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Abstract Under the internal dissipative condition, the Cauchy problem for inhomoge-
neous quasilinear hyperbolic systems with small initial data admits a unique global C1

solution, which exponentially decays to zero as t → +∞, while if the coefficient matrix
Θ of boundary conditions satisfies the boundary dissipative condition, the mixed initial-
boundary value problem with small initial data for quasilinear hyperbolic systems with
nonlinear terms of at least second order admits a unique global C1 solution, which also
exponentially decays to zero as t → +∞. In this paper, under more general conditions, the
authors investigate the combined effect of the internal dissipative condition and the bound-
ary dissipative condition, and prove the global existence and exponential decay of the C1

solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems
with small initial data. This stability result is applied to a kind of models, and an example
is given to show the possible exponential instability if the corresponding conditions are not
satisfied.
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1 Introduction and Main Results

Consider the following first-order quasilinear hyperbolic system:

∂u

∂t
+A(u)

∂u

∂x
= F (u), (1.1)

where u = (u1, · · · , un)T is the unknown vector function of (t, x), A(u) = (aij(u))n×n is a C2

matrix function of u, and F (u) = (F1(u), · · · , Fn(u))T is a C2 vector function of u with

F (0) = 0. (1.2)

By strict hyperbolicity, for any given u on the domain under consideration, A(u) has n

distinct real eigenvalues λ1(u) < · · · < λn(u) and a complete set of left (resp. right) eigenvectors
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li(u) = (li1(u), · · · , lin(u)) (resp. ri(u) = (r1i(u), · · · , rni(u))T) as follows:

li(u)A(u) = λi(u)li(u), ∀i ∈ N , (1.3)

A(u)ri(u) = λi(u)ri(u), ∀i ∈ N , (1.4)

where

N = {1, · · · , n}. (1.5)

Assume that λi(u), li(u) and ri(u) (i ∈ N ) have the same regularity as A(u). Without loss of

generality, we assume that

li(u)rj(u) ≡ δij , ∀i, j ∈ N , (1.6)

rTi (u)ri(u) ≡ 1, ∀i ∈ N , (1.7)

where δij stands for the Kronecker symbol. Let L(u) and R(u) be the matrices composed of

the left and right eigenvectors:

L(u) =

⎛⎜⎝l1(u)
...

ln(u)

⎞⎟⎠ , (1.8)

R(u) = (r1(u), · · · , rn(u)), (1.9)

respectively.

In order to consider the mixed initial-boundary value problem for (1.1), assume that there

exists an index m ∈ {1, · · · , n− 1}, such that

λr(0) < 0 < λs(0), ∀r = 1, · · · ,m, s = m+ 1, · · · , n. (1.10)

Remark 1.1 For u = (u1, · · · , un)T ∈ R
n, denote

|u| =
∑
i∈N

|ui|. (1.11)

Let M n,n be the set of n×n real matrices, and Dn,n be the set of n×n real diagonal matrices

with strictly positive diagonal elements. For any given B = (bij) ∈ M n,n, we define

|B| = max
i∈N

{ ∑
j∈N

|bij |
}
. (1.12)

If (1.1) satisfies the following internal dissipative condition: There exists Λ ∈ Dn,n, such

that

−GΛ def.= −ΛL(0)∇F (0)R(0)Λ−1 (1.13)

is a strictly row-diagonal dominant matrix as follows:

−GΛ
ii(0) >

∑
j∈N
j �=i

|GΛ
ij(0)|, ∀i ∈ N , (1.14)
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then the Cauchy problem for (1.1) admits a unique global C1 solution u = u(t, x) on t ≥ 0,

and the C1 norm of u decays exponentially to zero as t → +∞, provided that the C1 norm

of the initial data is small enough (see [6–7]). By the method of energy integration, [5] gave

the global existence and uniqueness of H2 solutions to the hyperbolic system of conservation

laws with small initial data under the Shizuta-Kawashima condition and the entropy dissipative

condition, and then this result was reproved in [16] in a different way under slightly different

hypotheses. The generalization to the higher dimensional case can be found in [15], and [1–2]

gave the corresponding asymptotic behavior. Moreover, this result was generalized to some

systems without the Shizuta-Kawashima condition in [11–14].

Consider the mixed initial-boundary value problem (1.1) with the initial condition

t = 0 : u = u0(x), x ∈ [0, 1] (1.15)

and the following boundary conditions:{
x = 0 : vs = Hs(v1, · · · , vm), s = m+ 1, · · · , n, (1.16)

x = 1 : vr = Hr(vm+1, · · · , vn), r = 1, · · · ,m, (1.17)

where vi = li(u)u (i ∈ N ), Hr and Hs (r = 1, · · · ,m, s = m + 1, · · · , n) are C2 functions of

(vm+1, · · · , vn)T and (v1, · · · , vm)T, respectively, and

Hi(0) = 0, ∀i ∈ N . (1.18)

Assume that the conditions of C1 compatibility hold at the points (0, 0) and (0, 1), respectively.

If F (u) satisfies (1.2) and

∇F (0) = 0, (1.19)

and the matrix

Θ def.=

⎛⎜⎜⎝ 0
∂(H1, · · · , Hm)
∂(vm+1, · · · , vn)

∣∣∣
(vm=1,··· ,vn)=(0,··· ,0)

∂(Hm+1, · · · , Hn)
∂(v1, · · · , vm)

∣∣∣
(v1,··· ,vm)=(0,··· ,0)

0

⎞⎟⎟⎠ (1.20)

satisfies the following boundary dissipative condition:

‖Θ‖1
def.= inf

Λ∈Dn,n
|ΛΘΛ−1| < 1, (1.21)

then the mixed initial-boundary value problem (1.1) and (1.15)–(1.17) with small initial data

admits a unique global C1 solution u = u(t, x) on the domain {(t, x) | t ≥ 0, 0 ≤ x ≤ 1}, and

the C1 norm of the solution decays exponentially as t → +∞ (see [7]). In the case F (u) ≡ 0,

by constructing a Lyapunov function and considering the problem in H2 space, the condition

(1.21) is weakened in [3]. For linear hyperbolic systems, the exponential stability for the mixed

initial-boundary value problem was established in L2 space in [4].
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The results mentioned above inspire us to consider the following problem: In the case

∇F (0) �= 0, under what conditions on ∇F (0) and Θ, i.e., under which kind of combined

effect of internal dissipation and boundary dissipation, we can get the global existence and the

exponential decay of the C1 solution to the mixed initial-boundary value problem (1.1) and

(1.15)–(1.17)?

Let

G = L(0)∇F (0)R(0), (1.22)

Ti =
1

|λi(0)| , ∀i ∈ N , (1.23)

Θλ = diag{λ1(0), · · · , λn(0)}−1Θdiag{λ1(0), · · · , λn(0)} (1.24)

and

ε = ‖u0‖C1[0,1]. (1.25)

Our main result is as follows.

Theorem 1.1 Under the hypotheses (1.2), (1.10) and (1.18), assume furthermore that Gii �=
0 (i ∈ N ). If G,Θ,Θλ satisfy

max
i∈N

{
max

t∈[0,Ti]

∑
j �=i

(
|Θij | +

|Gij |
Gii

)
eGiit −

∑
j �=i

|Gij |
Gii

}
< 1, (1.26)

max
i∈N

{
max

t∈[0,Ti]

∑
j �=i

(
|Θλ

ij | +
|Gij |
Gii

)
eGiit −

∑
j �=i

|Gij |
Gii

}
< 1, (1.27)

then there exists ε0 > 0 so small that for any given ε ∈ [0, ε0] and the initial data u0(x) satisfying

(1.25), the mixed initial-boundary value problem (1.1) and (1.15)–(1.17) admits a unique global

C1 solution u = u(t, x) on the domain {(t, x) | t ≥ 0, 0 ≤ x ≤ 1}, and there exists a number

α > 0, such that for any given t ≥ 0, we have the following uniform a priori estimate:

‖u(t, ·)‖C1[0,1] ≤ Cεe−αt, ∀t ≥ 0, (1.28)

where C stands for a positive constant independent of ε and t.

Remark 1.2 If Gii = 0 (i ∈ N ), (1.26)–(1.27) should be replaced by

max
iN

∑
j �=i

(|Θij | + |Gij |Ti) < 1, (1.29)

max
iN

∑
j �=i

(|Θλ
ij | + |Gij |Ti) < 1. (1.30)

Through the proof in Section 3, we can see that Theorem 1.1 still holds in this case. In order

to get (1.29)–(1.30), we may use the Taylor expansion of eGiit in (1.26)–(1.27), and then ask

Gii to tend to 0.
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Generally speaking, if there exists a set P1 ⊆ N , such that Gkk = 0, ∀k ∈ P1, then

Theorem 1.1 still holds, provided that (1.26)–(1.27) are replaced by

max
{

max
t∈[0,Ti]

i∈N \P1

(∑
j �=i

(
|Θij | +

|Gij |
Gii

)
eGiit −

∑
j �=i

|Gij |
Gii

)
, max

i∈P1

∑
j �=i

(|Θij | + |Gij |Ti)
}
< 1, (1.31)

max
{

max
t∈[0,Ti]

i∈N \P1

(∑
j �=i

(
|Θλ

ij | +
|Gij |
Gii

)
eGiit −

∑
j �=i

|Gij |
Gii

)
, max

i∈P1

∑
j �=i

(|Θλ
ij | + |Gij |Ti)

}
< 1. (1.32)

Remark 1.3 If there exist Λ and Δ ∈ Dn,n, such that

GΛ def.= ΛGΛ−1 (1.33)

and

ΘΛ def.= ΛΘΛ−1 (1.34)

satisfy (1.26), while

GΔ def.= ΔGΔ−1 (1.35)

and

ΘΔ,λ def.= ΔΘλΔ−1 (1.36)

satisfy (1.27), then the conclusion of Theorem 1.1 still holds.

Remark 1.4 When

F (0) = 0, ∇F (0) = 0,

namely, there do not exist any linear internal dissipative terms, through the proof and analysis

in Section 3, (1.26)–(1.27) can be reduced to (1.21), and then the result in [7] can be obtained

from the conclusion of Theorem 1.1.

When

Θ = 0, (1.37)

namely, there do not exist any linear boundary dissipative terms, in order to get (1.26)–

(1.27), the nonlinear term F (u) of (1.1) might have a growth effect on the solution u =

u(t, x) (i.e., Gii > 0). Specially, taking

Gij = 0, ∀i �= j, i, j ∈ N , (1.38)

we can see it.

Remark 1.5 (1.14) fails for some systems in physics, however, it is possible to get

−Gii =
∑
j∈N
j �=i

|Gij |, ∀i ∈ N . (1.39)
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If

max
i∈N

∑
j∈N

|Θij | < 1 (1.40)

and

max
i∈N

∑
j∈M

|Θλ
ij | < 1, (1.41)

then (1.26)–(1.27) still hold. By Theorem 1.1, the C1 solution to the corresponding mixed

initial-boundary value problem decays exponentially.

In Section 2, we give the semi-global existence of a C1 solution to the mixed initial-boundary

value problem (1.1) and (1.15)–(1.17) (see [8]), and a kind of formulas of wave decomposition.

By using these formulas, we give the proof of Theorem 1.1 in Section 3, and we apply our result

to a kind of models in Section 4. In Section 5, one example is given to show that the conclusion

of Theorem 1.1 may fail if (1.26)–(1.27) do not hold, and some further discussions about our

main results are carried out in Section 6.

2 Preliminaries

Under hypotheses (1.2), (1.10) and (1.18), there exists t∗ > 0, such that the mixed initial-

boundary value problem (1.1) and (1.15)–(1.17) admits a unique C1 solution u = u(t, x) on the

domain {(t, x) | 0 ≤ t ≤ t∗, 0 ≤ x ≤ 1} (see [10]). In order to prove Theorem 1.1, we first give

the semi-global existence of a C1 solution to the mixed initial-boundary value problem (1.1)

and (1.15)–(1.17) (see [8]) and some formulas of wave decomposition in this section.

Lemma 2.1 Suppose that (1.2), (1.10) and (1.18) hold. For any given T > 0, there exists

an ε0 > 0 so small that for any given ε ∈ [0, ε0] and u0(x) satisfying (1.25), the mixed initial-

boundary value problem (1.1) and (1.15)–(1.17) admits a unique C1 solution u = u(t, x) on the

domain

D(T ) = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ 1}, (2.1)

and satisfies

‖u(t, ·)‖C1[0,1] ≤ Cε, ∀0 ≤ t ≤ T, (2.2)

where C is a positive constant independent of t ∈ [0, T ] and ε ∈ [0, ε0].

2.1 Formulas of wave decomposition

In order to prove Theorem 1.1, we introduce some formulas of wave decomposition.

Let

vi = li(u)u, i ∈ N , (2.3)
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wi = li(u)ux, i ∈ N . (2.4)

Then

u =
∑
j∈N

vjrj(u), (2.5)

∂xu =
∑
j∈N

wjrj(u), (2.6)

∂u

∂v

∣∣∣
v=0

= R(0). (2.7)

By (1.1), we have

dvi

dit
= li(u)F (u) +

∑
j∈N

FT(u)∇li(u)rj(u)vj +
∑

j,k∈N

βijk(u)vjwk, i ∈ N , (2.8)

where

βijk(u) = (λi(u) − λk(u))rTk ∇li(u)rj(u), ∀i, j, k ∈ N , (2.9)

and
d

dit
=

∂

∂t
+ λi(u)

∂

∂x

denotes the directional derivative with respect to t along the ith characteristic curve (see [7]).

Similarly, by (1.1) we have

dwi

dit
=

∑
j∈N

li(u)∇F (u)rj(u)wj −
∑

k∈N

li(u)∇rk(u)F (u)wk

+
∑

j,k∈N

γijk(u)wjwk, i ∈ N , (2.10)

where

γijk(u) = (λj(u) − λk(u))li(u)∇rk(u)rj(u) + δij∇λj(u)rk(u), ∀i, j, k ∈ N (2.11)

(see [7]).

Noting (1.2) and (2.3), we have

∂

∂vj
(li(u)F (u))

∣∣∣
v=0

= li(0)∇F (0)rj(0) = Gij . (2.12)

Thus, using Hadamard’s formula and Taylor expansion for functions li(u)F (u), we have

li(u)F (u) =
∑
j∈N

Gijvj +
∑

j,k∈N

ξijk(u)vjvk, i ∈ N , (2.13)

where ξijk(u) ∈ C0 (i, j, k ∈ N ). In a similar way, by (1.2), for functions FT(u)∇li(u)rj(u)

(i, j ∈ N ), we have

FT(u)∇li(u)rj(u)vj =
∑

k∈N

ηijk(u)vjvk, ∀i, j ∈ N , (2.14)
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where ηijk(u) ∈ C0 (i, j, k ∈ N ) .

Similarly, we have

li(u)∇F (u)rj(u)wj = Gijwj +
∑

k∈N

ϕijk(u)wjvk, i, j ∈ N , (2.15)

−li(u)∇rk(u)F (u)wk =
∑
j∈N

ψijk(u)wkvj , i, k ∈ N , (2.16)

where ϕijk(u), ψijk(u) ∈ C0 (i, j, k ∈ N ) . Substituting (2.13)–(2.14) and (2.15)–(2.16) into

(2.8) and (2.10), respectively, we get

dvi

dit
=

∑
j∈N

Gijvj +
∑

j,k∈N

Φijk(u)vjvk +
∑

j,k∈N

βijk(u)vjwk, i ∈ N , (2.17)

dwi

dit
=

∑
j∈N

Gijwj +
∑

j,k∈N

Ξijk(u)vjwk +
∑

j,k∈N

γijk(u)wjwk, i ∈ N , (2.18)

where Φijk(u) and Ξijk(u) ∈ C0 (i, j, k ∈ N ) are given by

Φijk(u) = ξijk(u) + ηijk(u), (2.19)

Ξijk(u) = ϕikj(u) + ψijk(u). (2.20)

2.2 Representation of v and w on the boundaries x = 0, 1

Noting (1.18) and (1.20), it follows from boundary conditions (1.16)–(1.17) that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x = 0 : vs =

m∑
j=1

Θsjvj +
∑

j,k∈N

χsjk(u)vjvk, s = m+ 1, · · · , n,

x = 1 : vr =
n∑

j=m+1

Θrjvj +
∑

j,k∈N

χrjk(u)vjvk, r = 1, · · · ,m,
(2.21)

where χijk(u) ∈ C0 (i, j, k ∈ N ) .

Differentiating the boundary conditions (1.16)–(1.17) with respect to t yields⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x = 0 :

∂vs

∂t
=

m∑
r=1

∂Hs

∂vr

∂vr

∂t
, s = m+ 1, · · · , n,

x = 1 :
∂vr

∂t
=

n∑
s=m+1

∂Hr

∂vs

∂vs

∂t
, r = 1, · · · ,m.

(2.22)

For any given i ∈ N , by (2.3)–(2.4) and (2.13)–(2.14), we have

∂vi

∂t
=
∂(li(u)u)

∂t
= li(u)

∂u

∂t
+

(∂u
∂t

)T

∇li(u)u

= −λi(u)wi + li(u)F (u) +
( ∑

k∈N

−λk(u)rk(u)wk + F (u)
)T

∇li(u)u

= −λi(u)wi +
∑
j∈N

Gijvj +
∑

j,k∈N

ξijk(u)vjvk
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−
∑

j,k∈N

λk(u)rTk (u)∇li(u)rj(u)vjwk +
∑

j,k∈N

ηijk(u)vjvk

= −λi(u)wi +
∑
j∈N

Gijvj +
∑

j,k∈N

Φijk(u)vjvk +
∑

j,k∈N

φ̃ijk(u)vjwk, (2.23)

where

φ̃ijk(u) = −λk(u)rTk (u)∇li(u)rj(u), i, j, k ∈ N .

Substituting (2.23) into (2.22), we get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = 0 : ws =
m∑

r=1

∂Hs

∂vr

λr(u)
λs(u)

wr +
∑
j∈N

Gsj −
m∑

r=1

∂Hs

∂vr
Grj

λs(u)
vj

+
∑

j,k∈N

Φsjk(u) −
m∑

r=1

∂Hs

∂vr
Φrjk(u)

λs(u)
vjvk

+
∑

j,k∈N

φ̃sjk(u) −
m∑

r=1

∂Hs

∂vr
φ̃rjk(u)

λs(u)
vjwk, s = m+ 1, · · · , n,

x = 1 : wr =
n∑

s=m+1

∂Hr

∂vs

λs(u)
λr(u)

ws +
∑
j∈N

Grj −
n∑

s=m+1

∂Hr

∂vs
Gsj

λr(u)
vj

+
∑

j,k∈N

Φrjk(u) −
n∑

s=m+1

∂Hr

∂vs
Φsjk(u)

λr(u)
vjvk

+
∑

j,k∈N

φ̃rjk(u) −
n∑

s=m+1

∂Hr

∂vs
φ̃sjk(u)

λr(u)
vjwk, r = 1, · · · ,m.

(2.24)

For the functions ∂Hs

∂vr

λr(u)
λs(u) (s = m + 1, · · · , n; r = 1, · · · ,m) and ∂Hr

∂vs

λs(u)
λr(u) (s = m +

1, · · · , n; r = 1, · · · ,m) appearing on the right-hand side of (2.24), using Taylor expansion, we

obtain

∂Hs

∂vr

λr(u)
λs(u)

wr = Θλ
srwr +

∑
j∈N

Υsjr(u)vjwr, (2.25)

∂Hr

∂vs

λs(u)
λr(u)

ws = Θλ
rsws +

∑
j∈N

Υrjs(u)vjws, (2.26)

where Υsjr(u),Υrjs(u) ∈ C0, and Θλ is given by (1.24). Substituting (2.25)–(2.26) into (2.24),



332 Y. Z. Li and C. M. Liu

we get ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = 0 : ws =
m∑

r=1

Θλ
srwr +

∑
j∈N

G�
sj(u)vj +

∑
j,k∈N

φ�
sjk(u)vjvk

+
∑

j,k∈N

φ̃ �
sjk(u)vjwk, s = m+ 1, · · · , n,

x = 1 : wr =
n∑

s=m+1

Θλ
rsws +

∑
j∈N

G�
rj(u)vj +

∑
j,k∈N

φ�
sjk(u)vjvk

+
∑

j,k∈N

φ̃ �
rjk(u)vjwk, r = 1, · · · ,m,

(2.27)

where

G�
sj(u) =

Gsj −
m∑

r=1

∂Hs

∂vr
Grj

λs(u)
, s = m+ 1, · · · , n, j ∈ N , (2.28)

G�
rj(u) =

Grj −
n∑

s=m+1

∂Hr

∂vs
Gsj

λr(u)
, r = 1, · · · ,m, j ∈ N , (2.29)

φ�
sjk(u) =

Φsjk(u) −
m∑

r=1

∂Hs

∂vr
Φrjk(u)

λs(u)
, s = m+ 1, · · · , n, j, k ∈ N , (2.30)

φ�
rjk(u) =

Φrjk(u) −
n∑

s=m+1

∂Hr

∂vs
Φsjk(u)

λr(u)
, r = 1, · · · ,m, j, k ∈ N , (2.31)

φ̃ �
sjk(u) =

φ̃sjk(u) −
m∑

r=1

∂Hs

∂vr
φ̃rjk(u)

λs(u)
+ Υsjk(u), k = 1, · · · ,m,

s = m+ 1, · · · , n j ∈ N ; (2.32)

φ̃ �
sjk(u) =

φ̃sjk(u) −
m∑

r=1

∂Hs

∂vr
φ̃rjk(u)

λs(u)
, s, k = m+ 1, · · · , n, j ∈ N , (2.33)

φ̃ �
rjk(u) =

φ̃rjk(u) −
n∑

s=m+1

∂Hr

∂vs
φ̃sjk(u)

λr(u)
+ Υrjk(u), k = m+ 1, · · · , n,

r = 1, · · · ,m, j ∈ N ; (2.34)

φ̃ �
rjk(u) =

φ̃rjk(u) −
n∑

s=m+1

∂Hr

∂vs
φ̃sjk(u)

λr(u)
, r, k = 1, · · · ,m, j ∈ N . (2.35)

Remark 2.1 Noting that the coefficient matrixG appearing on the right-hand side of (2.17)

for v = (v1, · · · , vn)T is the same as that of (2.18) for w = (w1, · · · , wn)T, but the coefficient

matrix Θ appearing on the right-hand side of (2.21) for v = (v1, · · · , vn)T is different from Θλ

of (2.27) for w = (w1, · · · , wn)T. Thus, for any given Λ = diag{Λ11, · · · ,Λnn} ∈ Dn,n and Δ =

diag{Δ11, · · · ,Δnn} ∈ Dn,n, using the following linear transformations for v = (v1, · · · , vn)T
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and w = (w1, · · · , wn)T:

ṽi = Λiivi, i ∈ N , (2.36)

w̃i = Δiiwi, i ∈ N , (2.37)

the corresponding coefficient matrices of (2.17)–(2.18) are

GΛ = ΛGΛ−1, (2.38)

GΔ = ΔGΔ−1, (2.39)

respectively, while the corresponding coefficient matrices of (2.21) and (2.27) are

ΘΛ = ΛΘΛ−1, (2.40)

ΘΔ,λ = ΔΘλΔ−1, (2.41)

respectively. Therefore, (1.26)–(1.27) in Theorem 1.1 should be satisfied at the same time.

3 Proof of Theorem 1.1

On any given existence domain D(T ) of the C1 solution u = u(t, x) to the mixed initial-

boundary value problem (1.1) and (1.15)–(1.17), assume that

|u(t, x)| ≤ δ (3.1)

and

λr(u) < −δ0 < 0 < δ0 < λs(u), ∀r = 1, · · · ,m, s = m+ 1, · · · , n, (3.2)

where δ and δ0 are positive constants independent of ε and T . Noting (1.26)–(1.27) and the

continuity, there exists α > 0, such that

Γα
def.= max

i∈N

{
max

t∈[0,Ti]

∑
j �=i

(
|Θij | +

|Gij |
Gii + α

)
e(Gii+α)t −

∑
j �=i

|Gij |
Gii + α

}
< 1, (3.3)

Γλ
α

def.= max
i∈N

{
max

t∈[0,Ti]

∑
j �=i

(
|Θλ

ij | +
|Gij |
Gii + α

)
e(Gii+α)t −

∑
j �=i

|Gij |
Gii + α

}
< 1. (3.4)

Noting (3.1), the functions Φijk(u), βijk(u), Ξijk(u), Πijk(u), χijk(u), G�
ij(u), φ�

ijk(u),

φ̃ �
ijk(u) (i, j, k ∈ N ) appearing on the right-hand sides of (2.17)–(2.18) and (2.27) are all

bounded, so then there exists a constant M 
 1, such that

max
|u|≤δ

∑
i,j,k∈N

{|Φijk(u)| + |βijk(u)| + |Ξijk(u)| + |Πijk(u)| + |χijk(u)|

+ |G�
ij(u)| + |φ�

ijk(u)| + |φ̃ �
ijk(u)|} ≤M. (3.5)
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Let

V (T ) = sup
t∈[0,T ]

max
i∈N

‖eαtvi(t, ·)‖C0[0,1], (3.6)

W (T ) = sup
t∈[0,T ]

max
i∈N

‖eαtwi(t, ·)‖C0[0,1]. (3.7)

To prove Theorem 1.1, we only need to prove that on any given existence domain D(T ) of

the C1 solution u = u(t, x) to the mixed initial-boundary value problem (1.1) and (1.15)–(1.17),

we have

V (T ) ≤ C1ε, (3.8)

W (T ) ≤ C2ε, (3.9)

where C1 and C2 are positive constants large enough, independent of ε and T , to be specified

later on.

By Lemma 2.1, for

T ∗ 
 Tmax
def.= max

i∈N
Ti,

there exists ε0 > 0 so small that for any given ε ∈ [0, ε0] and u0(x) satisfying (1.25), the mixed

initial-boundary value problem (1.1) and (1.15)–(1.17) admits a unique C1 solution u = u(t, x)

on the domain D(T ∗), and

V (T ∗),W (T ∗) ≤ C∗ε, (3.10)

where C∗ is a positive constant.

In what follows, we use a bootstrap argument to prove (3.8)–(3.9), namely, under the as-

sumptions (3.8)–(3.9), we will prove that there exists T0 > 0 independent of T , such that

V (T + T0) ≤ C1ε, (3.11)

W (T + T0) ≤ C2ε. (3.12)

By (3.3)–(3.4), we can take γ > 0 so small that

(C1 + γ)
C1

Γα < 1, (3.13)

(C2 + γ)
C2

Γλ
α < 1. (3.14)

Noting (3.1), by the local well-poseness of the C1 solution to the mixed initial-boundary value

problem (1.1) and (1.15)–(1.17) (see [10]), there exists T0 > 0, such that the mixed initial-

boundary value problem (1.1) and (1.15)–(1.17) admits a unique C1 solution u = u(t, x) on the

domain D(T + T0), and we have

V (T + T0) ≤ (C1 + γ)ε, (3.15)

W (T + T0) ≤ (C2 + γ)ε. (3.16)
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To prove (3.11), we rewrite (2.17) as

d
(
e−Giit|vi|

)
dit

=
∑
j �=i

Gijsig(vi)e−Giitvj +
∑

j,k∈N

Φijk(u)sig(vi)e−Giitvjvk

+
∑

j,k∈N

βijk(u)sig(vi)e−Giitvjwk, i ∈ N . (3.17)

For each s = m + 1, · · · , n and any given point (t, x) ∈ D(T + T0) \ D(T ), draw the sth

characteristic curve Cs : x = xs(τ ; t0) passing through (t, x):⎧⎨⎩
d
dτ
xs(τ ; t0) = λs(u(τ, xs(τ ; t0))),

xs(t; t0) = x,

which intersects x = 0 at the point (t0, 0) (it can always be realized when T > 0 is large

enough). Integrating (3.17) along the characteristic curve Cs with respect to τ from t0 to t, we

get

e−Gsst|vs(t, x)| = e−Gsst0 |vs(t0, 0)| +
∑
j �=i

∫
Cs

Gijsig(vi)e−Giiτvjdτ

+
∑

j,k∈N

∫
Cs

Φijk(u)sig(vi)e−Giiτvjvkdτ

+
∑

j,k∈N

∫
Cs

βijk(u)sig(vi)e−Giitvjwkdτ, (3.18)

and then

eαt|vs(t, x)| = e(Gss+α)t−Gsst0 |vs(t0, 0)|

+ e(Gss+α)t
(∑

j �=s

∫
Cs

Gsjsig(vi)e−Gssτvjdτ
)

+ e(Gss+α)t
{ ∑

j,k∈N

∫
Cs

Φsjk(u)sig(vs)e−Gssτvjvkdτ

+
∑

j,k∈N

∫
Cs

βsjk(u)sig(vs)e−Gsstvjwkdτ
}

def.= T11 + T12 + T13, (3.19)

where

T11 = e(Gss+α)t−Gsst0 |vs(t0, 0)|,

T12 = e(Gss+α)t
( ∑

j �=s

∫
Cs

Gsjsig(vi)e−Gssτvjdτ
)
,

T13 = e(Gss+α)t
{ ∑

j,k∈N

∫
Cs

Φsjk(u)sig(vs)e−Gssτvjvkdτ

+
∑

j,k∈N

∫
Cs

βsjk(u)sig(vs)e−Gssτvjwkdτ
}
.
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Using the boundary condition (2.21), we have

T11 ≤ e(Gss+α)t−Gsst0
( m∑

r=1

|Θsr||vr(t0, 0)| +
∑

j,k∈N

|χsjk(u)||vjvk|
)
.

Noting (3.5) and t− t0 ≤ Ts, by (3.15)–(3.16), we get

T11 ≤ (C1 + γ)ε
(
e(Gss+α)(t−t0)

m∑
r=1

|Θsr| +M(C1 + γ)e(Gss+α)(t−t0)−αt0ε
)

≤ (C1 + γ)ε
(
e(Gss+α)(t−t0)

m∑
r=1

|Θsr| +M1(C1 + γ)ε
)
. (3.20)

Similarly, we have

T12 ≤ (C1 + γ)εe(Gss+α)t
( ∑

j �=s

∫ t

t0

|Gsj |e−(Gss+α)τdτ
)

= (C1 + γ)ε
(∑

j �=s

|Gsj |
Gss + α

e(Gss+α)(t−t0) −
∑
j �=s

|Gsj |
Gss + α

)
(3.21)

and

T13 ≤M1(C1 + γ)(C1 + C2 + 2γ)ε2, (3.22)

where M1 is a positive constant satisfying

M1 ≥M max
1≤k≤n

e(|Gkk|+α)Tk(1 + Tk). (3.23)

Substituting (3.20)–(3.22) into (3.19) and noting (3.3), we get

eαt|vs(t, x)| ≤ (C1 + γ)ε
{
e(Gss+α)(t−t0)

( m∑
r=1

|Θsr| +
∑
j �=s

|Gsj |
Gss + α

)
−

∑
j �=s

|Gsj |
Gss + α

+M1(C1 + C2 + 2γ)ε
}

≤ (C1 + γ)εΓα +M1(C1 + γ)(C1 + C2 + 2γ)ε2

= C1ε
{C1 + γ

C1
Γα +

M1(C1 + γ)(C1 + C2 + 2γ)
C1

ε
}
. (3.24)

Noting (3.13) and that ε0 > 0 is small enough, we have

C1 + γ

C1
Γα +

M(C1 + γ)(C1 + C2 + 2γ)
C1

ε < 1, (3.25)

so

|vs(t, x)| ≤ C1εe−αt, ∀s = m+ 1, · · · , n, (t, x) ∈ D(T + T0). (3.26)

For r = 1, · · · ,m, similar estimates hold. Thus, we get (3.11).
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To prove (3.12), we rewrite (2.18) as

d
(
e−Giit|wi|

)
dit

=
∑
j �=i

Gijsig(wi)e−Giitwj +
∑

j,k∈N

Ξijk(u)sig(wi)e−Giitvjwk

+
∑

j,k∈N

γijk(u)sig(wi)e−Giitwjwk, i ∈ N . (3.27)

For each s = m+ 1, · · · , n and any given (t, x) ∈ D(T +T0) \D(T ), draw the sth characteristic

curve Cs passing through the point (t, x), which intersects x = 0 at the point (t0, 0). Integrating

(3.27) along the characteristic curve Cs with respect to τ from t0 to t, we get

eαt|ws(t, x)| = e(Gss+α)t−Gsst0 |ws(t0, 0)|

+ e(Gss+α)t
( ∑

j �=s

∫
Cs

Gsjsig(wi)e−Gssτvjdτ
)

+ e(Gss+α)t
{ ∑

j,k∈N

∫
Cs

Ξsjk(u)sig(ws)e−Gssτvjwkdτ

+
∑

j,k∈N

∫
Cs

Πsjk(u)sig(ws)e−Gssτwjwkdτ
}

def.= T21 + T22 + T23, (3.28)

where

T21 = e(Gss+α)t−Gsst0 |ws(t0, 0)|,

T22 = e(Gss+α)t
(∑

j �=s

∫
Cs

Gsjsig(wi)e−Gssτvjdτ
)
,

T23 = e(Gss+α)t
{ ∑

j,k∈N

∫
Cs

Ξsjk(u)sig(ws)e−Gssτvjwkdτ

+
∑

j,k∈N

∫
Cs

Πsjk(u)sig(ws)e−Gssτwjwkdτ
}
.

By the boundary condition (2.27), we have

T21 ≤ e(Gss+α)t−Gsst0
{ m∑

r=1

|Θλ
sr||wr(t0, 0)| +

∑
j∈N

|G�
sj(u)vj |

+
∑

j,k∈N

|φ�
sjk(u)vjvk| +

∑
j,k∈N

|φ̃ �
sjk(u)vjwk|

}
. (3.29)

Noting (3.5), (3.11) and t− t0 ≤ Ts, by (3.15)–(3.16), we have

T21 ≤ (C2 + γ)εe(Gss+α)(t−t0)
m∑

r=1

|Θλ
sr| +M1C1ε+M1C

2
1ε

2 +M1C1(C2 + γ)ε2

≤ (C2 + γ)ε
(
e(Gss+α)(t−t0)

m∑
r=1

|Θλ
sr| +

M1C1

C2 + γ
+
M1C

2
1

C2 + γ
ε+M1C1ε

)
. (3.30)
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Similarly, we have

T22 ≤ (C2 + γ)εe(Gss+α)t
( ∑

j �=s

∫ t

t0

|Gsj |e−(Gss+α)τdτ
)

= (C2 + γ)ε
(∑

j �=s

|Gsj |
Gss + α

e(Gss+α)(t−t0) −
∑
j �=s

|Gsj |
Gss + α

)
(3.31)

and

T23 ≤M1(C2 + γ)(C1 + C2 + γ)ε2, (3.32)

where M1 is given by (3.23). Substituting (3.30)–(3.32) into (3.28) and noting (3.4), we get

eαt|ws(t, x)| ≤ (C2 + γ)ε
{
e(Gss+α)(t−t0)

( m∑
r=1

|Θλ
sr| +

∑
j �=s

|Gsj |
Gss + α

)
−

∑
j �=s

|Gsj |
Gss + α

+
M1C1

C2 + γ
+M1

(
2C1 +

C2
1

C2 + γ
+ C2 + γ

)
ε
}

≤ (C2 + γ)εΓλ
α +M1C1ε+M1(C2 + γ)

(
2C1 +

C2
1

C2 + γ
+ C2 + γ

)
ε2

= C2ε
{C2 + γ

C2
Γλ

α +
M1C1

C2
+M1

C2 + γ

C2

(
2C1 +

C2
1

C2 + γ
+ C2 + γ

)
ε
}
. (3.33)

Noting (3.4) and 0 < ε0 � 1, we can take C2 
MC1, such that

C2 + γ

C2
Γα +

M1C1

C2
+M1

C2 + γ

C2

(
2C1 +

C2
1

C2 + γ
+ C2 + γ

)
ε < 1, (3.34)

and then

|ws(t, x)| ≤ C2εe−αt, ∀s = m+ 1, · · · , n, (t, x) ∈ D(T + T0). (3.35)

For r = 1, · · · ,m, similar estimates hold. Hence, we get (3.12) and complete the proof of

Theorem 1.1.

Remark 3.1 When Gss = 0, for the term T12 in (3.19), the estimate (3.21) for T12 should

be replaced by

T12 ≤ (C1 + γ)εeαt
( ∑

j �=s

∫ t

t0

|Gsj |e−ατdτ
)

= (C1 + γ)εeα(t−t0)
∑
j �=s

|Gsj |
(1 − e−α(t−t0)

α

)
≤ (C1 + γ)εeα(t−t0)

∑
j �=s

|Gsj |(t− t0), (3.36)

while the estimates (3.20) and (3.22) for T11 and T13 still hold. Noting (1.31), the sth term at

the right-hand side of (3.3) should be replaced by

eαt
∑
j �=s

(|θsj | + |Gsj |Ti). (3.37)
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Similar treatments can be done for T21, T23 and T22. Hence, Theorem 1.1 still holds, provided

that (1.31)–(1.32) hold.

Remark 3.2 If there exist Λ = diag{Λ11, · · · ,Λnn} and Δ = diag{Δ11, · · · ,Δnn} ∈ Dn,n,

such that

GΛ def.= ΛGΛ−1, (3.38)

ΘΛ def.= ΛΘΛ−1 (3.39)

satisfy (1.26), and

GΔ def.= ΔGΔ−1, (3.40)

ΘΔ,λ def.= ΔΘλΔ−1 (3.41)

satisfy (1.27), we can replace the variables v and w in the proof of Theorem 1.1 by

ṽ = Λv, (3.42)

w̃ = Δw, (3.43)

respectively, and get the conclusion of Theorem 1.1.

Remark 3.3 Suppose that the boundary conditions are given by{
x = 0 : vs = Hs(t, v1, · · · , vm), s = m+ 1, · · · , n, (3.44)

x = 1 : vr = Hr(t, vm+1, · · · , vn), r = 1, · · · ,m, (3.45)

where Hr and Hs (r = 1, · · · ,m, s = m+ 1, · · · , n) are C2 functions of (t, vm+1, · · · , vn)T and

(t, v1, · · · , vm)T, respectively, and

Hi(t, 0) ≡ 0, ∀t ≥ 0, ∀i ∈ N . (3.46)

Let

Θ(t) = (θij(t))

def.=

⎛⎜⎝ 0 ∂(H1,··· ,Hm)
∂(t,vm+1,··· ,vn)

∣∣∣
(t,vm+1,··· ,vn)=(t,0,··· ,0)

∂(Hm+1,··· ,Hn)
∂(t,v1,··· ,vm)

∣∣∣
(t,v1,··· ,vm)=(t,0,··· ,0)

0

⎞⎟⎠ . (3.47)

Then, boundary conditions (1.16)–(1.17) can be rewritten as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x = 0 : vs =

m∑
j=1

θsj(t)vj +
m∑

j,k=1

χsjk(t, u)vjvk, s = m+ 1, · · · , n,

x = l : vr =
n∑

j=m+1

θrj(t)vj +
n∑

j,k=m+1

χrjk(t, u)vjvk, r = 1, · · · ,m,
(3.48)
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where χijk ∈ C0 (i, j, k ∈ N ). Similarly, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = 0 : ws =
m∑

r=1

Θ
λ

sr(t)wr +
∑
j∈N

G�
sj(t, u)vj +

∑
j,k∈N

φ�
sjk(t, u)vjvk

+
∑

j,k∈N

φ̃ �
sjk(t, u)vjwk, s = m+ 1, · · · , n,

x = 1 : wr =
n∑

s=m+1

Θ
λ

rs(t)ws +
∑
j∈N

G�
rj(t, u)vj +

∑
j,k∈N

φ�
sjk(t, u)vjvk

+
∑

j,k∈N

φ̃ �
rjk(t, u)vjwk, r = 1, · · · ,m,

(3.49)

where χijk(t, u), G�
ij(t, u), φ�

ijk(t, u) and φ̃ �
ijk(t, u) (i, j, k ∈ N ) are bounded continuous func-

tions.

Comparing (3.48)–(3.49) with (2.21) and (2.27), through the procedure of the proof of

Theorem 1.1, we can get the following theorem.

Theorem 3.1 Under hypotheses (1.2), (1.10) and (3.46), if (1.26)–(1.27) hold, then there

exists ε0 > 0 so small that for any given ε ∈ [0, ε0], and any given initial data u0(x) satisfying

(1.25) and Hi(t, v) (i = 1, · · · , n) satisfying |θij(t) − θij(0)| ≤ ε (i, j = 1, · · · , n, t > 0), the

conclusion of Theorem 1.1 is still valid.

4 Application

In this section, we give a kind of models to illustrate the application of Theorem 1.1. We

consider the following mixed initial-boundary value problem for a system composed of two

equations: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Z

∂t
− λ(Z,W )

∂Z

∂x
= −κZ − κW, (4.1)

∂W

∂t
+ λ(Z,W )

∂W

∂x
= −κZ − κW, (4.2)

t = 0 : (Z,W )T = (Z0(x),W0(x))T, x ∈ [0, 1], (4.3)

x = 0 : W = βZ, (4.4)

x = 1 : Z = αW, (4.5)

where λ(Z,W ) is a C2 function of (Z,W ), satisfying

λ(0, 0) > 0, (4.6)

κ > 0, and α, β are constants. By Theorem 1.1, we have the following theorem.

Theorem 4.1 Suppose that (4.6) holds. If |α| < 1 and |β| < 1, then there exists θ0 > 0 so

small that for any given θ ∈ [0, θ0] and any given initial data (Z0(x),W0(x)) satisfying

‖(Z0(·),W0(·))‖C1[0,1] ≤ θ, (4.7)
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the mixed initial-boundary value problem (4.1)–(4.5) admits a unique global C1 solution (Z,W )

= (Z(t, x),W (t, x)) on the domain {(t, x) | t ≥ 0, 0 ≤ x ≤ 1}, and there exists α > 0, such that

we have the following uniform a priori estimate:

‖(Z(t, ·),W (t, ·))‖C1[0,1] ≤ Cθe−αt, ∀t ≥ 0, (4.8)

where C is a positive constant independent of θ and t.

Remark 4.1 Some physical models can be written in the form of (4.1)–(4.2), for instance,

the p-system with damping ⎧⎪⎨⎪⎩
∂u

∂t
− ∂v

∂x
= 0, (4.9)

∂v

∂t
+
∂p(u)
∂x

= −v, (4.10)

where u and v stand for the specific volume and the velocity of the fluid. For polytropic gases,

the pressure p is given by the following thermodynamic state equation (see [7]):

p = p(u) = κu−γ0 ,

where κ > 0 and γ0 > 1 are constants.

For any given u∗ > 0, (u∗, 0) is an equilibrium state of system (4.9)–(4.10). Using the

Riemann invariants

r =
v

2
−

√
κγ0

γ0 − 1
u−

γ0−1
2 =

v

2
−

√
κγ0

γ0 − 1
(ũ + u∗)−

γ0−1
2 , (4.11)

s =
v

2
+

√
κγ0

γ0 − 1
u−

γ0−1
2 =

v

2
+

√
κγ0

γ0 − 1
(ũ+ u∗)−

γ0−1
2 , (4.12)

(4.9)–(4.10) can be rewritten as

∂r

∂t
− c

∂r

∂x
= −1

2
r − 1

2
s, (4.13)

∂s

∂t
+ c

∂s

∂x
= −1

2
r − 1

2
s, (4.14)

where

c =
√
−p′(u + u∗) > 0

(see [7]).

Moreover, for 1D linear wave equation

�u = −2ut, (4.15)

by the following transformation of variables:

Z = (∂t + ∂x)u, (4.16)

W = (∂t − ∂x)u, (4.17)
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we get ⎧⎪⎨⎪⎩
∂Z

∂t
− ∂Z

∂x
= −Z −W, (4.18)

∂W

∂t
+
∂W

∂x
= −Z −W. (4.19)

5 A Counterexample

In this section, we give an example to show that the conclusion of Theorem 1.1 may fail if

(1.26)–(1.27) do not hold.

Example 5.1 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u1

∂t
− ∂u1

∂x
= u1, (5.1)

∂u2

∂t
+
∂u2

∂x
= u2, (5.2)

x = 0 : u2 = e−1u1, (5.3)

x = 1 : u1 = e−1u2, (5.4)

t = 0 : u = (u01(x), u02(x))T, x ∈ [0, 1]. (5.5)

The coefficient matrix A(u) of (5.1)–(5.2) is

A(u) =
(
− 1 0
0 1

)
, (5.6)

whose eigenvalues are

λ1 = −1, λ2 = 1. (5.7)

Then

T1 = T2 = 1. (5.8)

The inhomogeneous term F (u) is

F (u) =
(
u1

u2

)
, (5.9)

and then

G =
(

1 0
0 1

)
. (5.10)

Moreover, the coefficient matrix Θ of boundary conditions (5.3)–(5.4) is

Θ =
(

0 e−1

e−1 0

)
. (5.11)

Thus,

max
i∈{1,2}

{
max
t∈[0,1]

∑
j �=i

(
|Θij | +

|Gij |
Gii

)
eGiit −

∑
j �=i

|Gij |
Gii

}
= 1. (5.12)

It is easy to see that the hypothesis (1.26) in Theorem 1.1 does not hold.
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Let the C1[0, 1] initial data u0i(x) (i = 1, 2) satisfy

u0i

(1
2

)
= ε, (5.13)

‖u0i(·)‖C1[0,1] ≤ 2ε, (5.14)

where ε > 0 is a small parameter. By the conclusion in [9], the mixed initial-boundary value

problem (5.1)–(5.5) admits a global C1 solution. In particular, we have⎧⎪⎨⎪⎩
x = 0 : u1

(3
2
, 0

)
= · · · = u1

(4K + 3
2

, 0
)

= εe
1
2 , ∀K = 0, 1, 2, 3, · · · ,

x = 0 : u2

(1
2
, 0

)
= · · · = u2

(4K + 1
2

, 0
)

= εe−
1
2 , ∀K = 0, 1, 2, 3, · · · .

Hence, the C1 solution to the mixed initial-boundary value problem (5.1)–(5.5) does not decay

with respect to t.

6 Further Discussion on Theorem 1.1

First of all, the hypotheses (1.26)–(1.27) in Theorem 1.1 can be rewritten as∑
j �=i

|Θij | <
(
1 +

∑
j �=i

|Gij |
Gii

)
e−Giit −

∑
j �=i

|Gij |
Gii

, ∀t ∈ [0, Ti], ∀i ∈ N (6.1)

and ∑
j �=i

|Θλ
ij | <

(
1 +

∑
j �=i

|Gij |
Gii

)
e−Giit −

∑
j �=i

|Gij |
Gii

, ∀t ∈ [0, Ti], ∀i ∈ N . (6.2)

Case 1 If Gii = 0 (i ∈ N ), note that (1.29)–(1.30), (6.1)–(6.2) should be replaced by∑
j �=i

|Θij | +
∑
j �=i

|Gij |t < 1, ∀t ∈ [0, Ti], ∀i ∈ N , (6.3)

∑
j �=i

|Θλ
ij | +

∑
j �=i

|Gij |t < 1, ∀t ∈ [0, Ti], ∀i ∈ N , (6.4)

respectively. Specially, if Gij = 0 (i, j ∈ N ), (6.3)–(6.4) can be simplified to

max
i∈N

∑
j �=i

|Θij | < 1, (6.5)

max
i∈N

∑
j �=i

|Θλ
ij | < 1, (6.6)

respectively, which are the boundary dissipative condition for the quasilinear hyperbolic system

without internal dissipative terms (see [6–7]).

Case 2 If Gii > 0, then(
1 +

∑
j �=i

|Gij |
Gii

)
e−Giit −

∑
j �=i

|Gij |
Gii

< 1. (6.7)
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In this case, (6.1)–(6.2) indicate that if the inhomogeneous term F (u) has a growth effect for

vi, a stronger boundary dissipative condition is needed to guarantee the exponential decay.

Case 3 If Gii < 0, then(
1 +

∑
j �=i

|Gij |
Gii

)
e−GiiTi −

∑
j �=i

|Gij |
Gii

> 1. (6.8)

In this case, (6.1)–(6.2) indicate that if the inhomogeneous term F (u) has a reduced effect

for vi, by a combination effect of the weaker boundary dissipative condition and the internal

dissipative condition, the C1 solution still decays exponentially.
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