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Abstract Under the internal dissipative condition, the Cauchy problem for inhomoge-
neous quasilinear hyperbolic systems with small initial data admits a unique global C*
solution, which exponentially decays to zero as t — 400, while if the coefficient matrix
© of boundary conditions satisfies the boundary dissipative condition, the mixed initial-
boundary value problem with small initial data for quasilinear hyperbolic systems with
nonlinear terms of at least second order admits a unique global C' solution, which also
exponentially decays to zero as t — 4-o00. In this paper, under more general conditions, the
authors investigate the combined effect of the internal dissipative condition and the bound-
ary dissipative condition, and prove the global existence and exponential decay of the C!
solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems
with small initial data. This stability result is applied to a kind of models, and an example
is given to show the possible exponential instability if the corresponding conditions are not
satisfied.
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1 Introduction and Main Results

Consider the following first-order quasilinear hyperbolic system:

ou ou
— +Alu)— =F 1.1
U A2 = Fl), (1)
where u = (u1,- -+ ,u,)T is the unknown vector function of (t,x), A(u) = (ai;(u))nxn is a C?
matrix function of u, and F(u) = (Fy(u),- -+, F,(u))T is a C? vector function of u with
F(0) = 0. (1.2)

By strict hyperbolicity, for any given u on the domain under consideration, A(u) has n

distinct real eigenvalues A\ (u) < - -+ < A\p(u) and a complete set of left (resp. right) eigenvectors
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i) = (a0, Lo () (resp. ma(u) = (rrau), -, 7g(u))T) as follows:

Li(w)A(u) = AN(w)li(u), Yie N, (1.3)
A(u)ri(u) = Ni(u)ri(u), Vie N, (1.4)

where
AN ={1,---,n}. (1.5)

Assume that \;(u),l;(u) and r;(u) (i € A7) have the same regularity as A(u). Without loss of
generality, we assume that

lz(u)r](u) = 57;]', VZ,] eN, (16)
Tuwriu)=1, VieA, (1.7)

where §;; stands for the Kronecker symbol. Let L(u) and R(u) be the matrices composed of

the left and right eigenvectors:

l1(u)

Lwy=1 [, (1.8)
In(u)

R(u) = (r1(w), - ,ra(u)), (1.9)

respectively.

In order to consider the mixed initial-boundary value problem for (1.1), assume that there

exists an index m € {1,--- ,n — 1}, such that
Ar(0) <0< A(0), Vr=1,---,m, s=m+1,---,n. (1.10)
Remark 1.1 For u = (uy, - ,u,)T € R", denote
ul = > fuil. (1.11)
ieN

Let .#™" be the set of n x n real matrices, and 2™" be the set of n x n real diagonal matrices

with strictly positive diagonal elements. For any given B = (b;;) € 4™, we define
IB| = n&}/{{ Z |bij|}. (1.12)
jeEN
If (1.1) satisfies the following internal dissipative condition: There exists A € ™", such
that
—GN Y _AL(0)VF(0)R(0)A™ (1.13)

is a strictly row-diagonal dominant matrix as follows:

~GH0)> ) GH(0)], Vie A, (1.14)
jeEN
J#i
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then the Cauchy problem for (1.1) admits a unique global C! solution u = u(t,x) on t > 0,
and the C' norm of u decays exponentially to zero as t — 400, provided that the C' norm
of the initial data is small enough (see [6-7]). By the method of energy integration, [5] gave
the global existence and uniqueness of H? solutions to the hyperbolic system of conservation
laws with small initial data under the Shizuta-Kawashima condition and the entropy dissipative
condition, and then this result was reproved in [16] in a different way under slightly different
hypotheses. The generalization to the higher dimensional case can be found in [15], and [1-2]
gave the corresponding asymptotic behavior. Moreover, this result was generalized to some
systems without the Shizuta-Kawashima condition in [11-14].

Consider the mixed initial-boundary value problem (1.1) with the initial condition
t=0: u=up(z), ze€l0,1] (1.15)

and the following boundary conditions:
x=0: wvs=H (v, ,vm), s=m-+1-- n, (1.16)
r=1: vT:HT(varlv"'avn)a r=1,--,m, (117)

where v; = li(u)u (i € A), H, and Hy (r =1,---,m, s=m+1,--- ,n) are C? functions of

T respectively, and

(varlv"' ;vn)T and (vlv"' avm)
Hi(0)=0, Vie.t. (1.18)

Assume that the conditions of C'' compatibility hold at the points (0,0) and (0, 1), respectively.
If F(u) satisfies (1.2) and

VF(0) =0, (1.19)
and the matrix
0 a(Hlv 7Hm)
def. OVmt1, V) @t 0)=(0-0) | (1 o
o= O(Hpy1,- -, Hy) 0 (1.20)
A1, vm) i, wm)=(0,+,0)

satisfies the following boundary dissipative condition:

def.

101" inf JAOATY <1, (1.21)

then the mixed initial-boundary value problem (1.1) and (1.15)—(1.17) with small initial data
admits a unique global C'* solution u = u(t,z) on the domain {(¢,z) |t >0, 0 <z < 1}, and
the C* norm of the solution decays exponentially as t — +oo (see [7]). In the case F(u) = 0,
by constructing a Lyapunov function and considering the problem in H? space, the condition
(1.21) is weakened in [3]. For linear hyperbolic systems, the exponential stability for the mixed

initial-boundary value problem was established in L? space in [4].
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The results mentioned above inspire us to consider the following problem: In the case
VF(0) # 0, under what conditions on VF(0) and O, i.e., under which kind of combined
effect of internal dissipation and boundary dissipation, we can get the global existence and the
exponential decay of the C! solution to the mixed initial-boundary value problem (1.1) and
(1.15)~(1.17)?

Let
G = L(0)VF(0)R(0), (1.22)
T = m Vie N, (1.23)
0 = diag{\(0), -, Au(0)} 'Odiag{A1(0), - - , An(0)} (1.24)
and
e = luollcpo.n- (1.25)

Our main result is as follows.

Theorem 1.1 Under the hypotheses (1.2), (1.10) and (1.18), assume furthermore that G; #
0(GeAN). IfG,0,0* satisfy

G|\ Gt Gij

e iy, 2 (19l + TG0 )e — 2 Gy <, (120
Gijl ) |Gl

o3| + Gu Jedut 2 <, 1.27

{23}/({15?[10%%]; (| 7']| Gii ¢ ; G“‘ ( )

then there exists g > 0 so small that for any given e € [0, &0 and the initial data ug(x) satisfying
(1.25), the mized initial-boundary value problem (1.1) and (1.15)—(1.17) admits a unique global
Ct solution v = u(t,x) on the domain {(t,x) | t > 0,0 < x < 1}, and there exists a number

a > 0, such that for any given t > 0, we have the following uniform a priori estimate:
Ju(t, Mcrjoa) < Cee™, ¥t >0, (1.28)

where C stands for a positive constant independent of € and t.

Remark 1.2 If G;; =0 (i € .A4), (1.26)—(1.27) should be replaced by

r?}XZ(I@ijI +1G4|Ti) <1, (1.29)
J#i
A
r?}x%:(@m +|Gy|Ty) < 1. (1.30)
JFL

Through the proof in Section 3, we can see that Theorem 1.1 still holds in this case. In order
to get (1.29)-(1.30), we may use the Taylor expansion of e“i¢* in (1.26)(1.27), and then ask
G; to tend to 0.
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Generally speaking, if there exists a set & C A7, such that Gg, = 0, VE € &, then
Theorem 1.1 still holds, provided that (1.26)—(1.27) are replaced by

Gil\ o Gii
max{ s (Z (|@ij| + %)ew —Z%) g%z:qem + |Gij|Ti)} <1, (1.31)
ieM\py IF J#i J#i

Gy y Gy

e\ T J#i J#

Remark 1.3 If there exist A and A € 2", such that

G L AGAT! (1.33)
and
CRRENCT (1.34)
satisfy (1.26), while
A def. -1
GA < AGa (1.35)
and
NGV (1.36)

satisfy (1.27), then the conclusion of Theorem 1.1 still holds.

Remark 1.4 When
F(0)=0, VF(0)=0,

namely, there do not exist any linear internal dissipative terms, through the proof and analysis
in Section 3, (1.26)—(1.27) can be reduced to (1.21), and then the result in [7] can be obtained
from the conclusion of Theorem 1.1.

When

0 =0, (1.37)

namely, there do not exist any linear boundary dissipative terms, in order to get (1.26)—
(1.27), the nonlinear term F'(u) of (1.1) might have a growth effect on the solution u =
u(t,x) (i.e., Gy > 0). Specially, taking

Gij:O7 \V”L?é], i7j€'/V7 (138)
we can see it.

Remark 1.5 (1.14) fails for some systems in physics, however, it is possible to get

—Gy = Z |Gijl, VieN. (1.39)
jeN
J#i
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If

max Z |04 <1 (1.40)
JEN
and
A
max Z )] < 1, (1.41)
jeM

then (1.26)—(1.27) still hold. By Theorem 1.1, the C! solution to the corresponding mixed

initial-boundary value problem decays exponentially.

In Section 2, we give the semi-global existence of a C! solution to the mixed initial-boundary
value problem (1.1) and (1.15)—(1.17) (see [8]), and a kind of formulas of wave decomposition.
By using these formulas, we give the proof of Theorem 1.1 in Section 3, and we apply our result
to a kind of models in Section 4. In Section 5, one example is given to show that the conclusion
of Theorem 1.1 may fail if (1.26)—(1.27) do not hold, and some further discussions about our

main results are carried out in Section 6.

2 Preliminaries

Under hypotheses (1.2), (1.10) and (1.18), there exists t* > 0, such that the mixed initial-
boundary value problem (1.1) and (1.15)-(1.17) admits a unique C' solution u = u(t,x) on the
domain {(t,z) | 0 <t <t*, 0<az <1} (see [10]). In order to prove Theorem 1.1, we first give
the semi-global existence of a C! solution to the mixed initial-boundary value problem (1.1)

and (1.15)—(1.17) (see [8]) and some formulas of wave decomposition in this section.

Lemma 2.1 Suppose that (1.2), (1.10) and (1.18) hold. For any given T > 0, there exists
an g9 > 0 so small that for any given e € [0,20] and up(x) satisfying (1.25), the mized initial-
boundary value problem (1.1) and (1.15)~(1.17) admits a unique C* solution u = u(t,z) on the

domain
D(T)={(t,z) |0<t<T, 0<z <1}, (2.1)
and satisfies
[u(t,)cipa) < Ce, YO<t<T, (2.2)
where C' is a positive constant independent of t € [0,T] and € [0, ).

2.1 Formulas of wave decomposition

In order to prove Theorem 1.1, we introduce some formulas of wave decomposition.
Let

v =lLi(wu, e N, (2.3)
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w; = li(u)ug, i€ M. (2.4)
Then
u= Z vir;(u), (2.5)
JEN
Opu = Z wjr;(u), (2.6)
JEN
ou
e = . 2.7
5| = RO (2.7)
By (1.1), we have
do; ;
dvt = [; Z FT U] + Z /Bij ’ij]g, (S </V7 (28)
! JEN JkeEN
where
Biji(u) = (Ni(u) — N (w))rf Vii(u)r;(v), Vi, j,k €N, (2.9)
and
d 0 0

6o TN Wa

denotes the directional derivative with respect to ¢ along the ith characteristic curve (see [7]).

Similarly, by (1.1) we have

dwl =Y lw 7 () Vg (u) F (w)uy,

jeN ket
+ Z Yije(Wwjwy, i€ N, (2.10)
J.keN
where
Yigk (1) = (Aj(w) = A (u)li(w) Vrg(w)r;(w) + 6, VN (w)re(u), Vi, j, ke N (2.11)
(see [7]).
Noting (1.2) and (2.3), we have

2 F) _, = HOVFO0) = Gy (212)

Thus, using Hadamard’s formula and Taylor expansion for functions I;(u)F(u), we have
= Z Gijvj + Z {ijk(u)vjvk, 1€ N, (2.13)
jeN jkeN
where &, (u) € C° (i,j,k € A). In a similar way, by (1.2), for functions F(u)V;(u)r;(u)
(i, € A7), we have

FT(w)Vi;(u = > nigr(wvjue, VijeN, (2.14)
ke
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where n;;,(u) € C° (i,j,k € A) .

Similarly, we have

L(w)VFr(ww; = Gijw; + Y pije(wwjvg, 0,5 €N,
keN

—1i(u)Vry(u) F(u)wy, = Z VYijr(w)wrvy, i,k €N,
jeEN

(2.15)

(2.16)

where @1 (u), Vijr(u) € CY (i,5,k € A7) . Substituting (2.13)—(2.14) and (2.15)—(2.16) into

(2.8) and (2.10), respectively, we get

dvi .
d_it = Z Gijvj + Z D55 (w)vjup + Z Bijk(Wvjwg, 1€ N,

jeN jkeN JkEN

dwi —_ .
= Z Gijwj + Z :ijk(u)vjwk + Z 'yijk(u)ijk, 1€ N,

dit , ,
JEN JjkeN jkeN

where @1, (u) and Z;;(u) € C° (i,j,k € ") are given by

Dy (u) = Eijr(w) + nijr (),
Eijk(u) = Yirg(u) + iji(u).

2.2 Representation of v and w on the boundaries x = 0,1

Noting (1.18) and (1.20), it follows from boundary conditions (1.16)—(1.17) that

Z@SJUJ—’_ Z ngk Uj’Uk, S:Tn—|—]_7...,n7

j.keNV
r=1: v, = E ©,v; + g Xrjk(Wvjvg, T=1,---,m,
j=m+1 j,keN

where X, (u) € C° (i,j,k € A) .
Differentiating the boundary conditions (1.16)—(1.17) with respect to ¢ yields

H v,

81},« i 0H,. Ov,
- : — 1. .m.
Z e TS hem

For any given i € .47, by (2.3)-(2.4) and (2.13)—(2.14), we have

v, Oli(u)u) ou ou\T
o Z"(“)E (57) Vit
= =X + L) Fw) + (Y ~Ae(wrs(uyw, + F(u) Vii(wu
keN

wwi+ Y Gijvj+ Y Sije(wvjor

jeN jkeN

(2.17)

(2.18)

(2.19)
2.20)

—~

(2.21)

(2.22)
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= Y Nk () V() (wojwe + Y nigr(w)vop
JokeN jkeN
= —)\i(u)wi + Z Gij’l)j + Z @ijk(u)vjvk + Z %ijk(u)vjwk, (223)
jens JkeN jkeN
where
Gin(u) = =N (W)rt (W) Vi (w)rj(u), i, 5.k € AN
Substituting (2.23) into (2.22), we get
<N OH
m Gsj — =G
z=0: w _ZaHSAT(u)w + Z 93 7’21 Our mv.
e (O = As(u) !
m
O (u) = 3 G,y (u)
+ r=1 vV
, s(u)
j,keN
Bsjk(u) — 21 %I;: Grjk(u)
r=
—|—.k€/‘/ () vjwg, s=m+1, ,n,
I 0 (2.24)
GT, T GS,
N zn: 8H )\ ’U, +Z J s:rzn:Jrl dvg JU
= Wy J
s=m+1 avs T ’LL jeN )\T(U)
D1 (u) E+1 G (u)
s=m
+ Z A () UjVk
j,keN
Gran(W) = 3 Gdun(v)
s=m
+4Z o () vjwg, rT=1,---,m.
j,keN
For the functions %%;—EZ; (s=m+1,---,n; r=1,---,m) and %’Z ; EZ; (s = m+
1,---,n; r=1,---,m) appearing on the right-hand side of (2.24), using Taylor expansion, we
obtain

OH N\, (u) A\
= 05w, + Yo (u)vjw,,
8U7n (u) jg/:‘/ J ( ) J
OH, s (u) A\
=0 ws + T,is(w)vws,
avs r(u) j;y J ( ) J

(2.25)

(2.26)

where Y. (u), Trjs(u) € C, and ©* is given by (1.24). Substituting (2.25)-(2.26) into (2.24),
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we get
x=0: Z@g,«wr + Z GgJ Jvj + Z ¢ij(u)vjvk
JjeN JkeN
+ Z ¢sjk ’ijk, 3:m+17"'an7
ikeN (2.27)
r=1 Z O ws + Z Gij(u)vj + Z ¢ij(“)ij1€
s=m+1 JEN jkeN
+ Z ¢r]k ijka T:17"'ama
JkEN
where
Go— Y 3G,y
Gy(u) = ;=1u) , os=m4ln, jEN, (2:28)
Gv"j _Z L %Ij: st
G i(u) = S‘A’”'(’;) . or=1,-,m, jEN, (2.29)
O (u) = 3 GHedb gy (u)
Qﬁ]k( )_ ;\:lu) ;o s=m+1,--,n, j,k€</V, (230)
D1 (u) —E+1 5o P (u)
qszk( ) ;\ (u) , r=1, m, j, ke N (2.31)
N Gsji (1) — 21 = Orjie(u)
(bsbjk( ) ;\ (u) +TSjk( ) k=1, » M,
s=m+1 njeN; (2.32)
B o (1) — ; D8 G ()
qbsb]k( ) = ;\_(u) , S k=m+1 n, jeN, (2.33)
_ aTjk( )_ _Z+ o, (b‘;]k( )
QS:Jk( )_ _A (’U,) +Trjk( )7 k m+1 )
r=1,---,m, jEN; (2.34)
(1) — 7Z+ Iz e (u)
¢r]k( ) :\ (’U,) , rk=1-,m, jeN (235)

Remark 2.1 Noting that the coefficient matrix G appearing on the right-hand side of (2.17)

a'Un)T

matrix © appearing on the

for v = (vy,---

of (2.27) for w = (wy, -+ ,wy,

diag{Alla )

is the same as that of (2.18) for w = (wy,---,wy

Apnn} € 2™, using the following linear transformations for v = (vq,---

)T, but the coefficient
,v,)T is different from ©*

Apn} € ™™ and A =
T

right-hand side of (2.21) for v = (vq,- -~
)T

. Thus, for any given A = diag{A11,- -,

avn)
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and w = (wy, - ,wy)7T:

ﬁi = Aiivi, xS JV, (236)
’[tji = Aiiwi, RS </V, (237)

the corresponding coefficient matrices of (2.17)—(2.18) are

GN = AGA™Y, (2.38)
GA = AGA™, (2.39)

respectively, while the corresponding coefficient matrices of (2.21) and (2.27) are

M = AOATL, (2.40)
04 = AO ML (2.41)

respectively. Therefore, (1.26)—(1.27) in Theorem 1.1 should be satisfied at the same time.

3 Proof of Theorem 1.1

On any given existence domain D(T') of the C! solution u = u(t,x) to the mixed initial-

boundary value problem (1.1) and (1.15)—(1.17), assume that
lu(t,z)| < o (3.1)
and
Ar(u) < =6p <0<y < As(u), Vr=1,--- m, s=m+1,--- n, (3.2)

where 0 and g are positive constants independent of ¢ and 7. Noting (1.26)—(1.27) and the

continuity, there exists a > 0, such that

def. |Gl Goita)t |Gy
r, % { (@-4 7’) (Gii+a)t _ 7}<1, 3.3
“ ien tg[loa,%] ; Ol + Gi+a ¢ par Gi+a (33)

. Giil \ (o G|
4 max { (18 Gl JelGurerr - 57 T <, 3.4
¢ e tg[lO&%] Z O3]+ Gi+« ¢ j#i Gii +a B

Noting (3.1), the functions @,k (v), Bijr(w), Zijk(w), Wik(w), Xie(w), C?Ej(u)7 qszk(u),
¢fjk(u) (i,4,k € A) appearing on the right-hand sides of (2.17)—(2.18) and (2.27) are all
bounded, so then there exists a constant M > 1, such that

max Y {|@i(u)] + |Bij ()] + [Zije ()] + g (u)] + [xige (w)]

lul<é . .
i,J,kEN

+ 1G5 ()] + [0 (w)| + 9]k ()]} < M. (3.5)
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Let
V(T) = Aty (¢, - , 3.6
(T) tes[t;%] max [[e®vi(t, )llcopo,) (3.6)
W(T) = sup max||eatwi(t,')||Co[071]. (3.7)
te[0,T] ieN

To prove Theorem 1.1, we only need to prove that on any given existence domain D(T') of
the C'! solution u = u(t, z) to the mixed initial-boundary value problem (1.1) and (1.15)—(1.17),

we have

V(T) < Che, (3-8)
W(T) < Cse, (3.9)

where C7 and Cs are positive constants large enough, independent of € and 7', to be specified
later on.
By Lemma 2.1, for
T* > Thnay 2 max T;,
ieN
there exists 9 > 0 so small that for any given € € [0, g] and ug(z) satisfying (1.25), the mixed
initial-boundary value problem (1.1) and (1.15)—(1.17) admits a unique C* solution u = u(t, z)

on the domain D(T™), and
V(T),W(T™) < C”¢, (3.10)

where C* is a positive constant.
In what follows, we use a bootstrap argument to prove (3.8)—(3.9), namely, under the as-

sumptions (3.8)—(3.9), we will prove that there exists Ty > 0 independent of T', such that

V(T + To) < (g, (3.11)
W(T + To) < Caqe. (3.12)

By (3.3)-(3.4), we can take v > 0 so small that

Mpa <1, (3.13)
Ch

ot g (3.14)
Cs

Noting (3.1), by the local well-poseness of the C'* solution to the mixed initial-boundary value
problem (1.1) and (1.15)—(1.17) (see [10]), there exists Tp > 0, such that the mixed initial-
boundary value problem (1.1) and (1.15)—(1.17) admits a unique C! solution u = u(t,x) on the
domain D(T + Tj), and we have

V(T + Tp) < (C1 + ), (3.15)
W(T +Tp) < (Ca2+ v)e. (3.16)
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To prove (3.11), we rewrite (2.17) as

d G”t
( ZG”SIg v;)e Gt v; + Z D, ik (u)sig(vi)e G”"‘tvjvk
JF#i JkeAN
+ Z Bijr (u)sig(v;)e G"‘tvjwk, 1€ N, (3.17)
j.keNV

For each s = m + 1,--- ,n and any given point (t,z) € D(T + Tp) \ D(T'), draw the sth
characteristic curve €, : @ = x4(7; o) passing through (¢, x):

%xs(T; tO) = )\S (U(T, xs(T; to)))’

zs(tito) = w,
which intersects x = 0 at the point (¢p,0) (it can always be realized when T" > 0 is large

enough). Integrating (3.17) along the characteristic curve €, with respect to 7 from ¢ to ¢, we

get
o—Gast vs(t, z)| = beto|v (to, 0)| + Z/ Gjsig(v;)e G”ijdT
J#i
+ Z / ik (w)sig(vi)e” G v updr
JkeN
+ D / Bije(wsig(vi)e™ v uwpdr, (3.18)
JkeN
and then
eatlvs (t,$)| _ e(Gss"FO’)t—GsstOlv (tO, 0)|
+e(G”+a)t Z/ G€151g vi)e GSSTUde>
J#s
+e(G<<+(¥)t Z / gjk s1g ) G”ijvde
j.keN
+ ) ﬁsjk 81g(vs)e_c“tvjwzcd7}
JkeN
T+ Ty + Tis, (3.19)
where

711 — (Gss+(y)t_Gsst0|,U (t0,0)|’

Tio —e(G“J”’)t Z/ Gjsig(vi)e GSST’Ujd’T)v

J#s

Ti3 —e(G”+(’)t Z/ sik (u)sig(vs)e G,;,;ijvde
g keNV

+ Z ﬁsyk Slg(vs)e_GS”vjwde}.

jkeN
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Using the boundary condition (2.21), we have
Tiy < e(Ctelt G“to(z 1Ourl 07 (to, O + Y i ()llvsun ).
JkeN
Noting (3.5) and t — tg < T, by (3.15)—(3.16), we get
Tia < (Cy + )z (G0 3710, 4 M(Cy + el Geeellizto)matog)
r=1

< (Cy + ’y)e(e(G“Jﬂ’)(t—tO) 3 10| + My (Cr + 7)5). (3.20)

r=1

Similarly, we have

T2 < (C4 +’Y>5€(G“’+a Z/ Gsjle” (beJra)TdT)

J#s
|st | (Gss+a)(t—to) |st |
= —— e\ — —_— 21
(Cﬁ”)g(, Gotal _ Gss—f—a) (3:21)
J#s J#s
and
Ti3 < Mi(Cy + 7)(C1 + Cs + 29)e?, (3.22)

where M, is a positive constant satisfying

M; > M max elGerlT) Tk 4 7). (3.23)
1<k<n

Substituting (3.20)—(3.22) into (3.19) and noting (3.3), we get

g (t, 2)] < (C1+7)e { (Gssta)(t= to)(2|@w|+ZG|GSJ| )

Gyl
_ Z G Lt MG+ Ot 29)e}

< (01 +¥)ely + M1 (Cy + ) (Cy + Cy + 27)e?

Cr+v My (C1 +7)(C1 + Co + 27)
= Ty . .24
Cie { Cy o 6} (3.24)
Noting (3.13) and that g9 > 0 is small enough, we have
M 2
Ch1 +’Yra+ (C1 +’Y)(C1+C2+ ’Y)€< 1, (3.25)
Cl Cl
S0
lvs(t, )] < Cree™ ™, Vs=m+1,---,n, (t,z) € D(T +Tp). (3.26)

For r =1,---,m, similar estimates hold. Thus, we get (3.11).
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To prove (3.12), we rewrite (2.18) as

d(eCut 3
(7 ZG”&g w;)e” T, + Z Eijk (w)sig(w;)e G”tvjwk
Ve jkeN
+ Z Yijk(w)sig(w;)e” Y twwg, i€ N (3.27)
jkeN

For each s =m+1,--- ,n and any given (¢t,z) € D(T +Tp) \ D(T), draw the sth characteristic
curve €, passing through the point (¢, ), which intersects z = 0 at the point (to,0). Integrating

(3.27) along the characteristic curve €, with respect to 7 from ¢y to t, we get

ey (b, )| = e Foet O CEesto (10, 0))

—l—e(Gsera)t(Z/ G sig(w;)e G“ijdT)
‘ ¢,
“*a)t Z / ik (uw)sig(ws)e G'Sijwde

]kE/V
+ Z / sik(w)sig(ws)e™F=Tw; wde}
j.keNV
Ty + Tog + Tos, (3.28)

where

Tpy = elGootelt=Coctoly (14, 0)),

T = e(G;;-‘ra)t ( Z GSJSIg wz) GSST'Ude) )

j#s 7 Ce
T o e(G”—i-a)t Z / -—sjk Slg u)g) -G .J’Uj’IdeT
JkeN
+ Z / sik(u)sig(ws)e Gl;lejwde}'

j.keN
By the boundary condition (2.27), we have

Ty < o(Gasta)t— G”to{2|@ wy (o, 0)] + Z |G u)v;|
= jeN

+ 3 v + Y 185wyl ). (3.29)

jkeN JkeN

Noting (3.5), (3.11) and ¢t — to < Ty, by (3.15)—(3.16), we have

m
T < (CQ + ’y)Ee(GSS-Hy)(t_tO) Z |®ér| + M1Che + M101252 + MlCl(C'g + 7)52
r=1

. L MGy MG
< (Cﬁw)g( Guuta)(t—to) Z|@ + 2 1+17 021+175+M1C15). (3.30)
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Similarly, we have

t
Ton < (Cy + y)eelGost)t ( 3 IstIe_(G“Jr“)TdT)

is o
Gsil (@ - |Gl
= C (Gssta)(t—to) _ syb 3.31
( 2+7)E(, Gss—l—ae ‘ GSS—I—a) ( )
Jj#s Jj#s
and
Taz < My (Co + ) (Cy + Cy +7)e?, (3.32)

where M; is given by (3.23). Substituting (3.30)—(3.32) into (3.28) and noting (3.4), we get

ewy(t,2)] < (C +)e{ et to>(z|e |+Z G'fj'a)

G| MG 02
—Zassia 02+7+M1(201+0241r7+c“’+7)€}

02
< (Ca+ )T + MiCre + Mi(C +7) (201 + SO 7)e?

Cy +
Co+v.\  MC Co + 7 C?
= My 2 . .
025{ oo Tata My (01+CQ+7+02+7>6} (3.33)

Noting (3.4) and 0 < g < 1, we can take Cy > MC1, such that

Ca+v M, Cy Co + v C?
T+ M (20 n TG A )s<1, 3.34
s s 1 s 1 Co+ 2T ( )
and then
lws(t,7)] < Coce™ ', Vs=m+1,---,n, (t,x) € D(T +Tp). (3.35)
For r = 1,--- ,m, similar estimates hold. Hence, we get (3.12) and complete the proof of
Theorem 1.1.

Remark 3.1 When G, = 0, for the term 775 in (3.19), the estimate (3.21) for 775 should
be replaced by

t
T < (Cr+7)ee™ (D0 [ 1Gylemar)

#s ot
1— efa(tfto)
— a(t—to) .
= (O 7)) 3G ()
J#s
< (Cr+7)ee0) Y TGt —to), (3.36)
j#s

while the estimates (3.20) and (3.22) for 73; and 7i3 still hold. Noting (1.31), the sth term at
the right-hand side of (3.3) should be replaced by

e Z(|98j| + |Gs;|T3). (3.37)
J#s
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Similar treatments can be done for 751,723 and 7Z32. Hence, Theorem 1.1 still holds, provided
that (1.31)-(1.32) hold.

Remark 3.2 If there exist A = diag{A11, -+, Apn} and A = diag{A1,--- ,App} € 2™,
such that

GA - aqat, (3.38)
oM L poA! (3.39)
satisfy (1.26), and
G2 L AGATY, (3.40)
02 A A (3.41)

satisfy (1.27), we can replace the variables v and w in the proof of Theorem 1.1 by

7= Av, (3.42)
@ = Aw, (3.43)

respectively, and get the conclusion of Theorem 1.1.

Remark 3.3 Suppose that the boundary conditions are given by

x=0: vy =Hs(t,v1, - ,0m), s=m+1,---,n, (3.44)
z=1: v, =H.(t,vms1, - ,vn), r=1-- m, (3.45)
where H, and Hs (r =1,--- ,m, s=m+1,---,n) are C? functions of (¢,vy41, - ,v,)" and
(t,v1,- ,vm)"T, respectively, and
Hi(t,0)=0, Vt>0,Vie A, (3.46)
Let
o(t) = (055(t))
0 8(H1,~~~,Hm)
e Ot vmy1,0n) )=
d:f. r (t,vm41,0,v0)=(¢,0,++,0) ) (347)
O(Hmq1, -, Hn) 0
Otvn0m) (g, ) =(2,0,--,0)

Then, boundary conditions (1.16)—(1.17) can be rewritten as

r=0: vy = ngj(t)’l}j + Z ijk(tﬂu)vjvkv s=m+ ]_7 ceen,
= P (3.48)

r=10: v, = Z ?r](t)v]—i— Z erk(tvu)vjvkv r=1,---,m,
Jj=m+1 j.k=m+1
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where X, € C° (i,j,k € .4). Similarly, we have

m

r=0: ws= Z@A tw, + Z Esj(t,u)vj + Z ESjk(t,u)vjvk

r= JjeEN jkeN
G wvjw, s=m+1,--- n,

(3.49)

JjeEN jkeN

]ktuv]wk, r=1,---,m,

Z
j.ke
n
r=1: E wg—l—g G (t, u)v, + E qbgjktu)vjvk
Z
jike

where E-jk(t,u),@ij(t, u), ¢ zjk(t u) and ¢ ”k( u) (i, j,k € A") are bounded continuous func-

tions.

Comparing (3.48)—(3.49) with (2.21) and (2.27), through the procedure of the proof of

Theorem 1.1, we can get the following theorem.

Theorem 3.1 Under hypotheses (1.2), (1.10) and (3.46), if (1.26)—(1.27) hold, then there
exists g > 0 so small that for any given € € [0,e9], and any given initial data uo(x) satisfying
(1.25) and H;(t,v) (i = 1,---,n) satisfying |0:;(t) — 0;;(0)] < e (i,5 = 1,---,n, t > 0), the

conclusion of Theorem 1.1 is still valid.

4 Application

In this section, we give a kind of models to illustrate the application of Theorem 1.1. We

consider the following mixed initial-boundary value problem for a system composed of two

equations:
0z 0Z
— —\Z, = —kZ — 4.1
 NZW) o = —Z — AW, (4.1)
ow ow
— Z, = —KZ — 4.2
N ZW) S = k7 RV, (4.2)
t=0: (Z,W)T = (Zo(z), Wo(z))T, =z€]0,1], (4.3)
r=0: W=pZ, (4.4)
r=1: Z=aW, (4.5)
where \(Z, W) is a C? function of (Z, W), satisfying
A(0,0) >0, (4.6)

k > 0, and «, § are constants. By Theorem 1.1, we have the following theorem.

Theorem 4.1 Suppose that (4.6) holds. If o] < 1 and |5] < 1, then there exists 6y > 0 so
small that for any given 6 € [0, 6] and any given initial data (Zy(x), Wo(x)) satisfying

1(Zo (), Wo()llerpo,) < 0, (4.7)
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the mized initial-boundary value problem (4.1)—(4.5) admits a unique global C solution (Z, W)
= (Z(t,z),W(t,x)) on the domain {(t,z) |t > 0,0 < x < 1}, and there exists o > 0, such that

we have the following uniform a priori estimate:
1(Z(t,), W(t, ) ey < Che™, Wt >0, (4.8)

where C is a positive constant independent of 0 and t.

Remark 4.1 Some physical models can be written in the form of (4.1)-(4.2), for instance,

the p-system with damping

ou Ov
i 0, (4.9)
ov  Op(u)

where u and v stand for the specific volume and the velocity of the fluid. For polytropic gases,

the pressure p is given by the following thermodynamic state equation (see [7]):
p=pu) =ru" 7,

where k > 0 and vy > 1 are constants.
For any given u* > 0, (u*,0) is an equilibrium state of system (4.9)—(4.10). Using the

Riemann invariants

- e v/ EY0 u_wo;l _ v Vv EY0 (a_’_u*)_“vo;l’ (411)
2 -1 2 -1
v VEYO _xo-1 [ vVEYo sy 01
—— 2 — — 2 412
s 2+70_1u 2+70_1(u+u) , (4.12)
(4.9)-(4.10) can be rewritten as
or or 1 1
AR et A 413
ot “ox 2 27 (4.13)
s 0s 1 1
= _Zp_Z 4.14
ot ‘o~ 2 27 (4.14)
where
c=+v-pu+u*)>0
(see [7]).
Moreover, for 1D linear wave equation
Ou = —2uy, (4.15)
by the following transformation of variables:
= (0¢ + O )u, (4.16)

Z
W = (0¢ — Op)u,

—

4.17)
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we get
0z 07
ow oW
W + % =—Z-W. (4.19)

5 A Counterexample

In this section, we give an example to show that the conclusion of Theorem 1.1 may fail if
(1.26)—(1.27) do not hold.

Example 5.1

8’(1,1 811,1 -

ot or b (5.1)
8’(1,2 811,2 -

W + % = U2, (5.2)
z=0: wus=e lu, (5.3)
z=1: wu =e lug, (5.4)
t=0: u= (um(x),uog(a:))T, x € [0,1]. (5.5)

The coefficient matrix A(u) of (5.1)—(5.2) is

-1 0
aw=(5" 1), (5.6)
whose eigenvalues are
AM=—1, d=1 (5.7)
Then
T =T, =1 (5.8)
The inhomogeneous term F'(u) is
_(m
P = (1), (5.9
and then
1 0
G = <0 1> . (5.10)
Moreover, the coefficient matrix © of boundary conditions (5.3)—(5.4) is
0 et
0= (e_l 0 > . (5.11)
Thus,
Gijl\ Gt |Gij
Oy + 1 )Gt = 3T 1. 5.12
ie11,2) { 20,1 ; <| il G /)° ; Gii (5:12)

It is easy to see that the hypothesis (1.26) in Theorem 1.1 does not hold.
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Let the C1[0,1] initial data ug;(x) (i = 1,2) satisfy

1
UOi(g) =¢, (5.13)
lJuoi()llerjo,n < 26, (5.14)

where € > 0 is a small parameter. By the conclusion in [9], the mixed initial-boundary value

problem (5.1)-(5.5) admits a global C'! solution. In particular, we have

3 AK +3
2=0: ul(E,O):---:ul( ; ,o)zge%, VK =0,1,2,3, -,
1 AK +1 ,
r=0: u2<§,0):-~:u2< 2+ ,0):ee—§, VK =0,1,2,3, - .

Hence, the C'! solution to the mixed initial-boundary value problem (5.1)—(5.5) does not decay

with respect to t.

6 Further Discussion on Theorem 1.1

First of all, the hypotheses (1.26)—(1.27) in Theorem 1.1 can be rewritten as

Y leyl < (1+Z€—7|)e*@it—z€—f7|, Wt € [0,Ty), Vie N (6.1)
J#i g# gE

and
Yol < (1+Z€—f7|)e*%t—z%, Vi€ [0,T), Vie . (6.2)
J#i g# gE

Case 1 If G;; =0 (i € A7), note that (1.29)—(1.30), (6.1)—(6.2) should be replaced by

D 10il+ > Gyt <1, Vte[0, T, Vie N, (6.3)
J#i J#i
SO+ IGylt <1, Ve[, Ty, Vie N, (6.4)
J#i J#i

respectively. Specially, if G;; =0 (i,j € A7), (6.3)-(6.4) can be simplified to

Q%Z@m <1, (6.5)
J#i
A
gygl%l <1, (6.6)
JF

respectively, which are the boundary dissipative condition for the quasilinear hyperbolic system
without internal dissipative terms (see [6-7]).
Case 2 If Gj; > 0, then

J# J#i
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In this case, (6.1)-(6.2) indicate that if the inhomogeneous term F'(u) has a growth effect for
v, a stronger boundary dissipative condition is needed to guarantee the exponential decay.
Case 3 If Gj; <0, then

(1+§

In this case, (6.1)—(6.2) indicate that if the inhomogeneous term F(u) has a reduced effect

Gii|\ —cur |Gijl
s )e —%; a1l (6.8)

for v;, by a combination effect of the weaker boundary dissipative condition and the internal

dissipative condition, the O solution still decays exponentially.
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