, we show that the new approach leads to faster convergence
in comparison with the standard HAM approach.

This paper has been organized as follows. In Section 2, the solution of the nonlinear bound-
ary value problem for the electrohydrodynamic flow of a fluid in an ion drag configuration in a
circular cylindrical conduit and a convergence analysis of the HAM are presented. In Section
3, we discuss the SHAM solution of the nonlinear boundary value problem. In Section 4, we
summarize the main results obtained in this paper. Finally, the conclusion is given in Section
5.

2 Solution Methods

In this section, we give a brief description of the application of the standard homotopy
analysis method for solving (1.1). Then, we will describe the new approach that uses the
spectral homotopy analysis method for solving the governing nonlinear equation (1.1).

2.1 Solution by the homotopy analysis method

To solve the nonlinear ordinary differential equation (1.1), using the HAM we choose the
initial approximation

w(0) = 0,

which satisfies the boundary conditions (1.2). Using the method of the highest-order differential
matching, we consider an auxiliary linear operator of the form

L[φ(r; q)] =
∂2φ(r; q)

∂r2

with the property

L[c1 + c2r] = 0,
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where c1 and c2 are arbitrary integration constants.
Furthermore, the governing equation (1.1) suggests that we define the following nonlinear

operator:

N [φ(r; q)] = (1 − αφ(r; q))
(∂2φ(r; q)

∂r2
+

1
r

∂φ(r; q)
∂r

)
+ H2(1 − (1 − αφ(r; q))),

where q ∈ [0, 1] is an embedding parameter and φ(r; q) is an unknown function. Using the
above definitions, we construct the so-called zero-order deformation equation as

(1 − q)L[φ(r; q) − w0(r)] = q�N [φ(r; q)], (2.1)

where � is a convergence controlling parameter, and w0(r) is an initial approximation. Obvi-
ously, when q = 0 and q = 1, it holds that

φ(r; 0) = w0(t), φ(r; 1) = w(r),

respectively. Thus, as q increases from 0 to 1, the solutions φ(r; q) vary from the initial guesses
w0(r) to the solutions w(r). Expanding φ(r; q) in the Taylor series with respect to q, we have

φ(r; q) = w0(r) +
+∞∑
m=1

wm(r)qm, wm(r) =
1
m!

∂mφ(r; q)
∂qm

∣∣∣
q=0

. (2.2)

The convergence of the above series depends on the auxiliary parameter � (see [19]). Assuming
that the auxiliary parameter � is carefully selected so that the above series is convergent when
q = 1, we have, in view of (2.2), that

φ(r) = w0(r) +
+∞∑
m=1

wm(r).

Using the ideas of the standard HAM approach (see [19]), we differentiate the zeroth-order
equation (2.1) m times with respect to q, then set q = 0 and finally divide the resulting
equation by m! to obtain the following equation, which is referred to as the m-th order (or
higher order) deformation equation

L[wm(r) − χmwm−1(r)] = �Rm(wm−1(r))

with the boundary conditions

w′
m(0) = wm(1) = 0,

where

Rm(wm−1(r)) = w′′
m−1(r) +

1
r
w′

m−1(r) − H2(1 + α)wm−1(r) − α

m−1∑
k=0

wkw′′
m−1−k

− α

r

m−1∑
k=0

wkw′
m−1−k + (1 − χm)H2
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and

χm =
{

0, m � 1,
1, m > 1.

The m-th order deformation equations form a set of linear ordinary differential equations and
can be easily solved, especially by means of the symbolic computation software, such as Matlab,
Maple, Mathematica, and others.

2.2 A convergence analysis of the HAM

Let us consider the nonlinear boundary value problem (1.1) in the form of following func-
tional equation:

w(r) = F(w(r)), (2.3)

where F is a nonlinear operator. It is noted that HAM is equivalent to determining the sequence

Sn = w0 + w1 + w2 + · · · + wn,

by using the iterative scheme

Sn+1 = F(Sn),

associated with the functional equation

S = F(S). (2.4)

Theorem 2.1 Let F be an operator from a Hilbert space H into H and w(r) be the

exact solution of (2.3). The series solution
∞∑

k=0

wk(r) converges to w(r) when ∃ 0 ≤ α < 1,

‖wk+1‖ ≤ α‖wk‖, ∀k ∈ N ∪ {0}.
Proof We show that, {Sn}∞n=0 is a Cauchy sequence in the Hilbert space H. For this

reason, consider

‖Sn+1 − Sn‖ = ‖wn+1‖ ≤ α‖wn‖ ≤ α2‖wn−1‖ ≤ · · · ≤ αn+1‖w0‖.

But for every n, m ∈ N, n ≥ m, we have

‖Sn − Sm‖ = ‖(Sn − Sn−1) + (Sn−1 − Sn−2) + · · · (Sm+1 − Sm)‖
≤ ‖Sn − Sn−1‖ + ‖Sn−1 − Sn−2‖ + · · · + ‖Sm+1 − Sm‖
≤ αn‖w0‖ + αn−1‖w0‖ + · · · + αm+1‖w0‖

≤ (αm+1 + αm+2 + · · · + αn)‖w0‖ = αm+1 1 − αn−m

1 − α
‖w0‖.

Since 0 < α < 1, we get lim
n,m→∞ ‖Sn − Sm‖ = 0, i.e., {Sn}∞n=0 is a Cauchy sequence in the

Hilbert space H, and this implies that

∃ S, S ∈ H, lim
n→∞ Sn = S,
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i.e., S =
∞∑

n=0
wn converges. This completes the proof of Theorem 2.1.

But, solving (2.3) is equivalent to solving (2.4), and this implies that if F is a continuous
operator, then

F(S) = F
(

lim
n→∞ Sn

)
= lim

n→∞F(Sn) = lim
n→∞Sn+1 = S,

i.e., S is a solution of (2.3), too.

Definition 2.1 For every k ∈ N ∪ {0}, we define

αk =

⎧⎨
⎩

‖wk+1‖
‖wk‖ , ‖wk‖ �= 0,

0, ‖wk‖ = 0.

Corollary 2.1 In Theorem 2.1,
∞∑

k=0

wk converges to w(r) when 0 ≤ αk < 1, k = 1, 2, 3, · · · .

Theorem 2.2 If the series solution

w(r) =
+∞∑
m=1

wm(r)

converges, then it is an exact solution of the nonlinear problem (2.3).

Proof We assume that the series solution converges. So we have

S(r) =
∞∑

m=0

wm(r), (2.5)

and it holds that

lim
m→∞wm(r) = 0. (2.6)

We can verify that

k∑
m=1

[wm(r) − χmwm−1(r)] = w1(r) + (w2(r) − w1(r)) + (w3(r) − w2(r))

+ · · · + (wk(r) − wk−1(r)) = wk(r),

which gives us, according to (2.6),
∞∑

m=1

[wm(r) − χmwm−1(r)] = lim
m→∞wm(r) = 0. (2.7)

Furthermore, using (2.7) and the definition of the linear operator L, we have
∞∑

m=1

L[wm(r) − χmwm−1(r)] = L
∞∑

m=1

[wm(r) − χmwm−1(r)] = 0.

In this line, we can obtain that
∞∑

m=1

L[wm(r) − χmwm−1(r)] = hH(r)
∞∑

m=1

Rm−1(wm−1(r)) = 0,
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which gives, since h �= 0 and H(r) �= 0, that

∞∑
m=1

Rm−1(wm−1(r)) = 0. (2.8)

Substituting Rm−1(wm−1(r)) into the above expression and simplifying it, we have

∞∑
m=1

Rm−1(wm−1(r)) =
∞∑

m=1

[
w′′

m−1(r) +
1
r
w′

m−1(r) − H2(1 + α)wm−1(r) − α

m−1∑
k=0

wkw′′
m−1−k

− α

r

m−1∑
k=0

wkw′
m−1−k + (1 − χm)H2

]

= S′′(r) +
1
r
S′(r) − H2(1 + α)S(r)

− αS(r)S′′(r) − α

r
S(r)S′(r) + H2. (2.9)

From (2.8)–(2.9), we have

S′′(r) +
1
r
S′(r) + H2

(
1 − S(r)

1 − αS(r)

)
= 0.

On the other hand, in view of (1.2) and (2.5), it holds that

S(r0) =
∞∑

m=0

wm(r0) = w(r0).

So S(r) must be the exact solution of the nonlinear boundary value problem (1.1). This
completes the proof of the theorem.

3 Spectral Homotopy Analysis Solution

In this section, we use the Chebyshev spectral collocation method to solve (1.1)–(1.2). We
remark that before applying the spectral method, we use the transformation r = (b−a)(τ+1)

2

to map the region [a, b] to the interval [−1, 1] on which the spectral method is defined. The
advantage of this modification is that we get a technique that is more efficient and does not
depend on the rule of solution expression and the rule of ergodicity, unlike the standard HAM.
In addition, the range of admissible � values is much wider in the SHAM. Therefore, we begin
by transforming the domain of the problem from [0, 1] to [−1, 1] using the mapping

r =
τ + 1

2
, τ ∈ [−1, 1].

It is also convenient to introduce the transformation

U(τ) = w(r). (3.1)

Substituting (3.1) in the governing equation and boundary conditions (1.1)–(1.2) gives

a1(r)U ′′(τ) + a2(r)U ′(τ) + a3(r)U(τ) − 4rαU(τ)U ′′(τ) − 2αU(τ)U ′(τ) = φ(r),



314 M. Moghtadaei, H. Saberi Nik and S. Abbasbandy

subject to

U ′(−1) = U(1) = 0, (3.2)

where the primes now denote differentiation with respect to τ and

a1(r) = 4r, a2(r) = 2, a3(r) = −H2r(1 + α), φ(r) = −H2r.

The initial approximation is taken to be the solution of the nonhomogeneous linear part of the
governing equation (3.1) given by

a1(r)U ′′(τ) + a2(r)U ′(τ) + a3(r)U(τ) = φ(r),

subject to

U ′(−1) = U(1) = 0.

The unknown function U0(τ) is approximated as a truncated series of Chebyshev polynomials
of the form

U0(τ) ≈ UN
0 (τj) =

N∑
K=0

ÛkTk(τj), j = 0, 1, · · · , N, (3.3)

where Tk is the k-th Chebyshev polynomial, Ûk, are coefficients and τ0, τ1, · · · , τN are Gauss-
Lobatto collocation points (see [20–21]) defined by

τj = cos
(πj

N

)
, j = 0, 1, · · · , N, (3.4)

which are the extremes of the N -th order Chebyshev polynomial

TN (τ) = cos(N cos−1 τ). (3.5)

The Chebyshev spectral differentiation matrix D is used to approximate the derivatives of the
unknown variables wm(r) at the collocation points as the matrix vector product

dlwm

dt
=

N∑
k=0

Dl
jkwm(τk), j = 0, 1, · · · , N, (3.6)

where l is the order of differentiation and D is the Chebyshev spectral differentiation matrix
whose entries are defined as (see [20–21])

Djk =
cj

ck

(−1)j+k

τj − τk
, j �= k, j, k = 0, 1, · · · , N,

Dkk = − τk

2(1 − τ2
k )

, k = 1, 2, · · · , N − 1,

D00 =
2N2 + 1

6
= −DNN
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with

ck =
{

2, k = 0, N,
1, −1 ≤ k ≤ N − 1.

Substituting (3.3)–(3.6) into (3.1)–(3.2) yields

AU0 = Φ,

subject to the boundary conditions

U0(τ0) = 0,
N∑

k=0

DNkU0(τk) = 0, (3.7)

where

A = a1D2 + a2D + a3,

U0 = [U0(τ0), U0(τ1), · · · , U0(τN )]T,

Φ = [Φ(r0), Φ(r1), · · · , Φ(rN )]T,

ai = diag([ai(r0), ai(r1), · · · , ai(rN )]), r = 1, 2, 3.

In the above definitions, the superscript T denotes the transpose, and diag is a diagonal matrix
of size (N + 1) × (N + 1).

To implement the boundary conditions (3.7), we delete the first and last rows and columns
of A, as well as the first and last rows of U0 and U . The boundary condition (3.7) is imposed
on the resulting last row of the modified matrix A, setting the resulting last row of the modified
matrix U to be zero. The values of [U0(τ0), U0(τ1), · · · , U0(τN )] are then determined by the
equation

U0 = A−1Φ, (3.8)

which provides us with the initial approximation for the SHAM solution of the governing equa-
tion (3.1).

Now, we define the linear operator

L[Û(τ ; q)] = a1Û
′′(τ) + a2Û

′(τ) + a3Û(τ),

where q ∈ [0, 1] is the embedding parameter, and Û(τ ; q) is an unknown function. The zeroth
order deformation equation is given by

(1 − q)L[Û(τ ; q) − U0(τ)] = q�{N [φ(τ ; q)] − Φ},

where � is a convergence controlling parameter, and N is a nonlinear operator given by

N [Û(τ ; q)] = a1Û
′′(τ) + a2(r)Û ′(τ) + a3Û(τ) − 4rαÛ (τ)Û ′′(τ) − 2αÛ(τ)Û ′(τ).

The m-th order deformation equations are

L[Um(τ) − χmUm−1(r)] = �Rm(Um−1), (3.9)
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subject to the boundary conditions

U ′
m(−1) = Um(1) = 0, (3.10)

where

Rm(Um−1) = a1U
′′
m−1 + a2U

′
m−1 + a3Um−1 − 4rα

m−1∑
k=0

UkU ′′
m−1−k

− α

r

m−1∑
k=0

UkU ′
m−1−k − (1 − χm)φ(r). (3.11)

Applying the Chebyshev pseudospectral transformation to equations (3.9)–(3.11) gives

A [Um − χmUm−1] = � [AUm−1 + Pm−1 − (1 − χm)Φ] , (3.12)

subject to the boundary conditions

Um(τ0) = 0,

N∑
k=0

DNkUm(τk) = 0, (3.13)

where A and Φ satisfy (3.8) and

Um = [Um(τ0), Um(τ1), · · · , Um(τN )]T,

Pm−1 = −4rα
m−1∑
n=0

UkD2Um−1−k − α

r

m−1∑
k=0

UkDUm−1−k.

To implement the boundary conditions (3.13), we delete the first and last rows of Pm−1 and Φ
as well as the first and last rows and the first and last columns of A in (3.12). This results in
the following recursive formula for m ≥ 1:

Um = (χm + �)A−1ÃUm−1 + �A−1 [Pm−1 − (1 − χm)Φ] . (3.14)

Thus, starting from the initial approximation, which is obtained from (3.8), higher order ap-
proximations Um(τ) for m ≥ 1 can be obtained through the recursive formula (3.14).

4 Analysis and Numerical Simulation

In this section, we give the SHAM results for solving the nonlinear boundary value problem
for the electrohydrodynamic flow of a fluid in an ion drag configuration in a circular cylindrical
conduit. The results of SHAM have been compared with a numerical method, and we use a
Runge-Kutta shooting method. We observe that in Table 1, the values obtained for the square
residual error of SHAM are far less than standard HAM, and Figure 2 shows the solutions after
m = 2 algorithm iterations, compared with the Matlab ode45. In Figures 3–6, the �-curves for
m = 2, 4, 6, 8 order of the SHAM approximation, when α = 1, 0.5 and for different values of
H2, are plotted so that SHAM is far more efficient than standard HAM. It was found that the
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Table 1 The optimal values of � for all of the cases considered are

obtained by minimizing EN(�).

α H2
�-optimal �-optimal Minimum E10 Minimum E20

(HAM) (SHAM) (SHAM) (HAM)
0.5 0.5 −0.375 −1.101 3.93 × 10−20 7.772 × 10−12

0.5 1 −0.276 −1.117 2.82 × 10−20 1.230× 10−9

0.5 2 −0.275 −1.165 1.34 × 10−17 5.319× 10−8

0.5 4 −0.205 −1.181 2.14 × 10−16 4.568× 10−5

1 0.5 −0.303 −1.141 5.16 × 10−20 4.634 × 10−11

1 1 −0.292 −1.255 2.37 × 10−15 4.996× 10−9

1 2 −0.254 −1.302 5.69 × 10−13 2.363× 10−6

1 4 −0.198 −1.302 6.38 × 10−12 3.461× 10−4

− −

Figure 2 Comparison of the numerical results (open circles) and the SHAM solution (solid line) for

m = 2, α = 1, and α = 0.5.

− − − − − − − −

Figure 3 SHAM �-curve at different orders of approximation when α = 1, 0.5 and H2 = 1.



318 M. Moghtadaei, H. Saberi Nik and S. Abbasbandy

− − − − − − − −

Figure 4 SHAM �-curve at different orders of approximation when α = 1, 0.5 and H2 = 2.

− − − − − − − −

Figure 5 SHAM �-curve at different orders of approximation when α = 1, 0.5 and H2 = 4.

− − − − − − − −

Figure 6 SHAM �-curve at different orders of approximation when α = 1, 0.5 and H2 = 0.5.
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optimal value of � that gives accurate results is the value at which the maximum of the 2nd
order SHAM �-curve is located. We also note that the SHAM results seem to converge at the
2nd order of approximation. But, convergence of the HAM results is not achieved even at the
20th order of HAM approximation.

We now use a new residual function for the SHAM as

Resm(�) = 4rD2wm(�) + 2Dwm(�) − H2r(1 + α)wm(�) − 4rαwm(�)D2wm(�)

− 2αwm(�)Dwm(�) + H2r,

where r = [r0, r1, · · · , rN ]T, Resm(�) = [Resm(r0, �), Resm(r1, �), · · · , Resm(rN , �)]T, wm(�) =

[wm(r0, �), wm(r1, �), · · · , wm(rN , �)]T =
m∑

i=0

Ui(�) which has been obtained from the recursive

formula (3.14), D is the Chebyshev spectral differentiation matrix and m is the order of iter-
ation. The graphs of the residual function Res(r) are shown in Figures 7–10 for the optimal
value of � and all the cases considered are for m = 10. Furthermore, we use the so-called
optimization method to find out the optimal convergence-control parameters by means of the
minimum of the averaged residual error (see [22]) as

Em(�) =
N∑

i=0

[Resm,i(�)]2, (4.1)

where Resm,i(�) denote the elements of vector [Res(�)]2 for i = 0, · · · , N . It is worth noting
that vector [Res(�)]2 is defined with the property of the dot product in the Matlab software.
Obviously, Em(�) → 0 (as m → +∞) corresponds to a convergent series solution. For a given
order m of approximation, the optimal value of � is given by a nonlinear algebraic equation

dEm(�)
d�

= 0.

−

−

−

−

−

−

−

−

−

Figure 7 The residual function of 10th order approximation SHAM for α = 1, 0.5 and H2 = 1.

The optimal values of � for all the cases considered are obtained by minimizing the averaged
residual error (4.1), which are given in Table 1. As Table 1 and Figures 7–10 confirm, the
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−

−

−

−

−

−

Figure 8 The residual function of 10th order approximation SHAM for α = 1, 0.5 and H2 = 2.

−

−

−

−

−

−

Figure 9 The residual function of 10th order approximation SHAM for α = 1, 0.5 and H2 = 4.
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Figure 10 The residual function of 10th order approximation SHAM for α = 1, 0.5 and H2 = 0.5.
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new approach leads to faster convergence in comparison with the standard HAM approach.
Therefore, it is reasonable to use the SHAM instead.

5 Conclusion

In this paper, we presented a new application of the spectral homotopy analysis method in
solving the nonlinear boundary value problem for the electrohydrodynamic flow of a fluid in
an ion drag configuration in a circular cylindrical conduit. The approximate SHAM numerical
results are compared with results generated by using the standard HAM and ode45 from Matlab.
This confirms the validity of the proposed SHAM approach as a suitable method for solving a
wide variety of boundary value problems.
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Schrödingers equation with Kerr law nonlinearity via modified trigonometric function series method, Com-
mun. Nonlinear Sci. Numer. Simulat., 16(8), 2011, 3097–3106.

[6] Zhang, Z. Y., Gan, X. Y., Yu, D. M., et al., A note on exact traveling wave solutions of the perturbed
nonlinear schrodinger’s equation with Kerr law nonlinearity, Commun. Theor. Phys., 57, 2012, 764–770.

[7] Liao, S. J., The proposed homotopy analysis technique for the solution of nonlinear problems, Shanghai
Jiao Tong University, 1992.

[8] Liao, S. J., On the homotopy anaylsis method for nonlinear problems, Appl. Math. Comput., 147, 2004,
499–513.

[9] Liao, S. J., Comparison between the homotopy analysis method and homotopy perturbation method, Appl.
Math. Comput., 169, 2005, 1186–1194.

[10] Liao, S. J., Homotopy analysis method: a new analytical technique for nonlinear problems, Commun.
Nonlinear Sci. Numer. Simulat., 2(2), 1997, 95–100.

[11] Hayat, T., Javed, T. and Sajid, M., Analytic solution for rotating flow and heat transfer analysis of a
third-grade fluid, Acta Mech., 191, 2007, 219–229.

[12] Abbasbandy, S., Soliton solutions for the 5th-order KdV equation with the homotopy analysis method,
Nonlinear Dyn., 51, 2008, 83–87.

[13] Zhu, S. P., An exact and explicit solution for the valuation of American put options, Quantitative Finance,
6, 2006, 229–242.

[14] Motsa, S. S., Sibanda, P. and Shateyi, S., A new spectral-homotopy analysis method for solving a nonlinear
second order BVP, Commun. Nonlinear Sci. Numer. Simulat., 15, 2010, 2293–2302.

[15] Motsa, S. S., Sibanda, P., Awad, F. G. and Shateyi, S., A new spectral-homotopy analysis method for the
MHD Jeffery-Hamel problem, Computer and Fluids, 39, 2010, 1219–1225.

[16] Saberi Nik, H., Effati, S., Motsa, S. S. and Shirazian, M., Spectral homotopy analysis method and its
convergence for solving a class of nonlinear optimal control problems, Numer. Algor., 65, 2014, 171–194.



322 M. Moghtadaei, H. Saberi Nik and S. Abbasbandy

[17] Saberi Nik, H., Effati, S., Motsa, S. S. and Shateyi, S., A new piecewise-spectral homotopy analysis method
for solving chaotic systems of initial value problems, Mathematical Problems in Engineering, 2013, DOI:
org/10.1155/2013/583193.

[18] Mastroberardino, A., Homotopy analysis method applied to electrohydrodynamic flow, Commun. Nonlin-
ear Sci. Numer. Simulat., 16, 2011, 2730–2736.

[19] Liao, S. J., Beyond Perturbation: Introduction to Homotopy Analysis Method, Chapman and Hall/CRC
Press, Boca, Raton, London, New Yrok, Washington, 2003.

[20] Canuto, C., Hussaini, M. Y., Quarteroni, A. and Zang, T. A., Spectral Methods in Fluid Dynamics,
Springer-Verlag, Berlin, 1988.

[21] Trefethen, L. N., Spectral Methods in MATLAB, SIAM, Philadelphia, 2000.

[22] Liao, S. J., An optimal homotopy-analysis approach for strongly nonlinear differential equations, Commun.
Nonlinear Sci. Numer. Simulat., 15, 2010, 2003–2016.


