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Abstract Since the spherical Gaussian radial function is strictly positive definite, the
authors use the linear combinations of translations of the Gaussian kernel to interpolate
the scattered data on spheres in this article. Seeing that target functions are usually outside
the native spaces, and that one has to solve a large scaled system of linear equations to
obtain combinatorial coefficients of interpolant functions, the authors first probe into some
problems about interpolation with Gaussian radial functions. Then they construct quasi-
interpolation operators by Gaussian radial function, and get the degrees of approximation.
Moreover, they show the error relations between quasi-interpolation and interpolation when
they have the same basis functions. Finally, the authors discuss the construction and
approximation of the quasi-interpolant with a local support function.
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1 Introduction

Let S2 be the unit sphere in a Euclidean space R3 defined by

S
2 :=

{
x := (x(1), x(2), x(3)) ∈ R

3 : ‖x‖2 :=
√

(x(1))2 + (x(2))2 + (x(3))2 = 1
}
.

For a target function f defined on the sphere, a set of scattered points xi, i = 1, 2, · · · , n, lying
on S2, and associated values fi, i = 1, 2, · · · , n, we try to find a smooth function s defined on S2

by means of the data (xi, fi), such that s can approximate the target function f . This problem
is called scattered data fitting on the sphere, and arises in many areas, including geophysics
and meteorology, where the sphere S2 is usually taken as a model of the Earth. To solve the
problem, several methods have been proposed (see [7]). In these methods, one of the important
methods is the interpolation based on linear combinations of spherical radial basis functions.
Up to now, there have been a lot of results on the topic. We refer the readers to [4–5, 9, 12–16,
21–23, 25–28].
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In the Euclidean space Rn, the Gaussian radial basis function defined by

g(x) = e−ρ‖x‖2
2 , ρ > 0, x ∈ R

n,

is usually used to be a tool for constructing approximants to approximate the functions defined
on the subset of Rn. Particularly, in the approximation and fitting of scattered data, the
Gaussian radial basis function has taken an important role (see [1–3, 18, 20, 26, 28]). On the
sphere S2, the corresponding spherical Gaussian radial basis function (or called the zonal basis
function) is defined by

gy(x) = e−2ρ(1−xy), x, y ∈ S
2, (1.1)

where xy denotes the Euclidean inner product of x, y. Usually, e−2ρ(1−t) (t ∈ [−1, 1]) is called
spherical Gaussian kernel (see [5, 14]).

In general, if there exists a reproducing kernel Hilbert space resulted from a kernel, then
the space is called a native space. When a target function f is in the native space, the error
analysis has been completed. Yet, when f is outside the native space, this time there arises
the so called “native space barrier” problem. It is an interesting and important topic, and has
been discussed in much literature (see [4, 12–16, 22–23]). For example, in the recent articles
(see [12–13, 27]), Le Gia, Sloan, and Wendland constructed approximants of functions outside
the native space by means of a kernel.

In this article, we intend to discuss this problem. Our main aim is to study the constructive
approximation for scattered data by means of a spherical Gaussian kernel.

The article is organized as follows. In the next section, we will state some preliminary results
containing spherical harmonics and the native space. In Section 3, we probe into some problems
about the interpolation and approximation by linear combinations of Gaussian radial functions.
In Section 4, we will construct quasi-interpolation operators by Gaussian radial functions, and
will get the degrees of approximation for continuous functions defined on S

2. In Section 5, we will
construct an interpolant to continuous functions, and will obtain the error estimates. Finally,
we will briefly discuss the construction and approximation of quasi-interpolation operators with
local compact support.

2 Preliminaries

For a function φ : [−1, 1] → R, we set

K(x, y) := φ(xy), x, y ∈ S
2.

A function K(x, y) defined on S2 × S2 is called a positive definite kernel, if for any finite subset
X of S2, and arbitrary real numbers Cξ, ξ ∈ X , there holds∑

ξ∈X

∑
ζ∈X

CξCζK(ξ, ζ) ≥ 0. (2.1)

If (2.1) is positive whenever the Cξ are not all zero, then K(x, y) is called strictly positive
definite, and we also say φ is strictly positive definite.
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Positive definite functions on spheres were first introduced and characterized by Schoenberg
in [24], where it was showed that the necessary and sufficient condition of a continuous function
φ being positive definite on S2 is that φ is expressible in the form

φ(t) =
∞∑

k=0

akPk(t), ak ≥ 0,
∞∑

k=0

ak < ∞, (2.2)

where Pk is Legendre polynomial with Pk(1) = 1, and in fact, ak is the Fourier-Legendre
coefficient of φ. If ak > 0 for all k, then φ is strictly positive definite (see [6, 29]). Strictly
positive definite functions are both theoretically interesting and practically important, because
they are used to reconstruct an unknown function from scattered data by the interpolation of
the form

∑
xj∈X

αjφ(xxj).

Below, we introduce the native space Nφ associated with φ. Let L2(S2) be the real Hilbert
space equipped with the inner product

〈f, g〉 :=
∫

S2
f(x)g(x)dω(x), (2.3)

where ω denotes the Lebesgue surface measure on S2. We will use Yl,m, m = 1, 2, · · · , 2l + 1
to denote the usual orthonormal basis of spherical harmonics (see [8, 19, 25]). The class of all
spherical harmonics of degree at most n will be denoted by Πn. If f ∈ L2(S2), then we may
expand it in a series of spherical harmonics,

f =
∞∑

l=0

2l+1∑
m=1

f̂l,mYl,m, where f̂l,m = 〈f, Yl,m〉.

Now we set φρ(t) := e−2ρ(1−t). Narcowich et al. [21] obtained for l ≥ 0,

2ρle−2ρπ
3
2

Γ
(
l +

3
2

) ≤ φ̂ρ(l) ≤ 2ρlπ
3
2

Γ
(
l +

3
2

) . (2.4)

Then, the native space Nφρ is defined as

Nφρ :=
{
f(x) =

∞∑
k=0

2k+1∑
j=1

f̂k,jYk,j(x) :
∞∑

k=0

(φ̂ρ(k))−1
2k+1∑
j=1

f̂2
k,j < ∞

}
.

The native space Nφρ is a Hilbert space with the inner product:

〈f, g〉Nφρ
:=

∞∑
k=0

(φ̂ρ(k))−1
2k+1∑
j=1

f̂k,j ĝk,j .

Moreover, the space is a reproducing kernel Hilbert space, and the reproducing kernel is φρ(xy)
(see [15, 21, 26]). From [21], we know that the native space Nφρ is contained in a Sobolev space
Hs(S2) for all s, which shows that the functions in Nφρ have sufficient smoothness. However,
the target functions usually have less smoothness. So it is important and necessary to discuss
further the “native space barrier” problem.
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We denote the spherical cap with the center x and the radius r by C(x, r). Given a finite
set X ⊂ S2, we define its mesh norm (or fill distance) hX and the separation radius qX to be

hX := max
x∈S2

min
j

d(x, xj), qX :=
1
2

min
j �=k

d(xj , xk),

respectively, where d(x, y) is the geodesic distance between the points x and y in S2. The mesh
ratio defined by hX

qX
measures the uniformity of the distribution of X . Obviously, hX

qX
≥ 1. We

say that the point set X is quasi-uniformly distributed, or simply X is quasi-uniform if there
exists a constant cq > 0 independent of X such that

qX ≤ hX ≤ cqqX . (2.5)

3 Some Discussions on Approximation by Gaussian Kernel

In this article, we consider that the target function f is in C(S2), the continuous function
space with uniform norm ‖ · ‖. Let X = {x1, x2, · · · , xN} ⊂ S2, and f ∈ C(S2). Then we can
choose suitable ck ∈ R, k = 1, 2, · · · , N , such that the function defined by

IXf(x) =
N∑

k=1

ckφρ(xxk) (3.1)

interpolates f on X . Since IXf(x) ∈ Nφ, we use spherical harmonics as an intermediary to
estimate the error f(x)− IXf(x). To show it, we will use a present and classic technique in the
following.

It follows from Theorem 3.1 of [23] (taking β = 3) that there exists a spherical harmonic pL

with the following properties:
(a) pL ∈ ΠL, where L = �2Mq−1

X � (L = �a� denotes the smallest integer ≥ a), and M is a
constant independent of f , L, and X ;

(b) pL(xi) = f(xi), xi ∈ X, i = 1, 2, · · · , N ;
(c) ‖f − pL‖ ≤ 4dist(f, ΠL).

Then

|f(x) − IXf(x)| ≤ |f − pL(x)| + |pL(x) − IXpL(x)| + |IXpL(x) − IXf(x)|. (3.2)

From (b) and (c), the inequality (3.2) becomes

|f(x) − IXf(x)| ≤ 4dist(f, ΠL) + |pL(x) − IXpL(x)|. (3.3)

From Theorem 17 of [27], it follows that

|pL(x) − IXpL(x)|2 ≤ 9
4π

∞∑
l=L+1

φ̂ρ(l)(2l + 1)‖pL‖2
Nφρ

.

We first estimate
∞∑

l=L+1

φ̂ρ(l)(2l + 1). From (2.4), we have

∞∑
l=L+1

φ̂ρ(l)(2l + 1) ≤ 2π
3
2

∞∑
l=L+1

(2l + 1)
ρl

Γ
(
l +

3
2

)
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≤ 6π
3
2

∞∑
l=L+1

l
ρl

Γ
(
l +

3
2

) .

Using the asymptotic equation (see [11, p. 400])

Γ(x + 1) =
√

2πxx+ 1
2 e−x+ 1

12(x+θ) , 0 ≤ θ ≤ 1
2
, (3.4)

we see that
∞∑

l=L+1

φ̂ρ(l)(2l + 1) ≤ 3
√

2π

∞∑
l=L+1

l
ρlel+ 1

2(
l +

1
2

)l+1

≤ 3
√

2eπ
∞∑

l=L+1

ρlel

ll

≤ 3
√

2eπ
∞∑

l=L+1

ρlel

l!

≤ 3
√

2eπeeρ (eρ)L+1

(L + 1)!
,

where we use the inequality l
1
2 < l! < ll (see [11, p. 92]). Differing from the case f ∈ Nφ, the

value of ‖pL‖2
Nφρ

can change with L, which implies that ‖pL‖2
Nφρ

may be very large. Also,

|pL(x) − IXpL(x)| = o(1), L → ∞, x ∈ S
2

may not hold. In fact, we expand

∞∑
l=L+1

φ̂ρ(l)(2l + 1)
L∑

l=0

1

φ̂ρ(l)

2l+1∑
m=1

p̂L
2
l,m,

and we find that

φ̂ρ(L)(2L + 3)
2L+1∑
m=1

p̂L
2
L,m

φ̂ρ(L)
= 2‖PL

pL
‖2

is in expansion, where PL
pL

denotes the projective of pL on HL (the class of all spherical har-
monics with degree L).

So we look forward to the more detailed analysis on the estimates of |pL(x) − IXpL(x)|.
On the other hand, we can use the form

∑
xj∈X

αjφ(xxj) to interpolate scattered data. To

obtain the coefficients α1, α2, · · · , αN , one is required to solve a large scale system of linear
equations. The most important advantage of quasi-interpolation is that we can evaluate the
approximant directly without the need to solve any linear system of equations.

However, for given ρ, we have

e−2ρ(1−x1x2) + e−2ρ(1−x1x3) + · · · + e−2ρ(1−x1xN ) ≥ (N − 1)e−4ρ,

which means that for function f(x) ≡ 1 ∈ Nφρ , and the error of quasi-interpolation at x = x1,

e−2ρ(1−xx1) + e−2ρ(1−xx2) + · · · + e−2ρ(1−xxN ) − 1
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is not arbitrarily small when N is sufficiently large. So when f ∈ Nφρ , the form of quasi-
interpolation

N∑
i=1

f(xi)e−2ρ(1−xxi)

is invalid. Moreover, the native space Nφρ is too small. Hence we intend to investigate other
forms of the quasi-interpolation approximation on the continuous function space C(S2) with
the help of the kernel e−2ρ(1−t).

4 Approximation by Quasi-interpolation Operators

For f ∈ C(S2), we construct the quasi-interpolation operators

GN,ρf(x) =
N∑

j=1

f(xj)
e−2ρ(1−xxj)

N∑
i=1

e−2ρ(1−xxi)

=
N∑

j=1

f(xj)
e2ρ(xxj)

N∑
i=1

e2ρ(xxi)

. (4.1)

Now we prove the error estimates for the quasi-interpolation operators.

Theorem 4.1 Let X = {x1, x2, · · · , xN} ⊂ S2, and f ∈ C(S2). If the mesh norm hX of X

satisfies hX < 3
4π, then there holds

‖GN,ρf − f‖ ≤ ω(f, 2hX) + 2N‖f‖e− 8
π2 ρh2

X , (4.2)

where ω(f, 2hX) denotes the modulus of continuity of f defined by (see [17, 25])

ω(f, δ) := sup
x,y∈S2

d(x,y)≤δ

|f(x) − f(y)|.

Proof Obviously,

|GN,ρf(x) − f(x)| =
∣∣∣ N∑

j=1

(f(xj) − f(x))
e2ρ(xxj)

N∑
i=1

e2ρ(xxi)

∣∣∣

≤ ω(f, 2hX) + 2‖f‖
∑

j:d(x,xj)>2hX

e2ρ(xxj)

N∑
i=1

e2ρ(xxi)

.

For any x ∈ S2, there exists j0 ∈ N and 1 ≤ j0 ≤ N , such that x ∈ C(xj0 , hX). Hence,

e2ρ(xxj)

N∑
i=1

e2ρ(xxi)

≤ e2ρ(xxj)

e2ρ(xxj0)
= e2ρ((xxj)−(xxj0)), j = 1, · · · , N. (4.3)

Since

2ρ((xxj) − (xxj0 )) = −4ρ sin
d(x, xj) + d(x, xj0 )

2
sin

d(x, xj) − d(x, xj0 )
2

(4.4)
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and
hX <

d(x, xj) + d(x, xj0 )
2

<
π + 2hX

2
< π − hX ,

we have

sin
d(x, xj) + d(x, xj0 )

2
>

2
π

hX , sin
d(x, xj) − d(x, xj0 )

2
>

hX

π
. (4.5)

Combining (4.3)–(4.5) leads to

∑
j:d(x,xj)>2hX

e2ρ(xxj)

N∑
i=1

e2ρ(xxi)

< Ne2ρ((xxj)−(xxj0)) < Ne−
8

π2 ρh2
X .

Therefore, for any x ∈ S2, one has

|GN,ρf(x) − f(x)| ≤ ω(f, 2hX) + 2N‖f‖e− 8
π2 ρh2

X ,

which shows
‖GN,ρf − f‖ ≤ ω(f, 2hX) + 2N‖f‖e− 8

π2 ρh2
X .

The proof of Theorem 4.1 is completed.

Clearly, if we take ρ = π2

8h2
X

N , then (4.2) becomes

‖GN,ρf − f‖ ≤ ω(f, 2hX) + 2‖f‖Ne−N .

5 Approximation by Interpolation Operators

From the strictly positive definiteness of e−2ρ(1−t), it follows that the matrix⎛
⎜⎜⎜⎝

1 e−2ρ(1−x1x2) · · · e−2ρ(1−x1xN )

e−2ρ(1−x2x1) 1 · · · e−2ρ(1−x2xN )

...
...

...
e−2ρ(1−xN x1) e−2ρ(1−xN x2) · · · 1

⎞
⎟⎟⎟⎠

is nonsingular. So it is not difficult to see that the matrix

Gφρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e2ρ

N∑
i=1

e2ρ(x1xi)

e2ρ(x1x2)

N∑
i=1

e2ρ(x1xi)

· · · e2ρ(x1xN )

N∑
i=1

e2ρ(x1xi)

e2ρ(x2x1)

N∑
i=1

e2ρ(x2xi)

e2ρ

N∑
i=1

e2ρ(x2xi)

· · · e2ρ(x2xN )

N∑
i=1

e2ρ(x2xi)

...
...

...
e2ρ(xN x1)

N∑
i=1

e2ρ(xN xi)

e2ρ(xN x2)

N∑
i=1

e2ρ(xN xi)

· · · e2ρ

N∑
i=1

e2ρ(xN xi)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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is also nonsingular. This shows that the operators

IN,ρf(x) =
N∑

j=1

cj
e2ρ(xxj)

N∑
i=1

e2ρ(xxi)

(5.1)

can be an interpolant for the data points (xi, fi), i = 1, 2, · · · , N .
Our target is to estimate the error f(x) − IN,ρf(x). At first, we introduce some definitions

and notations. Let

F := [f1, f2, · · · , fN ]T := [f(x1), f(x2), · · · , f(xN )]T,

C := [c1, c2, · · · , cN ]T.

Define the norms of vector F and matrix (aij)m×n as follows:

‖F‖∞ := max
j

|fj|, ‖(aij)m×n‖∞ := max
1≤i≤m

n∑
j=1

|aij |, (5.2)

respectively. Let E be an N × N identity matrix, δE be the difference of Gφρ and E, i.e.,
δE = Gφρ − E, and δF be the difference of C and F, i.e., δF = C − F. Then

EF = F, (E + δE)(F + δF ) = F.

From (5.2), we have

‖δE‖∞ = ‖Gφρ − E‖∞ = max
i

2
∑
j �=i

e2ρ(xixj)

e2ρ +
∑
j �=i

e2ρ(xixj)

= 2 max
i

∑
j �=i

e−2ρ[1−(xixj)]

1 +
∑
j �=i

e−2ρ[1−(xixj)]

≤ 2 max
i

∑
j �=i

e−4ρ sin2 d(xi,xj)
2

≤ 2 max
i

∑
j �=i

e−4ρ
(

2
π · d(xi,xj)

2

)2

≤ 2Ne−
16
π2 ρq2

X .

When ‖δE‖∞ < 1, by Theorem 5.3 of [10], we obtain

‖δF‖∞ ≤ ‖δE‖∞
1 − ‖δE‖∞ ‖F‖∞ ≤ 2Ne−

16
π2 ρq2

X

1 − 2Ne−
16
π2 ρq2

X

‖f‖.

Therefore

|IN,ρf(x) − GN,ρf(x)| =
∣∣∣ N∑

j=1

cj
e2ρ(xxj)

N∑
i=1

e2ρ(xxi)

−
N∑

j=1

fj
e2ρ(xxj)

N∑
i=1

e2ρ(xxi)

∣∣∣
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≤ max
j

|cj − fj |
N∑

j=1

e2ρ(xxj)

N∑
i=1

e2ρ(xxi)

= ‖C − F‖∞ = ‖δF‖∞

≤ 2Ne−
16
π2 ρq2

X

1 − 2Ne−
16
π2 ρq2

X

‖f‖.

From

|f(x) − IN,ρf(x)| ≤ |f(x) − GN,ρf(x)| + |GN,ρf(x) − IN,ρf(x)|,
we get

|f(x) − IN,ρf(x)| ≤ ω(f, 2hX) + 2N‖f‖e− 8
π2 ρh2

X +
2Ne−

16
π2 ρq2

X

1 − 2Ne−
16
π2 ρq2

X

‖f‖

≤ ω(f, 2hX) + 2N‖f‖
(
e−

8
π2 ρh2

X +
e−

16
π2 ρq2

X

1 − 2Ne−
16
π2 ρq2

X

)
.

Hence, we have proved the following result.

Theorem 5.1 Let X = {x1, x2, · · · , xN} ⊂ S
2, and hX and qX be the mesh norm and the

separation radius of X, respectively. If f ∈ C(S2) and hX < 3
4π, then there holds

‖f − IN,ρf‖ ≤ ω(f, 2hX) + 2N‖f‖
(
e−

8
π2 ρh2

X +
e−

16
π2 ρq2

X

1 − 2Ne−
16
π2 ρq2

X

)
.

When X is quasi-uniform, that is, (2.5) holds, we can choose ρ = π2

8h2
X

N , and the result of
Theorem 5.1 becomes

‖f − IN,ρf‖ ≤ ω(f, 2hX) + 2N‖f‖
(
e−N +

e
− 2N

c2q

1 − 2Ne
− 2N

c2q

)
.

Particularly, when X = {x1, x2, · · · , xN} satisfies cq =
√

2, 4N ≤ eN , we have

‖f − IN,ρf‖ ≤ ω(f, 2hX) + 6Ne−N‖f‖.

Remark 5.1 Using the methods in Section 4 and Section 5, we can extend the Gaussian
kernel to general cases.

6 Approximation by Quasi-interpolation Operators with Local
Compact Support

We have discussed the approximation of f ∈ C(S2) by the combinations of

Φρ,j(x) :=
e−2ρ(1−xxj)

N∑
i=1

e−2ρ(1−xxi)

, j = 1, 2, · · · , N.
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Clearly, each function Φρ,j(x) (j = 1, 2, · · · , N) is continuous on S2. Now we slightly relax the
condition of continuity, and the error estimates will be improved for compensation.

For a given mesh norm hX of a finite set X ⊂ S2, we define

Eρ,hX (t) =
{e−2ρ(1−t), coshX ≤ t ≤ 1,

0, −1 ≤ t < coshX ,

and introduce the quasi-interpolation operators

ĜN,ρf(x) =
N∑

j=1

f(xj)
Eρ,hX (xxj)

N∑
i=1

Eρ,hX (xxi)

. (6.1)

Thus

|ĜN,ρf(x) − f(x)| ≤
N∑

j=1

|f(xj) − f(x)| Eρ,hX (xxj)
N∑

i=1

Eρ,hX (xxi)

=
∑

j:d(x,xj)≤hX

|f(xj) − f(x)| Eρ,hX (xxj)∑
i:d(x,xi)≤hX

Eρ,hX (xxi)

≤ ω(f, hX).

Although the function Eρ,hX (t) is discontinuous at hX , the oscillation e−2ρ(1−cos hX ) becomes
sufficiently small with ρ being large enough.

In fact, we can give the estimate of the number of point xj which satisfies

d(x, xj) ≤ hX

as follows:

|C(x, hX)| ≤

∫ hX+qX

0

sin θdθ∫ qX

0

sin θdθ

=
1 − cos(hX + qX)

1 − cos qX

=
sin2 hX + qX

2
sin2 qX

2

≤
(hX + qX)2

4
q2
X

π2

=
π2

4

[
1 +

2hX

qX
+

(hX

qX

)2]
.

When X is quasi-uniform, then

|C(x, hX)| ≤ π2

4
(1 + 2cq + c2

q).
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Remark 6.1 Naturally, we can use the technique to construct quasi-interpolation operators
by means of the kernels with continuous compact support. We also refer the reader to [3, 5, 26,
28].
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