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A Relation in the Stable Homotopy Groups of Spheres∗
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Abstract Let p � 7 be an odd prime. Based on the Toda bracket 〈α1β
p−1
1 , α1β1, p, γs〉,

the authors show that the relation α1β
p−1
1 h2,0γs= βp/p−1γs holds. As a result, they can

obtain α1β
p
1h2,0γs = 0 ∈ π∗(S0) for 2 � s � p − 2, even though α1h2,0γs and β1α1h2,0γs

are not trivial. They also prove that βp−1
1 α1h2,0γ3 is nontrivial in π∗(S0) and conjecture

that βp−1
1 α1h2,0γs is nontrivial in π∗(S0) for 3 � s � p − 2. Moreover, it is known that

βp/p−1γ3 = 0 ∈ Ext5,∗
BP∗BP (BP∗, BP∗), but βp/p−1γ3 is nontrivial in π∗(S0) and represents

the element βp−1
1 α1h2,0γ3.
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1 Introduction

Let p be an odd prime and q = 2p− 2. It is well-known that the Adams-Novikov spectral

sequence (ANSS) based on the Brown-Peterson spectrum is one of the most powerful tools to

compute the p-component of stable homotopy groups of spheres S0, and the E2-term of the

ANSS is Exts,t
BP∗BP (BP∗, BP∗) (see [1, 7, 10–11, 15]). Moreover, we have the Adams spectral

sequence (ASS) (see [1–2]) based on the Eilenberg-MacLane spectrum KZ/p.

From [10–11], Ext1BP∗BP (BP∗, BP∗) = H1BP∗ is generated by αspn/n+1 for n � 0, p � s � 1,

where αspn/n+1 has order pn+1. Ext2BP∗BP (BP∗, BP∗) = H2BP∗ is a direct sum of cyclic groups

generated by βspn/j,i+1 for n � 0, p � s � 1, j � 1, i � 0 and is subject to

(1) j � pn if s = 1,

(2) pi|j � an−i, and

(3) an−i−1 < j if pi+1 | j,
where a0 = 1, ak = pk + pk−1 − 1 for k � 1. βspn/j,i+1 has order pi+1 (see [10, 14–15]). There

is only partial information for Ext3BP∗BP (BP∗, BP∗) = H3BP∗ which contains the p order

generators γs, s � 1.

In 1985, D. C. Ravenel [13] first introduced the method of infinite descent and later used it

to compute the first thousand stems of the stable homotopy groups of spheres at the prime 5.
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This method is devoted to computing the Adams-Novikov E2-term for a spheral spectrum S0

by the following spectral sequence referred to as the small descent spectral sequence (SDSS)

Es,t,∗
1 = Extt,∗

BP∗BP (BP∗, BP∗Y ) ⊗ E(α1) ⊗ P (β1) =⇒ Exts+t,∗
BP∗BP (BP∗, BP∗)

and dr : Es,t,∗
r −→ Es+r,t−r+1,∗

r .

The following relation about the Toda bracket is showed by Ravenel in the topological SDSS

(see [14, Proposition 7.5.11] or [15, Proposition 7.6.11]). If x is an element in stable homotopy

groups of spheres and satisfies px = 0, 〈α1β1, p, x〉 = 0 and α1x �= 0, then

α1β
p−1
1 h2,0x = 〈α1β

p−1
1 , α1β1, p, x〉 = βp/p−1x.

In this paper, we show that the condition 〈α1β1, p, x〉 = 0 holds for the element x = γs with p � 7

by using the cobar complex of BP -homology of the Smith-Toda spectrum V (2). Therefore, it

follows that the relation

βp−1
1 α1h2,0γs = 〈α1β

p−1
1 , α1β1, p, γs〉 = βp/p−1γs (1.1)

holds for p � 7. Applying this relation, we can prove that βp
1α1h2,0γs is trivial in π∗(S0) for

2 � s � p− 2, p � 7, but α1h2,0γs and β1α1h2,0γs are not trivial in π∗(S0) for 3 � s � p− 2,

p � 7.

It is also proved that βp−1
1 α1h2,0γ3 is nontrivial in π∗(S0), and we can further conjecture

that βp−1
1 α1h2,0γs is nontrivial in π∗(S0) for p � 7, 2 � s � p− 2.

Let x and y be two elements in Ext∗,∗
BP∗BP (BP∗, BP∗) and be permanent cycles. It is known

that if xy = 0, then the homotopy product could still be nontrivial and represents an element

in a higher Ext group. βp/p−1 and γ3 are two such elements. We know that βp/p−1 and γ3

are permanent cycles and βp/p−1γ3 = 0 ∈ Ext5,∗
BP∗BP (BP∗, BP∗), but βp/p−1γ3 is nontrivial in

π∗(S0) and represents the element βp−1
1 α1h2,0γ3 from the relation (1.1).

The rest of this paper is organized as follows. In Section 2, the (topological) small de-

scent spectral sequence will be introduced. In Section 3, we prove that βp−1
1 α1h2,0γ3 is non-

trivial in π∗(S0) by applying the May spectral sequence (MSS) and the small descent spec-

tral sequence (SDSS). In Section 4, we recall the cobar complex and use it to calculate the

E2-term of the Adams-Novikov spectral sequence for V (2). We show that the Toda bracket

〈α1β
p−1
1 , α1β1, p, γs〉 is well defined. As a result, α1β

p−1
1 h2,0γs= βp/p−1γs holds for p � 7 and

α1β
p
1h2,0γs = 0 ∈ π∗(S0) because β1βp/p−1 = 0 in π∗(S0).

2 The Small Descent Spectral Sequence

In this section, we recall the construction of the small descent spectral sequence. Ravenel

computed the E1-term of this spectral sequence and used it to determine the stable homotopy

groups of spheres in a certain range, see [14–16] for more details.

Let T (n) be the Ranevel spectrum (see [15]) characterized by

BP∗T (n) = BP∗[t1, t2, · · · , tn].
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Then we have the following diagram:

S0 = T (0) �� T (1) �� T (2) �� · · · �� T (n) �� · · · �� BP,

where S0 denotes the sphere spectrum localized at an odd prime p. Let T (0)p−1 and T (0)p−2

denote the q(p− 1) and q(p− 2) skeletons of T (1) respectively. They are denoted by Y and Y

for simplicity. Then

Y = S0
⋃
α1

eq
⋃
α1

· · ·
⋃
α1

e(p−2)q
⋃
α1

e(p−1)q and Y = S0
⋃
α1

eq
⋃
α1

· · ·
⋃
α1

e(p−2)q.

The BP -homologies of them are

BP∗(Y ) = BP∗[t1]/〈tp1〉 and BP∗(Y ) = BP∗[t1]/〈tp−1
1 〉.

From the definition above, we get the following cofibre sequences:

S0 i′ �� Y
j′ �� ΣqY

k′
�� S1, (2.1)

Y
i′′ �� Y

j′′ �� S(p−1)q
k′′

�� ΣY , (2.2)

and the short exact sequences of BP∗ homology

0 �� BP∗S0
i′∗ �� BP∗Y

j′∗ �� BP∗ΣqY �� 0, (2.3)

0 �� BP∗Y
i′′∗ �� BP∗Y

j′′∗ �� BP∗S(p−1)q �� 0. (2.4)

Putting (2.3) and (2.4) together, one has the following long exact sequence:

0 �� BP∗S0 �� BP∗(Y ) �� BP∗(ΣqY ) �� BP∗(ΣpqY ) �� · · · . (2.5)

Putting (2.1) and (2.2) together, one has the following Adams diagram of cofibres:

S0

��

Σq−1Y��

��

Spq−2��

��

Σ(p+1)q−3Y��

��

· · ·��

Y Σq−1Y Σpq−2Y Σ(p+1)q−3Y

(2.6)

Thus one has the following proposition.

Proposition 2.1 (see [14, Proposition 7.4.2] and [15, Theorems 7.1.13 and 7.1.16]) Let Y

be as above.

(a) There is a spectral sequence converging to Exts+t,∗
BP∗BP (BP∗, BP∗) with the E1-term

Es,t,∗
1 = Extt,∗BP∗BP (BP∗, BP∗Y ) ⊗ E(α1) ⊗ P (β1), α1 ∈ E1,0,q

1 , β1 ∈ E2,0,pq
1

and dr : Es,t,∗
r −→ Es+r,t−r+1,∗

r , where E(−) denotes the exterior algebra and P (−) denotes

the polynomial algebra on the indicated generators.
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This spectral sequence is referred to as the small descent spectral sequence (SDSS).

(b) There is a spectral sequence converging to π∗(S0) with the E1-term

Es,t
1 = π∗(Y ) ⊗ E(α1) ⊗ P (β1), α1 ∈ E1,q

1 , β1 ∈ E2,pq
1

and dr : Es,t
r −→ Es+r,t−r+1

r .

This spectral sequence is referred to as the topological small descent spectral sequence

(TSDSS).

The above two spectral sequences produce the Ext0,∗
BP∗BP (BP∗, BP∗) and Ext1,∗

BP∗BP (BP∗,

BP∗) or the corresponding elements in π∗(S0) by Ext0,∗
BP∗BP (BP∗, BP∗Y ) and Ext1,∗

BP∗BP (BP∗,

BP∗Y ). Exts,∗
BP∗BP (BP∗, BP∗(S0)) (s � 2) or the corresponding elements in π∗(S0) are pro-

duced by Exts,∗
BP∗BP (BP∗, BP∗Y ) (s � 2) as described in the following ABC Theorem.

Note that in the range t − s < q(p3 + p − 1) − 3, there is no element with filtration > 2p,

and the Adams-Novikov spectral sequence for the spectrum Y collapses from the E2-term. So

the E2-term is actually πt−s(Y ) for this range.

ABC Theorem (see [14–15]) For p > 2 and t− s < q(p3 + p− 1) − 3, s � 2,

Exts,t
BP∗BP (BP∗, BP∗Y ) = A⊕B ⊕ C,

where A is the Z/p-vector space spanned by

A = {βip, βip+1 | i � p− 1} ∪ {βp2/p2−j | 0 � j � p− 1},
B = R ⊗ {γk | k � 2},

where R = P (bp20) ⊗ E(h20) ⊗ Z/p{{bi11 | 0 � i � p− 1} ∪ {h11b
i
20 | 0 � i � p− 2}}, and

Cs,t =
⊕
i�0

Rs+2i,t+i(p2−1)q.

From the generators of R, we can obtain precise generators of C as follows.

Let i = jp+m. Then Rs+2i,t+i(p2−1) ⊂ Cs,t, so we have

(1) b(j+1)p
2,0 ∈ R2(p−m)+2(jp+m);t+(jp+m)(p2−1)q ⊂ C2(p−m);t is represented by

bp−m−1
2,0 ujp+m

for p− 1 � m � 1, from which we have

bp−m−1
2,0 ujp+m ⊗ E(h2,0) ⊗ {bi11 | 0 � i � p− 1} ∪ {h11b

i
20 | 0 � i � p− 2},

where uk = vk
2

(
v3
pv1

− v1+p
2

ckpv1+p
1

)
, ck =

(
1+p+k

p

)
and ujp+m ∈ C2,q[(j+1)p2+(j+m+1)p+m].

(2) bk1,1b
jp
2,0 ∈ R2(k−m)+2(jp+m);t+(jp+m)(p2−1)q ⊂ C2(k−m);t is represented by

bk−m−1
1,1 β(j+1)p/p−m
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for p− 1 � k � m+ 1 � 1, from which we have

bk−m−1
1,1 β(j+1)p/p−m ⊗ E(h2,0),

where β(j+1)p/p−m ∈ C2,q[(j+1)p2+jp+m].

Especially h2,0b
p−1
1,1 b

jp
2,0 ∈ R3+2(jp+p−2);t+(jp+p−2)(p2−1)q ⊂ C3;t is represented by

h1,1β(j+1)p/1;2,

which is an element of order p2.

(3) h1,1b
k
2,0b

jp
2,0 ∈ R2(k−m)+1+2(jp+m);t+(jp+m)(p2−1)q ⊂ C2(k−m)+1;t is represented by

bk−m−1
2,0 ηjp+m+1

for p− 2 � k � m+ 1 � 1, where ηjp+m+1 = h1,1ujp+m ∈ C3,q[(j+1)p2+(j+m+2)p+m].

(4) h2,0h1,1b
k
2,0b

jp
2,0 ∈ R2(k−m+1)+2(jp+m);t+(jp+m)(p2−1)q ⊂ C2(k−m+1);t is represented by

bk−m
2,0 βjp+m+2

for p− 2 � k � m � 0, where βjp+m+2 ∈ C2,q[jp2+(j+m+2)p+m+1].

Especially h2,0h1,1b
p−2
2,0 b

jp
2,0 ∈ R2+2(jp+p−2);t+(jp+p−2)(p2−1)q ⊂ C2;t is represented by

β(j+1)p/1;2,

which is an element of order p2.

3 The Non-triviality of βp−1
1 α1h2,0γ3 in π∗(S0)

It is known that α1h2,0γs and β1α1h2,0γs are not trivial in π∗(S0) for 3 � s � p− 2, p � 7.

Further, we conjecture that so is βp−1
1 α1h2,0γs. The proof includes complicated calculation.

Here we only prove that this conjecture is right for s = 3.

Let φ : BP → KZ/p be the Thom map which induces the Thom reduction map between

the Adams-Novikov Spectral Sequence and the Adams Spectral Sequence

Φ : Ext∗BP∗BP (BP∗, BP∗) −→ Ext∗A∗(Z/p,Z/p).

Then it is known that

Φ(βp−1
1 α1h2,0γ3) = bp−1

0 g0γ̃3 ∈ Ext2p+3,q(4p2+2p+3)
A∗ (Z/p,Z/p),

where γ̃3 ∈ Ext3,q(3p2+2p+1)
A∗ (Z/p,Z/p) is constructed by X. Wang and Q. Zheng in [18].

Next we prove that bp−1
0 g0γ̃3 is not trivial in Ext2p+3,q(4p2+2p+3)

A∗ (Z/p,Z/p) by the May

spectral sequence.
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Let A∗ denote the dual mod p Steenrod algebra which is isomorphic to

A∗ = P [ξ1, ξ2, · · · ] ⊗ E[τ0, τ1, τ2, · · · ],
where the inner degree of ξi is q(1+p+ · · ·+pi−1) and that of τi is q(1+ · · ·+pi−1)+1. Set the

May filtration on A∗ by M(ξpj

i ) = M(τi−1) = 2i− 1. Applying the May filtration to the cobar

construction Cs,t(Z/p), we get an increasingly filtered module F s,t,M = FM (Cs,t(Z/p)), and

then there is the May spectral sequence (MSS) {Es,t,M
r , dr} which converges to Exts,t

A∗(Z/p, Z/p)

with the E1-term

E∗,∗,∗
1 = E(hi,j | i > 0, j ≥ 0) ⊗ P (bi,j | i > 0, j ≥ 0) ⊗ P (ai | i ≥ 0),

where

hi,j ∈ E
1,2(pi−1)pj ,2i−1
1 , bi,j ∈ E

2,2(pi−1)pj+1,p(2i−1)
1 , ai ∈ E1,2pi−1,2i+1

1 ;

hi,j , ai and bi,j correspond respectively to ξpj

i , τi and
∑

0<k<p

(
p
k

)
/p ξkpj

i ⊗ ξ
(p−k)pj

i (see [14,

Theorem 3.2.5] and [8–9]).

One has

dr : Es,t,u
r → Es+1,t,u−r

r . (3.1)

If x ∈ Es,t,∗
r and y ∈ Es′,t′,∗

r , then

dr(x · y) = dr(x) · y + (−1)sx · dr(y).

The known May differentials d are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1(hi,j) =
∑

0<k<i

hi−k,k+jhk,j ,

d1(ai) =
∑

0≤k<i

hi−k,kak,

d1(bi,j) = 0,
dr(b1,j) = 0 for all r,
dr(b2,0) = 0 for r < 2p− 1,
d2p−1(b2,0) = h1,2b1,0 − h1,1b1,1.

(3.2)

From the Thom map, we know that bp−1
0 g0γ̃3 is represented by bp−1

1,0 h2,0h1,0h3,0h2,1h1,2

up to a nonzero coefficient in the E1-term of MSS. In order to prove that bp−1
0 g0γ̃3 �= 0

∈ Ext2p+3,q(4p2+2p+3)
A∗ (Z/p,Z/p), it is necessary to guarantee that there is no element x ∈

E
2p+2,q(4p2+2p+3),∗
r in the MSS such that dr(x) = bp−1

1,0 h2,0h1,0h3,0h2,1h1,2. That is to say,

we need to compute E2p+2,q(4p2+2p+3),∗
r . Since h2,0h1,0h3,0h2,1h1,2 converges non-trivially to

Ext5,∗
A∗ (Z/p,Z/p), it is easy to show that bp−1

1,0 h2,0h1,0h3,0h2,1h1,2 should not be killed by some

first May differential from (3.2).

Lemma 3.1 In the May spectral sequence, E2p+2,q(4p2+2p+3),∗
2 is generated by the following

elements:

G1 = h1,1l1b
p−3
1,0 b

2
2,0 = h3,0h2,0h1,0h1,1b

p−3
1,0 b

2
2,0,

G2 = h1,0k0γ3b
p−2
1,0 = h3,0h2,1h1,2h1,0h2,0h1,1b

p−2
1,0 ,
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and E2p+3,q(4p2+2p+3),∗
2 is generated by the following elements:

G′
1 = g0γ3b

p−1
1,0 ∈ E

2p+3,q(4p2+2p+3),p2−p+13
2 ,

G′
2 = h1,0m1b

p−2
1,0 b1,1 ∈ E

2p+3,q(4p2+2p+3),p2−p+13
2 ,

G′
3 = l1b

p−2
1,0 b

2
2,0 ∈ E

2p+3,q(4p2+2p+3),p2+4p+9
2 .

Proof In our range, we only need to consider

H∗(E(hi,j : i+ j � 3)) ⊗ P (b1,0, b1,1, b2,0) ⊗ P (a0, a1, a2, a3).

Note that the degree of ai is of the form t = q(pi−1 + · · · + p+ 1) + 1. If there is a factor ai in

the generator g ∈E2p+2,q(4p2+2p+3),∗
2 , then g should contain q a’s, where a ∈ {a0, a1, a2, a3}. It

is easy to verify that the generators in E2p+2,q(4p2+2p+3),∗
2 do not contain a.

Therefore

E
2p+2,q(4p2+2p+3),∗
2 ⊂ H∗(E(hi,j : i+ j � 3)) ⊗ P (b1,0, b1,1, b2,0),

and the generators of E2p+2,q(4p2+2p+3),∗
2 are of the form

g = xbk0
1,0b

k1
1,1b

k2
2,0, x ∈ H∗(E(hi,j : i+ j � 3)),

where 0 � k0 � 2p+ 2, 0 � k1 � 4 and 0 � k2 � 3.

The cohomology of E(hi,j : i+ j � 3) was already computed by Toda in [17]. We list these

elements in the Table 1 below.

Table 1 H∗(E(hi,j : i+ j � 3))
Generators (s, t/q)
1 (0, 0)
h1,0 (1, 1)
h1,1 (1, p)
h1,2 (1, p2)
g0 (2, p+ 2)
k0 (2, 2p+ 1)
h1,0h1,2 (2, p2 + 1)
g1 (2, p2 + 2p)
k1 = h1,2h2,1 (2, 2p2 + p)
h1,0k0 (3, 2p+ 2)
l1 = h1,0h2,0h3,0 (3, p2 + 2p+ 3)
l2 = h1,1h2,0h2,1 (3, p2 + 3p+ 1)
l3 = h1,0h1,2h3,0 (3, 2p2 + p+ 2)
h1,1k1 (3, 2p2 + 2p)
γ3 = h1,2h2,1h3,0 (3, 3p2 + 2p+ 1)
h1,1l1 (4, p2 + 3p+ 3)
h1,2l1 (4, 2p2 + 2p+ 3)
m1 = h1,1h2,0h2,1h3,0 (4, 2p2 + 4p+ 2)
h1,0γ3 (4, 3p2 + 2p+ 2)
h1,1γ3 (4, 3p2 + 3p+ 1)
h1,0m1 (5, 2p2 + 4p+ 3)
g0γ3 (5, 3p2 + 3p+ 3)
k0γ3 (5, 3p2 + 4p+ 2)
h1,0k0γ3 (6, 3p2 + 4p+ 3)
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On the one hand, consider the inner degree of bi,j . Since t/q is the multiple of the prime p,

the inner degree of x is of the form q(np+ 3) because

degree(x) + degree(bk0
1,0b

k1
1,1b

k2
2,0) = q(4p2 + 2p+ 3).

On the other hand, since bi,j and xbk0
1,0b

k1
1,1b

k2
2,0 have an even dimension, so is x.

Above all, the inspection of Table 1 shows that x must be

h1,1l1, h1,2l1 and h1,0k0γ3.

Noting that g = xbk0
1,0b

k1
1,1b

k2
2,0 has the dimension 2p+ 2 and degree q(4p2 + 2p+ 3), it is easy

to get that

E
2p+2,q(4p2+2p+3),∗
2 = Z/p{h1,1l1b

p−3
1,0 b

2
2,0, h1,0k0γ3b

p−2
1,0 }.

In the same way, we can determine the generators of E2p+3,q(4p2+2p+3),∗
2 .

There are the following higher May differentials in the MSS.

Lemma 3.2 In the May spectral sequence,

(i) d4p−3(h1,1l1b
p−3
1,0 b

2
2,0) = 2h1,0m1b1,1b

p−2
1,0 + 2g0γ3b

p−1
1,0 ,

(ii) d2p−1(h1,0m1b
p−3
1,0 b2,0) = h1,0k0γ3b

p−2
1,0 .

Proof We only prove (i), and another statement can be verified easily in the similar way.

To calculate these higher May differentials, we are required to work back in the cobar

complex Cs,t(Z/p) whose tensor product is not commutative, and hence permuting the tensor

product will give rise to higher May differentials.

Since h1,1l1 is a permanent cycle in the May spectral sequence, it can be represented by

some element in the cobar complex C4,q(p2+3p+3)(Z/p), and we let h̃1,1l1 denote this element.

From the formula

d2p−1 (̃b2,0) = −[̃b1,1|ξp
1 ] + [ξp2

1 |̃b1,0],

we obtain that in the filtered cobar complex C∗(Z/p),

d[h̃1,1l1 |̃bp−3
1,0 |̃b22,0] = [h̃1,1l1 |̃bp−3

1,0 |ξp2

1 |̃b1,0|̃b2,0]A1 + [h̃1,1l1 |̃bp−3
1,0 |̃b1,1|ξp

1 |̃b2,0]A2

+ [h̃1,1l1 |̃bp−3
1,0 |̃b2,0|ξp2

1 |̃b1,0]B1 + [h̃1,1l1 |̃bp−3
1,0 |̃b2,0 |̃b1,1|ξp

1 ]B2 .

Applying the formula

d([̃b2,0 · Δξpj

1 ]) = [̃b2,0|ξpj

1 ] − [ξpj

1 |̃b2,0] + d(̃b2,0) · Δ2ξpj

1 ,

we achieve permutation between b̃2,0 and ξpj

1 in the cobar complex. Moreover, we can also

achieve permutation among b̃2,0, b̃1,i and ξpj

1 (see [6] for more details).

In conclusion, permutation among b̃2,0, b̃1,i and ξpj

1 can be achieved in the sense mod

F ∗,∗,p2−p+12, and thus, there is a chain u1 ∈ C2p+2(Z/p) such that mod F ∗,∗,p2−p+12,

d[h̃1,1l1 |̃bp−3
1,0 |̃b22,0 + u1] = 2[h̃1,1l1|ξp2

1 |̃bp−2
1,0 |̃b2,0]A + 2[h̃1,1l1|ξp

1 |̃b1,1 |̃bp−3
1,0 |̃b2,0]B. (3.3)
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Applying the following relations in the E1-term of MSS by formula (3.2)

h3,0h2,0h1,0h1,1h1,1 = 0,

d1(h3,0h2,0h1,0h2,1) = h3,0h2,0h1,0h1,1h1,2,

one has a chain u2 = [l̃1|ξ2p
1 ] ∈ C4,p2+4p+3,11 such that

d[u2 |̃b1,1 |̃bp−3
1,0 |̃b2,0] ≡ −2[h̃1,1l1|ξp

1 |̃b1,1 |̃bp−3
1,0 |̃b2,0]B mod F ∗,∗,p2−p+12, (3.4)

and mod F ∗,∗,p2−p+12,

d[2l̃1|ξp
2 |̃bp−2

1,0 |̃b2,0] ≡ −2[h̃1,1l1|ξp2

1 |̃bp−2
1,0 |̃b2,0]A + 2[h̃1,0m1 |̃b1,1 |̃bp−2

1,0 ]C + 2[g̃0γ3 |̃bp−1
1,0 ]D. (3.5)

Above all, there is a chain u ∈ C2p+2(Z/p) such that

d([h̃1,1l1 |̃bp−3
1,0 |̃b22,0] + u])

= 2[h̃1,0m1 |̃b1,1 |̃bp−2
1,0 ]C + 2[g̃0γ3 |̃bp−1

1,0 ]D mod F ∗,∗,p2−11p+11. (3.6)

Notice that [h̃1,0m1 |̃b1,1 |̃bp−2
1,0 ] and [g̃0γ3 |̃bp−1

1,0 ] are sent to h1,0m1b1,1b
p−2
1,0 and g0γ3b

p−1
1,0 in the

E2-term of the May spectral sequence respectively. From Lemma 3.1, we know that

E
2p+3,q(4p2+2p+3),M
2 = 0 for M � p2 − p+ 12.

Therefore, the following higher May differential follows:

d4p−3(h1,1l1b
p−3
1,0 b

2
2,0) = 2h1,0m1b1,1b

p−2
1,0 + 2g0γ3b

p−1
1,0 .

Theorem 3.1 In the Adams spectral sequence, for p � 7,

bp−1
0 g0γ̃3 �= 0 ∈ Ext2p+3,q(4p2+2p+3)

A (Z/p,Z/p).

Therefore, in the Adams-Novikov spectral sequence, for p � 7,

βp−1
1 α1h2,0γ3 �= 0 ∈ Ext2p+3,q(4p2+2p+3)

BP∗BP (BP∗, BP∗).

Proof According to Lemma 3.1, g0γ3b
p−1
1,0 ∈ E

2p+3,q(4p2+2p+2),∗
2 can only be killed by

G1 = h1,1l1b
p−3
1,0 b

2
2,0 and G2 = h1,0k0γ3b

p−2
1,0 . However, from Lemma 3.2, G1 and G2 do not kill

g0γ3b
p−1
1,0 , so g0γ3b

p−1
1,0 converges nontrivially to bp−1

0 g0γ̃3 ∈ Ext2p+3,q(4p2+2p+3)
A (Z/p,Z/p).

By the Thom reduction map

Φ(βp−1
1 α1h2,0γ3) = bp−1

0 g0γ̃3 ∈ Ext2p+3,q(4p2+2p+3)
A (Z/p,Z/p),

it is obtained that

βp−1
1 α1h2,0γ3 �= 0 ∈ Ext2p+3,q(4p2+2p+3)

BP∗BP (BP∗, BP∗).
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Theorem 3.2 In the Adams-Novikov spectral sequence,

βp−1
1 α1h2,0γ3 ∈ Ext2p+3,q(4p2+2p+3)

BP∗BP (BP∗, BP∗)

converges nontrivially to πq(4p2+2p+2)−5(S0).

Proof From Theorem 3.1, it is known that

βp−1
1 α1h2,0γ3 �= 0 ∈ Ext2p+3,q(4p2+2p+3)

BP∗BP (BP∗, BP∗).

Meanwhile, βp−1
1 and α1h2,0γ3 converge nontrivially to π∗(S0). Therefore, we need to prove

that βp−1
1 α1h2,0γ3 is not killed by any Adams differential. Using the sparseness of the ANSS,

it is sufficient to consider elements in Ext4,q(4p2+2p+2)
BP∗BP (BP∗, BP∗).

Let us see the small descent spectral sequence

Es,t,∗
1 = Extt,∗

BP∗BP (BP∗, BP∗Y ) ⊗ E(α1) ⊗ P (β1) =⇒ Exts+t,∗
BP∗BP (BP∗, BP∗)

and the ABC Theorem which describes the generators of Extt,∗
BP∗BP (BP∗, BP∗Y ) (t � 2).

It is easy to show that only the element b1,1β3p/p−2 can survive to Ext4,q(4p2+2p+2)
BP∗BP (BP∗,BP∗).

However, since β1β3p/p−2 = 0 (see [12]) in the E2-term of the ANSS, the relation

d2p−1(b1,1β3p/p−2) = α1β
p
1β3p/p−2 = 0

holds. Thus βp−1
1 α1h2,0γ3 is not killed by b1,1β3p/p−2. The theorem is obtained.

4 A Toda Bracket and Relative Results

Let p be an odd prime number and let BP denote the Brown-Peterson ring spectrum at p

(see [3–4]). We have

BP∗ = Z(p)[v1, v2, · · · ] and BP∗BP = BP∗[t1, t2, · · · ],

where the homological degrees of vi and ti are given by |vi| = |ti| = 2(pi − 1).

Let (BP∗,Γ) be a Hopf algebroid. For any BP∗(BP )-comodule M , we write

Ext∗(M) = Ext∗Γ(BP∗,M).

One method of calculating this Ext group is to use the cobar complex. Given any Γ-comodule

M with coaction ψ : M → M ⊗ Γ, one has Ext∗(M) = H∗(C∗
ΓM,d), where the cobar complex

C∗
ΓM is the differential graded Z(p)-module with

Cs
ΓM = M ⊗BP∗ Γ ⊗BP∗ · · · ⊗BP∗ Γ

(s factors of Γ) and the differential d of degree +1 given by

d(m⊗ x1 ⊗ · · · ⊗ xs) =
∑

m′ ⊗m′′ ⊗ x1 ⊗ · · · ⊗ xs

+
s∑

i=1

(−1)im⊗ x1 ⊗ · · · ⊗ x′i ⊗ x′′i ⊗ · · · ⊗ xs

− (−1)sm⊗ x1 ⊗ · · · ⊗ xs ⊗ 1, (4.1)
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where the coproduct Δ(xi) =
∑
x′i ⊗ x′′i and ψ(m) =

∑
m′ ⊗m′′.

The element m⊗ x1 ⊗ x2 ⊗ · · · ⊗ xs is sometimes denoted by m[x1|x2| · · · |xs] for simplicity.

Let In = (p, v1, · · · , vn−1) be the ideal of BP∗. Then

BP∗V (2) = BP∗/I3 = Z(p)[v1, v2, · · · ]/(p, v1, v2).

Let Γ = BP∗/I3[t1, t2, t3, · · · ]. Then (BP∗,Γ) is a Hopf algebroid. Thus, there is a natural

isomorphism

Ext∗BP∗BP (BP∗, BP∗V (2)) ∼= Ext∗Γ(BP∗, BP∗). (4.2)

Theorem 4.1 The q(p2 + 2p+ 2) − 2 dimension stable homology group of V (2) is trivial,

i.e.,

πq(p2+2p+2)−2V (2) = 0.

Proof For complex V (2), there is the Adams-Novikov spectral sequence converging to the

stable homotopy groups of V (2) at the prime p,

Exts,t
BP∗BP (BP∗, BP∗(V (2))) =⇒ πt−s(V (2)).

It is known that the inner degree t of the E2-term Exts,t
BP∗BP (BP∗, BP∗V (2)) is the multiple

of q = 2p− 2. In order to consider all possible elements converging to πq(p2+2p+2)−2V (2), it is

sufficient to consider only those of the form s = 2 + nq and t = q(p2 + 2p+ 2 + n) for n � 0.

For computing Ext2+nq,q(p2+2p+2+n)
BP∗BP (BP∗, BP∗(V (2))) (n � 0), consider the isomorphism

Ext∗BP∗BP (BP∗, BP∗V (2)) ∼= Ext∗Γ(BP∗, BP∗).

Note that we only need to consider elements which have the homotopy degree t − s �
q(p2 + 2p+ 2) − 2. Since |vi| > q(p2 + 2p+ 2) − 2, |ti| > q(p2 + 2p+ 2) − 2 for i > 3, we have

the following isomorphism:

Ext∗BP∗BP (BP∗, BP∗V (2)) ∼= Ext∗Γ′(BP∗, BP∗),

where Γ′ = Z/p[v3][t1, t2, t3] = P (3)[v3], and P (3) is the Hopf algebra Z/p[t1, t2, t3].

Hopf algebroid Γ′ = P (3)[v3] has the coproduct and the right unit as follows:

Δ(t1) = t1 ⊗ 1 + 1 ⊗ t1,

Δ(t2) = t2 ⊗ 1 + t1 ⊗ tp1 + 1 ⊗ t2,

Δ(t3) = t3 ⊗ 1 + t2 ⊗ tp
2

1 + t1 ⊗ tp2 + 1 ⊗ t3,

ηR(v3) = v3.

(4.3)

Since the right unit ηR(v3) = v3 in the cobar complex CΓ′(BP∗), there is a natural isomor-

phism

Ext∗BP∗BP (BP∗, BP∗V (2)) ∼= Ext∗Γ′(BP∗, BP∗) ∼= Ext∗P (3)(Z/p,Z/p) ⊗ P (v3). (4.4)
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For computing Ext∗P (3)(Z/p,Z/p), i.e., the cohomology of the Hopf algebra P (3), we can use

the modified form of the May spectral sequence introduced in [8–9, 15]. Let P∗ = P (t1, t2, · · · )
be the dual of Steenrod’s reduced powers. Then there is the spectral sequence {Es,t,∗

r , dr} which

converges to Exts,t
P∗(Z/p,Z/p) with the E1-term

E∗,∗,∗
1 = E(hi,j | i > 0, j ≥ 0) ⊗ P (bi,j | i > 0, j ≥ 0). (4.5)

We only need to consider the elements hi,j with i + j � 3 and bi,j with i + j � 2, so, the

modified May E2-term is P (b1,0, b1,1, b2,0) tensored with the cohomology of the complex

(E(hi,j : i+ j � 3), d1)

described by Toda in [17]. We list its generators in the Table 1 in Section 3.

In the range t− s � q(p2 + 2p+ 2)− 2, the E2-term of the modified May spectral sequence

equals

G = P (b1,0) ⊗ E(b1,1) ⊗ E(b2,0) ⊗ {1, h1,0, h1,1, h1,2, h1,2h1,0, g0, g1, k0, k0h1,0}. (4.6)

In our range, the Adams-Novikov E2-term for V (2) is isomorphic to Ext∗P (3)(Z/p,Z/p) ⊗
P (v3) which is a subquotient of G ⊗ P (v3). It is easy to verify that

Ext2+nq,q(p2+2p+2+n)
BP∗BP (BP∗, BP∗V (2)) = 0

for n � 0 because no element can have both the dimensions 2 + nq and the inner degree

q(p2 + 2p+ 2 + n) in G ⊗ P (v3).

It now follows that the theorem holds from the Adams-Novikov spectral sequence for V (2).

It is easily showed that the following theorem holds from the above theorem.

Theorem 4.2 For p � 7, s � 1, the Toda bracket 〈α1β1, p, γs〉 = 0.

Proof Let ṽ3 be the composite of the following maps:

Sq(p2+p+1)
ĩ �� Σq(p2+p+1)V (2)

v3 �� V (2),

where the first map is the inclusion of the bottom cell.

It is well-known that ṽ3 is a p order element in πq(p2+p+1)V (2), and then the Toda bracket

〈α1β1, p, ṽ3〉 is well defined and 〈α1β1, p, ṽ3〉 ∈ πq(p2+2p+2)−2V (2).

Let us use j̃ to denote the projection from V (2) to S0. Then γs = ĩ · vs
3 · j̃.

As a result,

〈α1β1, p, γs〉 = 〈α1β1, p, ṽ3 · vs−1
3 · j̃〉 = 〈α1β1, p, ṽ3〉 · vs−1

3 · j̃ = 0

because 〈α1β1, p, ṽ3〉 = 0 ∈ πq(p2+2p+2)−2V (2) = 0.

D. C. Ravenel proved the following proposition (see [14, Proposition 7.5.11] and [15, Propo-

sition 7.6.11]).
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Proposition 4.1 If x is an element in the stable homotopy groups of spheres and satisfies

px = 0, 〈α1β1, p, x〉 = 0 and α1x �= 0, then the following relation

α1β
p−1
1 h2,0x = 〈α1β

p−1
1 , α1β1, p, x〉 = βp/p−1x

holds.

Proof From the relation between Toda brackets and Massey products, we have the fol-

lowing Toda brackets:

βp/p−1 = 〈βp−1
1 , α1β1, p, α1〉 and α1h2,0x = 〈α1, α1β1, p, x〉.

On the other hand,

α1β
p−1
1 h2,0x = βp−1

1 〈α1, α1β1, p, x〉
= 〈α1β

p−1
1 , α1β1, p, x〉

= α1〈βp−1
1 , α1β1, p, x〉

= 〈βp−1
1 , α1β1, p, α1x〉

= 〈βp−1
1 , α1β1, p, α1〉 · x

= βp/p−1x.

Therefore, the proposition holds.

It is known that pγs = 0 since γs has order p. The condition α1γs �= 0 holds as a result of

R. Kato and K. Shimomura [5] who got that the elements α1γt �= 0 for p � 7 and the positive

integer t with p � t(t2 − 1) using the cohomology of the third Morava stabilizer algebra. Thus

we get the following result.

Theorem 4.3 For s � 2, p � 7 and p � s(s2 − 1), the following relation holds:

α1β
p−1
1 h2,0γs = 〈α1β

p−1
1 , α1β1, p, γs〉 = βp/p−1γs.

Corollary 4.1 In the stable homotopy groups of spheres π∗(S0), βp/p−1γ3 is nontrivial and

represents the element α1β
p−1
1 h2,0γ3.

Proof In Section 3, we have already got that α1β
p−1
1 h2,0γ3 is nontrivial in π∗(S0), so is

βp/p−1γ3. Thus the corollary holds.

It is known that α1h2,0γs, β1α1h2,0γs are not trivial in π∗(S0) for 3 � s � p − 2, p � 7.

However, we can prove that βp
1α1h2,0γs is trivial in π∗(S0) for 2 � s � p− 2, p � 7.

Corollary 4.2 For s � 2, p � 7 and p � s(s2 − 1),

βp
1α1h2,0γs = 0 ∈ π∗(S0).

Proof The result can be easily got since βp
1α1h2,0γs = β1βp/p−1γs and β1βp/p−1 = 0 in

π∗(S0).
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