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A Relation in the Stable Homotopy Groups of Spheres*

Jianxia BAT! Jianguo HONG?

Abstract Let p > 7 be an odd prime. Based on the Toda bracket (alﬁf_l, 131, 0,s),
the authors show that the relation alﬁf71h2,075: ﬁp/p,l% holds. As a result, they can
obtain a18Phaovs = 0 € 7. (S°) for 2 < s < p — 2, even though a1hsoys and Fraihe,oys
are not trivial. They also prove that ﬂf_lal h2,07y3 is nontrivial in ﬂ'*(SO) and conjecture
that ﬂf71a1h2,075 is nontrivial in ﬂ'*(SO) for 3 < s < p— 2. Moreover, it is known that
Bp/p—173 = 0 € Exty}, pp(BP., BP.), but 3,/,_17s is nontrivial in 7. (S°) and represents
the element ﬁfﬁlalhg,o’)’g.
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1 Introduction

Let p be an odd prime and ¢ = 2p — 2. It is well-known that the Adams-Novikov spectral
sequence (ANSS) based on the Brown-Peterson spectrum is one of the most powerful tools to
compute the p-component of stable homotopy groups of spheres S°, and the Es-term of the
ANSS is Extgzg*BP(BP*, BP,) (see [1, 7, 10-11, 15]). Moreover, we have the Adams spectral
sequence (ASS) (see [1-2]) based on the Eilenberg-MacLane spectrum KZ/p.

From [10-11], Extpp_pp(BP., BP,) = H'BP, is generated by agyn /41 forn >0, pfs > 1,
where agpn /41 has order p L ExtQBP*BP(BP*, BP,) = H?BP, is a direct sum of cyclic groups
generated by Bypn/jip1 forn>0,pfs>1,j>1,7i> 0 and is subject to

(1) j<prifs=1,

(2) p'lj < an—;, and

(3) an—i—1 < jifp™tt]j,
where ag = 1, ax = p* + p"~! — 1 for k > 1. Bgpn ;i1 has order p'™ (see [10, 14-15]). There
is only partial information for Ext% p.gp(BP., BP,) = H3BP, which contains the p order
generators vs, s > 1.

In 1985, D. C. Ravenel [13] first introduced the method of infinite descent and later used it

to compute the first thousand stems of the stable homotopy groups of spheres at the prime 5.
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This method is devoted to computing the Adams-Novikov Eo-term for a spheral spectrum S°

by the following spectral sequence referred to as the small descent spectral sequence (SDSS)
Eft* — Ext’jé}*Bp(BP*, BP.Y)® E(a1)® P(1) = EX’C%?L}P(BP*, BP,)

and d, : ESt* — Estrt-rils

The following relation about the Toda bracket is showed by Ravenel in the topological SDSS
(see [14, Proposition 7.5.11] or [15, Proposition 7.6.11]). If x is an element in stable homotopy
groups of spheres and satisfies pz = 0, (o101, p,z) = 0 and a2z # 0, then

1By hoor = (a1 B0, cu B, py ) = Bp/p—1T-

In this paper, we show that the condition (a1 51, p, ) = 0 holds for the element x = v, withp > 7
by using the cobar complex of BP-homology of the Smith-Toda spectrum V(2). Therefore, it

follows that the relation

ﬂf71a1h2,0% = (7 a1 B, p,7s) = Bp/p—17s (1.1)

holds for p > 7. Applying this relation, we can prove that 37a;hs o7s is trivial in 7. (S°) for
2<s<p—2,p=>7, but arhoovys and Sraihgoys are not trivial in 7. (S0) for 3< s <p—2,
p=T.

It is also proved that 37 71041/127073 is nontrivial in 7,(S°), and we can further conjecture
that 6{’_1a1h2,075 is nontrivial in 7, (S%) forp >7,2<s<p—2.

Let x and y be two elements in ExtE},*BP(BP*, BP,) and be permanent cycles. It is known
that if xy = 0, then the homotopy product could still be nontrivial and represents an element
in a higher Ext group. f3,/,—1 and 73 are two such elements. We know that 3/, and 73
are permanent cycles and 3,,, 173 = 0 € Ext%}*BP(BP*, BP,), but £,/,_17s is nontrivial in
7.(5°) and represents the element 37~ hgoys from the relation (1.1).

The rest of this paper is organized as follows. In Section 2, the (topological) small de-
scent spectral sequence will be introduced. In Section 3, we prove that 7 71a1h2,073 is non-
trivial in 7,.(S°) by applying the May spectral sequence (MSS) and the small descent spec-
tral sequence (SDSS). In Section 4, we recall the cobar complex and use it to calculate the
Es-term of the Adams-Novikov spectral sequence for V(2). We show that the Toda bracket
(alﬂffl, a181,p,7s) is well defined. As a result, Oélﬁfilhgyo’ys: By/p—17s holds for p > 7 and
o107 ha0vs = 0 € m (S°) because (16,/,-1 = 0 in m, (S°).

2 The Small Descent Spectral Sequence

In this section, we recall the construction of the small descent spectral sequence. Ravenel
computed the E7-term of this spectral sequence and used it to determine the stable homotopy
groups of spheres in a certain range, see [14-16] for more details.

Let T'(n) be the Ranevel spectrum (see [15]) characterized by

BP*T(TL) = BP* [tl,tg, ce ,tn].
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Then we have the following diagram:
50 =T(0) —= T(1) == T(2) ==+ —=T(n) —= -+ —= BP,

where S° denotes the sphere spectrum localized at an odd prime p. Let T(0),—1 and T'(0),_2
denote the ¢(p — 1) and ¢(p — 2) skeletons of T'(1) respectively. They are denoted by Y and Y’
for simplicity. Then

y =59 Ueq U .. .Ue(pﬂ)q Ue(pfl)q and YV = S° Ueq U L Ue(p72)q.
aq oy ay oy o o o

The BP-homologies of them are
BP.(Y) = BP,[t1]/(t") and BP.(Y)= BP,[t:]/(t""").
From the definition above, we get the following cofibre sequences:
50 Loy L yay K g1, (2.1)
T PR (2.2)

and the short exact sequences of BP, homology

/

0 — BP.S° —> BP.Y > BP,59Y — 0, (2.3)
0—= BP,Y . BP.Y L BP,S(r—1a — . (2.4)

Putting (2.3) and (2.4) together, one has the following long exact sequence:
0— BP,S° — BP.(Y) — BP.(X7Y) — BP, (XY ) — - - . (2.5)
Putting (2.1) and (2.2) together, one has the following Adams diagram of cofibres:

G0 <— 30—y =—— Gra—2 <— N(p+1)g-3y <— - - - (2.6)
Y Y-y Npa-2y n(p+1)g-3y
Thus one has the following proposition.

Proposition 2.1 (see [14, Proposition 7.4.2] and [15, Theorems 7.1.13 and 7.1.16]) Let Y
be as above.

(a) There is a spectral sequence converging to Extg}i’EP(BP*, BP,) with the Ey-term
B = Bxtlp pp(BP. BPY) ® Boa) ® P(Br), ar € BLOY, 3y € B0

and d, : ESY* — ESTHrTLE yhere E(—) denotes the exterior algebra and P(—) denotes

the polynomial algebra on the indicated generators.
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This spectral sequence is referred to as the small descent spectral sequence (SDSS).

(b) There is a spectral sequence converging to m.(S°) with the Ey-term
Ey' =m(Y)® E(a1) @ P(B1), a1 € EyY, py € EYP

and d, : E$t — pStriorl
This spectral sequence is referred to as the topological small descent spectral sequence

(TSDSS).

The above two spectral sequences produce the Ext%}* pp(BPy, BP,) and Extjlg’};* pp(BPk,
BP,) or the corresponding elements in 7,(S°) by Ext%p pp(BP., BP.Y) and Exty}, 5p(BP.,
BP.Y). Extyp pp(BP.,BP.(S%)) (s > 2) or the corresponding elements in . (S?) are pro-
duced by Ext3p pp(BP., BP.Y) (s > 2) as described in the following ABC Theorem.

Note that in the range t — s < q(p® + p — 1) — 3, there is no element with filtration > 2p,
and the Adams-Novikov spectral sequence for the spectrum Y collapses from the Fs-term. So

the Fa-term is actually m;_(Y") for this range.
ABC Theorem (see [14-15]) Forp>2 andt—s < q(p* +p—1)—3, s > 2,
Extyp pp(BP.,BPY)=A®BaC,
where A is the Z/p-vector space spanned by
A={Bip, Bipr1 1 <p—1}U{Bpep2_; [0<j <p—1},
B=Re{w|k=>2},
where R = P(b5y) ® E(hao) @ Z/p{{bl; | 0<i<p—1}U{h11byy | 0<i<p—2}}, and

. 2
Cs,t _ @Rs+21,t+z(p —l)q.

i>0

From the generators of R, we can obtain precise generators of C' as follows.
Let i = jp +m. Then Rs+20t+iP°=1) — 0t 50 we have
(1) bé{g‘l)l’ c R2(p—m)+2(iptm)it+(iptm)(p°~1)a — 2(p—m)it ig represented by

p—m—1
b2,0 Ujp+m
for p—1>m > 1, from which we have

b5 0" Mt ® B(ha0) @ {01, | 0<i <p—1} U {hiibhy | 0<i <p—2},

1+p . 2 .
where U = Uk('”_3 _ Y er)7 CrL = (1+I;+k) and Ujp+m c 027‘1[(J+1)p JF(]JFmJFl)PJFm].

T
pv1 Crppvy

(2) b’ilbgf’o e R2(k=m)+2(jptm)it+(iptm) (P ~1)a = c2(k—m)it ig represented by

k—m—1
W™ Bt vyp/p-m
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forp—1>2k>m+12>1, from which we have

Y™ Bl p—m @ E(h2,0),

where B(;41)p/p—m € C2:alG+1)p* +ip+m]
Especially h2,0b11)31bgf)0 € R3T20ptp=2)it+(iptr=2)(p*~1)a ~ 33t ig represented by

hl,lﬁ(j+1)p/1;2a

which is an element of order p?.

(3) h b b7y € R2(k=m)H142(ptm)itt(ptm) (0 ~1)a « C2(k=m)+1it 5 represented by
blzc;)milnijrerl
forp—2>k>m+1>1, where njprmi1 = hi1Ujprm € O3al(GH+1)p? +(j+m+2)p+m]
(4) h2,oh1,1b§’0bg{)0 € R2(k=—mAD)+2(jptm)it+(jptm)(p* ~1)a — C2(k=m+1)it 5 represented by
b 0" Bjpm-+2

for p—2>k>m >0, where Bjp1mi2 € 2:lip” +(j+m+2)p+m+1]
Especially h270h171b’2’52b§7’0 € R2T2UpHp=2)it+(jp+p=2) (P’ ~1)a — o2t jg represented by

Bii+1)p/1:2>

which is an element of order p2.

3 The Non-triviality of 37 'ajhs07ys in 7,(S°)

It is known that a1hgovs and Braghegys are not trivial in . (S°) for 3<s<p—2,p > 7.
Further, we conjecture that so is 37 _1a1h27073. The proof includes complicated calculation.
Here we only prove that this conjecture is right for s = 3.

Let ¢ : BP — KZ/p be the Thom map which induces the Thom reduction map between
the Adams-Novikov Spectral Sequence and the Adams Spectral Sequence

® : Extpp gp(BP., BP,) — Ext} (Z/p,Z/p).
Then it is known that
2
Q(BY arhaovs) = b gods € Bxt TR g 7p),

« 2
where 73 € Exti’f(?’p +2p+1)(Z/p, Z/p) is constructed by X. Wang and Q. Zheng in [18].
- 2 -
Next we prove that b5~ 'goFs is not trivial in Extii“’q(@ +2p+3) (Z/p,Z/p) by the May

spectral sequence.
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Let A, denote the dual mod p Steenrod algebra which is isomorphic to
A* = P[flag% o ] o2 E[7—077—1;7—2a o ']7

where the inner degree of &; is ¢(1+p+---+p'~!) and that of 7; is ¢(1+---+p*~1) + 1. Set the
May filtration on A, by M(ff’J) = M(7;—1) = 2i — 1. Applying the May filtration to the cobar
construction C**(Z/p), we get an increasingly filtered module F**M = FM(C*t(Z/p)), and
then there is the May spectral sequence (MSS) { E5*M d,} which converges to Ext%’ (Z/p, Z/p)
with the Fi-term

ET’*’*:E(hi7j|Z’>O,jZO)@P(bi7j|i>0,jZO)@P(ai|iZO),

where

1,2(p"—1)p? ,2i—1 2,2(p'—1)p? T p(2i—1 1,2p'—1,2i+1
hij c El/ (p )p ’ bi,j c El (p )P p( ) a; € El P i+1,

Y )

h;j, a; and b; ; correspond respectively to {fj, moand Y (})/p ffpj ® ffp_k)pj (see [14,
0<k<p
Theorem 3.2.5] and [8-9]).

One has
dy s BEpSt — ErtbbeT, (3.1)
If € ES%* and y € EZ """, then
dr(z-y) = dr(z) -y + (=1)°z - dr(y).

The known May differentials d are given by

di(hij) = Z hi—k k+jhe.j,

0<k<i
dy(a;) = Z hi—r kar,

0<k<i (3'2)
di(b;;) =0,

dy(b1,;) =0 for all r,
dy(b2o) =0 forr<2p—1,
dap—1(b2,0) = h12b10 — h1,1b11.

From the Thom map, we know that b87190§3 is represented by bzlji)lhlohl’ohg’ohg’lhl’g

up to a nonzero coefficient in the FEj-term of MSS. In order to prove that bg_lgo% # 0
€ Extiﬁ+3ﬂ(4p2+2p+3) (Z/p,Z/p), it is necessary to guarantee that there is no element z €
A2 208 4 e MSS such that dr(z) = W3 haoh1ohsohaihy 2. That is to say,
we need to compute E3p+2’Q(4p2+2p+3)’*
Exti’j (Z/p,Z]p), it is easy to show that bﬁ)glhgyohl’ohg’ohgylhlyg should not be killed by some
first May differential from (3.2).

. Since hgohi,0hs,0h2,1h1,2 converges non-trivially to

2
Lemma 3.1 In the May spectral sequence, E§p+2’q(4p T2 generated by the following

elements:

_ p—312 p—372
G1 = h1,1liby "5 o = h3oha0h1,0h1,1b7 4705,

Gy = h1,0k0’73b11);)2 = h3,0h2,1h1,2h1,0h2,0h1,1bz1)52,
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and E22p+3’Q(4p2+2p+3)’* 1s generated by the following elements:

Gl = 90’73be)1 c E22p+3,q(4p2+2p+3)7p2—p+13’

Gl = h170m1b€)52b1’1 c E§p+37q(4p2+2p+3)m2—p+13’

— 2p+3,q(4p%+2p+3),p> +4p+9
Gg _ llbzfozb%,o c E2p+ q(4p™+2p+3),p” +4p+ .
Proof In our range, we only need to consider
H*(E(hz’] 1+ < 3)) X P(bLo, bl,l; b270) (24 P(ao, ai, az, a3).

Note that the degree of a; is of the form ¢t = q(p*~! + -+ + p+ 1) + 1. If there is a factor a; in
2p+2,q(4p® +2p+3),x

the generator g €F, , then g should contain ¢ a’s, where a € {ag, a1, a2,as}. It
2
is easy to verify that the generators in E§p+2’q(4p 2043 4o not contain a.

Therefore

E A (R, i 4§ <3)) ® Pbiosbia, bao),

2p+2,q(4p° +2p+3) =
E;

and the generators of are of the form

g =ab\i sy, w € HY(B(hij i+ j<3)),
where 0 < ko <2p+2,0 < ky <4 and 0 < ko < 3.

The cohomology of E(h; ; : i+ j < 3) was already computed by Toda in [17]. We list these

elements in the Table 1 below.

Generators (s, t/q)

1 (0, 0)

hl,O (1a 1)

hl,l (Lp)

hio (LPQ)

90 (2,p+2)

ko (2, 2p + 1)
hi,0h1,2 (2,p* +1)

9 (2,p° + 2p)

k1 = hy2ho; (2,2p° +p)
h170]€0 (3, 2p + 2)

l1 = hioh2,0h3,0 (3,p* +2p+3)
ly = hi1hooha (3,p* +3p+1)
I3 = hih12h3 (3,20 +p+2)
hi1k1 (3,2p? + 2p)

v3 = h1,2h21h30 (3,3p* +2p+1)
h171l1 (4,p2+3p+3)
h172l1 (4, 2p2 + 2p + 3)
mi1 = hihaohoihso  (4,2p° +4p +2)
h1,073 (4,3p> +2p+2)
hi,173 (4,3p* +3p+1)
h170m1 (5, 2p2 + 4p + 3)
9073 (5,3p> +3p +3)
koys (5,3p* +4p+2)
h1,0koy3 (6,3p +4p+3)
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On the one hand, consider the inner degree of b; ;. Since t/q is the multiple of the prime p,
the inner degree of x is of the form ¢(np + 3) because

degree(z) + degree(blf?oblfjlbgfo) = q(4p* + 2p + 3).

On the other hand, since b; ; and 20 b%" b2 have an even dimension, so is .

Above all, the inspection of Table 1 shows that = must be

h17111, h17211 and h170]€0’}/3.
Noting that g = xb’f
to get that

?Oblfjlbgfo has the dimension 2p + 2 and degree q(4p? + 2p + 3), it is easy

E§p+27Q(4p2+2p+3)7* _ Z/p{h1,1l1b11);)?’b§,o, h1,0k073b11);)2}~

. 2 4p*+2
In the same way, we can determine the generators of E2p+3’Q( PoA2pHS)

There are the following higher May differentials in the MSS.

Lemma 3.2 In the May spectral sequence,
(1) d4p_3(h17111b€)53b%’0) = 2h170m1b171b’1)52 + 2g073b§’51,

(ii) d2p—1(h170m1b11)7?)3b2,0) = h1,0k0’73b]ff)2-

Proof We only prove (i), and another statement can be verified easily in the similar way.

To calculate these higher May differentials, we are required to work back in the cobar
complex C**(Z/p) whose tensor product is not commutative, and hence permuting the tensor
product will give rise to higher May differentials.

Since hi,1l; is a permanent cycle in the May spectral sequence, it can be represented by
some element in the cobar complex C4a(p*+3p+3) (Z/p), and we let h/l\ll/l denote this element.

From the formula

dop—1(b2,0) = —[b1,1]&V] + [fo [61.0],

we obtain that in the filtered cobar complex C*(Z/p),

dlhy, 1l [BY *[63 ] = [h1,111|5§’53|§f2 [b1,0[b2,0) a4, + [Ra,1 12|57 [b1.11€7 B2,0] A,

_ " ~ _ 9~ 2 ~ —_ ~— ~ o~ ~
+ [h1,111|b’1’70‘3|b270|£f |b1,0]B, + [h1,1l1|bf,03|bz,o|b1,1|§f]32~

Applying the formula

~ j ~ j i~ ~ j
d([b2,0 - AE]) = [b2,0l€7] — [67 [b2,o] + d(ba0) - A%ET,
we achieve permutation between 5270 and §f1 in the cobar complex. Moreover, we can also
achieve permutation among ,52’0’ FI;M and ffJ (see [6] for more details).
In conclusion, permutation among 52,0, FZ;M and {fJ can be achieved in the sense mod
F**P"=p+12 and thus, there is a chain u; € C?*+2(Z/p) such that mod Feop’—pt12

—~— o~ e~ 2~ o~ — ~ ~ o~
dlha 111 |6 67163 0 + ua] = 2[R 11 |€] (B [b2,0]a + 2[h 111 |€7 b1 1 [BY o [b2,0) 5. (3.3)
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Applying the following relations in the Ej-term of MSS by formula (3.2)

hsoh2.0hi1,0h1,1h11 =0,
dy(hs3,0h2,0h1,0h21) = hs,ohaohioh1,1h1 2,

one has a chain uy = [[|¢27] € O+ 4311 guch that
by 1 (B} 57 [ba,0] = —2[h/1,\1l/1|€{’|51,1|3§’53 [b20lp  mod F*Hriri (3.4)
and mod F**P°—p+12
dI2h |50 o ba.0] = —2[h 1 |€] (B 52 [Ba.0]a + 20 oma b1 1 [ %] + 200w 855 Ip. (3.5)
Above all, there is a chain u € C?P*2(Z/p) such that

([l 11107 ° 93 o] + u])

= 2[hy,oma[b1,1 (0] 5 e + 2[g07sB8 o' ]p  mod Freoop®—11pF1l (3.6)

Notice that [h1,0m1|31,1|5’1”62] and [go7y3 |Ef;)1] are sent to hl,omlbl,lb’f;f and go'ygb’f;)l in the

FE>-term of the May spectral sequence respectively. From Lemma 3.1, we know that
E§p+37q(4p2+2p+3)7M —0 for M <p?—p+12.
Therefore, the following higher May differential follows:
dip—3(h1,1 18 5°b3 ) = 21 omaby 1 bE o2 + 2g073b8 o'
Theorem 3.1 In the Adams spectral sequence, for p > 7,
W gods £0 € Extj””’q“”z“”*” (Z/p,Z/p).
Therefore, in the Adams-Novikov spectral sequence, for p > 7,
B anha oys # 0 € Exti a0 #2049 (pp pp,).

2 4p?4+2p+2
e E2p+37q( p=+2p+-2),%

Proof According to Lemma 3.1, gofygb’f;) can only be killed by

Gy = hl,lllb’ff)gb%’o and Gy = hl,okofygb’l’BQ. However, from Lemma 3.2, G; and G2 do not kill
« 2
go'ygb’f,f)l, SO go'ygb’f;)l converges nontrivially to b5 'go3s € Extip+3’q(4p +2p+3) (Z/p,Z)p).

By the Thom reduction map
2
Q(BY arha ovs) = b gods € Bxt TR g 7/p),
it is obtained that

2 «
B arhggys # 0 € Extilg 5w 2048 (pp_ BP,).
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Theorem 3.2 In the Adams-Novikov spectral sequence,
B0y hy oy € ExtZ 300 #2083 (pp pp,)
converges nontrivially to Tyap2 +op+2)—5(S°).
Proof From Theorem 3.1, it is known that
B anhs gys # 0 € Bxt 2y 300 2049 (pp. pp),

Meanwhile, 37 ! and a1hs o7y3 converge nontrivially to m.(S°). Therefore, we need to prove
that g7 _1041/127073 is not killed by any Adams differential. Using the sparseness of the ANSS,
2

it is sufficient to consider elements in Extg(}g(:lg P+2p +2) (BP.,BP,).

Let us see the small descent spectral sequence
B = Ext%}*Bp(BP*, BP.Y)® E(a1)® P(1) = EX’C%?L}P(BP*, BP,)

and the ABC Theorem which describes the generators of Ext%’;;* gp(BPy, BPY) (t > 2).
It is easy to show that only the element b 133),/,—2 can survive to Extg(},(fgi,wpw)(BP* ,BP,).
However, since (3133,/,—2 = 0 (see [12]) in the Ey-term of the ANSS, the relation

dop—1(b1,183p/p—2) = 0101 B3p/p—2 =0

holds. Thus 6f71a1h2,073 is not killed by b1,133,/p—2. The theorem is obtained.

4 A Toda Bracket and Relative Results

Let p be an odd prime number and let BP denote the Brown-Peterson ring spectrum at p
(see [3-4]). We have

BP*:Z(p)[Ul,UQ,~'~] and BP*BP:BP*[tl,tQ,'”],

where the homological degrees of v; and t; are given by |v;| = |t;| = 2(p’ — 1).
Let (BP.,T") be a Hopf algebroid. For any BP,(BP)-comodule M, we write

Ext*(M) = Extj:(BP,, M).

One method of calculating this Ext group is to use the cobar complex. Given any I'-comodule
M with coaction ¢ : M — M @ T, one has Ext* (M) = H*(C{M, d), where the cobar complex
CrM is the differential graded Z,)-module with

CiM =M @pp, T ®pp, - @pp, T
(s factors of T') and the differential d of degree +1 given by
d(m®x1®---®x3)zzm'®m”®x1®---®x3
S
Y (D)men @ Qe @ 0,
i=1

—(-D)'me@rn e - Qr, 1, (4.1)
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where the coproduct A(x;) = > ) @ 2/ and (m) = > m’ @ m”.
The element m ® 1 @ x2 @ - - - @ x5 is sometimes denoted by m[z1|z2| - - - |x4] for simplicity.
Let I, = (p,v1,- -+ ,vnp—1) be the ideal of BP,. Then

BP.V(2) = BP./Is = Z)lv1,v2, -]/ (p, v1, v2).-

Let I' = BP,/I3[t1,to,ts, - +]. Then (BP,,TI') is a Hopf algebroid. Thus, there is a natural

isomorphism
Extpp pp(BP., BP.V(2)) = Extp.(BP,, BP,). (4.2)

Theorem 4.1 The q(p? + 2p + 2) — 2 dimension stable homology group of V(2) is trivial,
i.e.,
Ta(p?+2p4+2)—2V (2) = 0.
Proof For complex V(2), there is the Adams-Novikov spectral sequence converging to the

stable homotopy groups of V' (2) at the prime p,
Extyp 5p(BP., BP.(V(2)) = m—s(V(2)).

It is known that the inner degree ¢ of the Es-term Ext%}*BP(BP*, BP,V(2)) is the multiple
of ¢ = 2p — 2. In order to consider all possible elements converging to 7,2 42p+2)—2V(2), it is
sufficient to consider only those of the form s = 2+ ng and t = q(p® + 2p + 2 + n) for n > 0.

For computing Exti;;nqé%;(p 22 (Bp, BP,(V(2))) (n > 0), consider the isomorphism

Ext’yp pp(BP., BP.V(2)) = Ext(BP., BP.).

Note that we only need to consider elements which have the homotopy degree t — s <
q(p? +2p +2) — 2. Since |v;| > q(p® +2p+2) — 2, |t;| > q(p? +2p +2) — 2 for i > 3, we have

the following isomorphism:
Extpp pp(BP., BP.V(2)) = Exty, (BP., BP,),

where IV = Z/p[vs][t1, t2, t3] = P(3)[vs], and P(3) is the Hopf algebra Z/pl[ti, ta, t3].

Hopf algebroid I = P(3)[vs] has the coproduct and the right unit as follows:
Alt1))=t1 @1+ 1® 1,
Alte) =to @1+t @t +1®to, )
Alts) =t3 @1+t @1 +1 @8 +1@1s, ’
nr(vs) =

Since the right unit nr(vs) = vs in the cobar complex Cr/(BP;), there is a natural isomor-

phism

Ext}yp, pp(BP., BP.V(2)) 2 Ext}, (BP,, BP,) = Ext}p3)(Z/p, Z/p) ® P(v3). (4.4)
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For computing Ext}(:,))(Z/p, Z/p), i.e., the cohomology of the Hopf algebra P(3), we can use
the modified form of the May spectral sequence introduced in [8-9, 15]. Let P, = P(t1,ta2,--+)
be the dual of Steenrod’s reduced powers. Then there is the spectral sequence { E5"*, d,.} which
converges to Ext’(Z/p,Z/p) with the Ej-term

By = E(hij |i>0, j>0)@ Pby;|i>0, j>0). (4.5)

We only need to consider the elements h; ; with i + 7 < 3 and b; ; with i + 7 < 2, so, the
modified May Ea-term is P(by,0,b1,1,b2,0) tensored with the cohomology of the complex

(E(hij:i+37<3),d1)

described by Toda in [17]. We list its generators in the Table 1 in Section 3.
In the range t — s < q(p* + 2p + 2) — 2, the Fa-term of the modified May spectral sequence

equals
G =P(b1) ® E(b1,1) ® E(b20) ® {1, 1,0, h1,1,h1,2, h1,2h1,0, 90, 91, ko, kohi1,0}- (4.6)

In our range, the Adams-Novikov Fs-term for V(2) is isomorphic to Ext}@) (Z/p,Z/p) ®
P(vs3) which is a subquotient of G ® P(vs). It is easy to verify that

B (BP, BP.V(2) =0

for n > 0 because no element can have both the dimensions 2 + ng and the inner degree
q(p* +2p+2+n)in G ® P(v3).
It now follows that the theorem holds from the Adams-Novikov spectral sequence for V(2).

It is easily showed that the following theorem holds from the above theorem.
Theorem 4.2 Forp > 7, s > 1, the Toda bracket {a131,p,vs) = 0.

Proof Let v3 be the composite of the following maps:
§a(p®+p+1) s Eq(p2+p+1)v(2) e V(2),

where the first map is the inclusion of the bottom cell.

It is well-known that 3 is a p order element in 74(,24,41)V(2), and then the Toda bracket
(a1B1,p,v3) is well defined and (a181,p,03) € Typ242p42)—2V(2).

Let us use ; to denote the projection from V(2) to S°. Then 4 =7 V4 ;

As a result,

-1 1

<041ﬂ1ap7 78> = <041ﬂ1,P, ’63 . ’U§ 5> = <041517P,53> : ’Ug_ ] =0

because (a1 31,p,73) = 0 € Typ242pt2)—2V(2) = 0.
D. C. Ravenel proved the following proposition (see [14, Proposition 7.5.11] and [15, Propo-
sition 7.6.11]).
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Proposition 4.1 If x is an element in the stable homotopy groups of spheres and satisfies

pr =0, (a1f1,p,x) =0 and ayz # 0, then the following relation
1B hoor = (B0, au B, p,x) = Bp/p—1T
holds.

Proof From the relation between Toda brackets and Massey products, we have the fol-

lowing Toda brackets:

6;0/;0—1 = <ﬂf717a1617p;051> and ath,Ox = <041;041617pax>'
On the other hand,

—1 —1
a1 B hoor = p7 (a1, 1P, p,x

-1
:a1<6f ,Oélﬁl,p,x

)
= (a1 BV, 1B, p, )
)
)

= (B 1B, ponw
= (B, a1 on) -
= Bp/p-17-

Therefore, the proposition holds.

It is known that pys = 0 since 75 has order p. The condition a;7ys # 0 holds as a result of
R. Kato and K. Shimomura [5] who got that the elements a7y # 0 for p > 7 and the positive
integer ¢ with p { ¢(t> — 1) using the cohomology of the third Morava stabilizer algebra. Thus

we get the following result.
Theorem 4.3 For s >2,p>7 and pts(s®> — 1), the following relation holds:

a1 haoys = (a1 BV, a1 Br,p, ) = Bp/p—17s-

Corollary 4.1 In the stable homotopy groups of spheres 7. (S°), Bp/p—173 18 nontrivial and

represents the element alﬁfflhgyo'yg.

Proof In Section 3, we have already got that 0416{)_1]1270’}/3 is nontrivial in 7. (SY), so is

Bp/p—173- Thus the corollary holds.

It is known that a1hsogvs, Sra1heoys are not trivial in T (S%) for3<s<p—-2,p=>T.

However, we can prove that 87 a;ihg g7ys is trivial in m.(S%) for2<s<p—-2,p>T7.
Corollary 4.2 For s >2,p>7 and p{s(s®> — 1),
BYarhs gys = 0 € m(SY).
Proof The result can be easily got since Sl a1hsoys = B1By/p—17s and B18y/p,—1 = 0 in

7.(SY).
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