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1 Introduction

Let g be a finite-dimensional simple Lie (super)algebra of type X and R be the ring of
Laurent polynomials in commuting variables, and then the toroidal Lie (super)algebra T (g) is
by definition the perfect central extension of the loop algebra g ⊗ R. When R = C[t, t−1], the
toroidal Lie algebra is the affine Kac-Moody Lie algebra. The larger class of Lie (super)algebras
T (g) shares many properties with the untwisted affine Lie (super)algebras.

In the case of untwisted toroidal Lie algebras, Moody, Rao and Yokonuma [18] gave a
loop algebra presentation for the 2-toroidal Lie algebras similar to the affine Kac-Moody Lie
algebras, which has set the stage for later developments such as free field realizations and vertex
operator representations. Notably in [20] the toroidal Lie algebras of type Bn were constructed
by using fermionic operators (see [8]). On the other hand, level-one representations of toroidal
Lie algebras of the simply laced types were realized via McKay correspondence and wreath
products of Kleinian subgroups of SL2(C) (see [5]). Bosonic realizations of higher-level toroidal
Lie algebras T (A1) were also given in [10]. More recently, a unified realization (see [9, 11]) of all
2-toroidal Lie algebras of classical types was constructed by using bosonic or ferminoic fields,
which has generalized the Feingold-Frenkel construction (see [4]) for affine Lie algebras.

Affine Lie superalgebras have been studied as early as their non-super counterparts. In
fact, Feingold and Frenkel construction works for Lie superalgebras as well (see [4]). Vertex
superalgebras and their representations were also given in [15]. Later in [14] integrable highest-
weight modules were constructed for affine superalgebras of the orthosymplectic seises using
fermionic and bosonic fields. All these constructions were based on the loop algebra realizations
of affine Lie superalgebras.
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Irreducible highest-weight modules of classical toroidal Lie superalgebras can be constructed
abstractly as in the affine cases (see [19]). Various other constructions of toroidal Lie super-
algebras and their generalizations were known (see [1, 3, 9, 16–17]). In particular, [2] has
constructed a certain vertex operator representation for the general toroidal cases. Recently we
have given a loop algebra realization for 2-toroidal classical superalgebras (see [12]), which is a
super analog of the MRY construction (see [7] for earlier development).

The aim of this work is to generalize Kac and Wakimoto’s work on affine superalgebras of
unitary series to the 2-toroidal setting using both vertex operators and Weyl bosonic fields,
and the construction has utilized our recent MRY presentation exclusively. We remark that
our work is different from [2] in that we use more bosonic fields while the latter used more
vertex operators. This suggests that there could be a super boson-fermion correspondence for
the 2-toroidal cases.

This paper is organized as follows. In Section 2 we recall the notions of 2-toroidal Lie
superalgebras and the loop-algebra presentation. In Section 3 we construct certain vertex
operators and Weyl bosonic fields to give a level-one representation of the 2-toroidal Lie special
linear superalgebra.

2 The Toroidal Lie Superalgebra T(A(m, n))

Let V = Cm|n+1 be the Z2-graded vector space of dimension (m, n + 1), where m �= n. Let
gl(m | n+1) be the Lie superalgebra of the super-endomorphisms of V under the superbracket.
Let g be the traceless subalgebra, i.e., the simple Lie superalgebra of type A(m, n). Let R =
C[s±1, t±1] be the complex commutative ring of Laurant polynomials in s, t. The loop Lie
superalgebra L(g) := g ⊗ R is defined under the Lie superbracket [x ⊗ a, y ⊗ b] = [x, y] ⊗ ab.

Let ΩR be the R-module of Kähler differentials {bda | a, b ∈ R}, and let dΩR be the space of
exact forms. The quotient space ΩR/dΩR has a basis consisting of sm−1tnds, snt−1dt, s−1ds,
where m, n ∈ Z. Here a denotes the coset a + dΩR.

The toroidal special linear superalgebra T (g) is defined to be the Lie superalgebra on the
following vector space:

T (g) = g ⊗ R ⊕ ΩR/dΩR

with the Lie superbracket (x, y ∈ g, a, b ∈ R):

[x ⊗ a, y ⊗ b] = [x, y] ⊗ ab + (x | y)(da)b, [T (g), ΩR/dΩR] = 0

and the parities are specified by:

p(x ⊗ a) = p(x), p(ΩR/dΩR) = 0.

Let A = (aij) be the extended distinguished Cartan matrix of the affine Lie superalgebra of
type A(m, n)(1), i.e., ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0 · · · 0 1

−1 2 −1
. . . 0 · · · 0 0

...
. . . . . . . . . . . . · · · · · · ...

0 · · · −1 0 1 · · · 0 0
...

...
...

. . . . . . . . .
...

...
0 · · · 0 2 −1 0
0 · · · 0 −1 2 −1
−1 · · · 0 0 · · · 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and let Q = Zα0⊕· · ·⊕Zαm+n+1 be its root lattice. Here α0, αm+1 are the odd simple roots. The
standard invariant form is given by (αi, αj) = diaij , where (d0, d1, · · · , dm+n+1) = (1, 1, · · · , 1︸ ︷︷ ︸

m

,

−1, · · · ,−1︸ ︷︷ ︸
n+1

).

We recall the loop algebra presentation of the 2-toroidal Lie superalgebras.

Theorem 2.1 (see [12]) The toroidal special linear superalgebra T (g) is isomorphic to the
Lie superalgebra T(A(m, n)) generated by

{K, αi(k), x±
i (k) | 0 � i � m + n + 1, k ∈ Z}

with parities given as

p(K) = p(αi(k)) = 0, p(x±
i (k)) = p(αi) (0 � i � m + n + 1, k ∈ Z).

The defining relations of superbrackets are given by:
(1) [K, αi(k)] = [K, x±

i (k)] = 0;
(2) [αi(k), αj(l)] = k(αi | αj)δk,−lK;
(3) [αi(k), x±

j (l)] = ±(αi | αj)x±
j (k + l);

(4) [x+
i (k), x−

j (l)] = 0, if i �= j;
[x+

i (k), x−
i (l)] = −{αi(k + l) + kδk,−lK}, if (αi | αi) = 0;

[x+
i (k), x−

i (l)] = − 2
(αi|αi)

{αi(k + l) + kδk,−lK}, if (αi | αi) �= 0;
(5) [x±

i (k), x±
i (l)] = 0;

[x±
i (k), x±

j (l)] = 0, if aii = aij = 0, i �= j;
[x±

i (k), [x±
i (k), (x±

j (l)]] = 0, if aii = 0, aij �= 0, i �= j;
[x±

i (k), · · · , [︸ ︷︷ ︸
1−aij

x±
i (k), x±

j (l)] · · · ] = 0, if aii �= 0, i �= j.

We define the formal power series with coefficients from T(A(m, n)):

αi(z) =
∑
k∈Z

αi(k)z−k−1, x±
i (z) =

∑
k∈Z

x±
i (k)z−k−1,

and then the defining relations of T(A(m, n)) can be rewritten in terms of the formal series as
follows.

Proposition 2.1 The relations of T(A(m, n)) can be written as follows:
(1′) [K, αi(z)] = [K, x±

i (z)] = 0;
(2′) [αi(z), αj(w)] = (αi | αj)∂wδ(z − w)K;
(3′) [αi(z), x±

j (w)] = ±(αi | αj)x±
j (w)δ(z − w);

(4′) [x+
i (z), x−

j (w)] = 0, if i �= j;
[x+

i (z), x−
i (w)] = −{(αi(w)δ(z − w) + ∂wδ(z − w)K}, if (αi | αi) = 0;

[x+
i (z), x−

i (w)] = − 2
(αi|αi)

{(αi(w)δ(z − w) + ∂wδ(z − w)K}, if (αi | αi) �= 0;
(5′) [x±

i (z), x±
i (w)] = 0;

[x±
i (z), x±

j (w)] = 0, if aii = aij = 0, i �= j;
[x±

i (z1), [x±
i (z2), x±

j (w)]] = 0, if aii = 0, aij �= 0, i �= j;
[x±

i (z1), · · · , [x±
i (z1−aij ), x

±
j (w)] · · · ] = 0, if aii �= 0, i �= j.

Here we have used the formal delta function

δ(z − w) =
∑
n∈Z

z−n−1wn.
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Its derivatives are given by the power series expansions (see [13]):

∂(j)
w δ(z − w) = iz,w

1
(z − w)j+1

− iw,z
1

(−w + z)j+1
,

where ∂
(j)
w = 1

j!∂
j
w and iz,w means power series expansion in the domain |z|> |w|. By convention,

if we write a rational function in the variable z −w, it is usually assumed that the power series
is expanded in the region |z|> |w|. Finally, the equation

f(z, w)δ(z − w) = f(z, z)δ(z − w)

holds when both sides are meaningful.

3 The Vertex Representation of T(A(m, n))

In this section, we will give a representation of the Lie superalgebra T(A(m, n)) using both
vertex operators and bosonic fields.

Let εi (0 � i � n+m+3) be an orthomormal basis of the vector space Cn+m+4 and denote
δi =

√−1εm+1+i (1 � i � n + 2). Then the distinguished simple root systems, the positive
root systems and the longest distinguished root of the Lie superalgebra of type A(m, n) can be
represented in terms of vectors εi’s and δi’s as follows:

Π = {α1 = ε1 − ε2, · · · , αm = εm − εm+1, αm+1 = εm+1 − δ1,

αm+2 = δ1 − δ2, · · · , αn+m+1 = δn − δn+1};
�+ = {εi − εj , δk − δl | 1 � i < j � n + 1, 1 � k < l � m + 1}

∪ {
δk − εi | 1 � i � n + 1, 1 � k � m + 1

}
;

θ = α1 + · · · + αm+n+1 = ε1 − δn+1.

3.1 Vertex operators

Let Γ = Zε1 ⊕ · · · ⊕ Zεm+1 and h = Γ ⊗Z C. We view h as an abelian Lie algebra and
consider the central extension of its affinization ĥ, i.e.,

ĥ =
⊕
n�=0

Ch ⊗ tn ⊕ CK

with the following communication relations:

[α(k), β(l)] = k(α, β)δk,−lK, [ĥ, K] = 0,

where α(k) = α ⊗ tk and α, β ∈ Γ; k, l ∈ Z. This is an infinite-dimensional Heisenberg algebra.
For i = 0, 1, we let Γi = {α ∈ Γ | (α, α) ∈ 2Z+i}, so then Γ = Γ0⊕Γ1. Let F : Γ×Γ → {±1}

is the bimultiplicative map determined by

F (εi, εj) =
{

1, if i � j;
−1, if i > j.

Then the map satisfies the following properties:
(1) F (0, α) = F (α, 0) = 1, ∀α ∈ Γ;
(2) F (α, β)F (α, β + γ) = F (β, γ)F (α, β + γ), ∀α, β, γ ∈ Γ;
(3) F (α, β)F (β, α)−1 = (−1)(α,β)+ij , ∀α ∈ Γi, β ∈ Γj.
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Let C[Γ] be the vector space spanned by the basis {eγ |γ ∈ Γ} over C. We define a twisted
group algebra structure on C[Γ] as follows:

eαeβ = F (α, β)eα+β .

We form the tensor space

V [Γ] = C[Γ] ⊗ S
(⊕

j<0

(h ⊗ tj)
)
,

and define the action of ĥ as follows: K acts as the identity operator, α(−k) (k > 0) acts as
multiplication by α ⊗ tk for α ∈ Γ, and α(k) (k > 0) acts as the derivation of V [Γ] defined by
the formula

α(k)(v ⊗ eβ) = k(α, β)(v ⊗ eβ), (3.1a)

α(k)(eβ ⊗ γ ⊗ t−l) = δk,0(α, β)(eβ ⊗ γ ⊗ t−l) + kδk,l(α, γ)eβ ⊗ γ ⊗ t−k. (3.1b)

The space V [Γ] has a natural Z2-gradation: V [Γ] = V [Γ]0⊕V [Γ]1, where V [Γ]0 (resp. V [Γ]1)
is the vector space spanned by eα ⊗ β ⊗ t−j with α, β ∈ Γ; j ∈ Z+ such that (α, α) ∈ 2Z (resp.
(α, α) ∈ 2Z + 1).

For α ∈ Γ, we define the vertex operator Y (α, z) as follows:

Y (α, z) = eαzα(0)exp
(
−

∑
j<0

α(j)
j

z−j
)
, exp

(
−

∑
j>0

α(j)
j

z−j
)
,

where the operator zα(0) is given by

zα(0)(eβ ⊗ γ ⊗ t−j) = z(α,β)(eβ ⊗ γ ⊗ t−j)

for β, γ ∈ Γ; j ∈ Z+ and we denote

X(α, z) =
{

z
(α,α)

2 Y (α, z), if α ∈ Γ0;
Y (α, z), if α ∈ Γ1.

We expand X(α, z) in z

X(α, z) =
∑
j∈Z

X(α, j)z−j−1,

where the components X(α, j) are well-defined local operators. Similarly, for α ∈ Γ, we define

α(z) =
∑
k∈Z

α(k)z−k−1.

Lemma 3.1 For α ∈ Γi, β ∈ Γj, one has that
(1) [Y (α, z), Y (β, w)] = 0, if (α, β) � 0;
(2) [Y (α, z), Y (β, w)] = F (α, β)Y (α + β, z)δ(z − w), if (α, β) = −1;
(3) [α(z), Y (β, w)] = (α, β)Y (β, z)δ(z − w).

Proof The first and second parts have been proved in [1]. For the third part, we refer to
[21].

Corollary 3.1 (1) [X(εi, z), X(εj − εk, w)] = δikF (εi, εj − εk)X(εj , w)δ(z − w), j �= k;
(2) [X(εi, z), X(−εj, w)] = δijF (εi,−εj)∂wδ(z − w);
(3) [α(z), X(β, w)] = (α, β)X(β, z)δ(z − w), α, β ∈ Γ.

Proof The corollary is a direct consequence of Lemma 3.1.
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3.2 Bosonic fields

We introduce c = ε0 + δn+2 and define β = δn+1 + c, so then α0 = β − ε1. Note that
(β | β) = −1, (β | δi) = −δn+1,i. Let P be the vector spaces spanned by the set {c, δi | 1 � i �
n + 1} and P∗ be its dual space. Let C = P ⊕P∗ and define the bilinear form on it as follows:
For a, b ∈ P ,

〈b∗, a〉 = −〈a, b∗〉 = (a, b), 〈b, a〉 = 〈a∗, b∗〉 = 0.

Let A(Z2n+2) be the Weyl algebra generated by {u(k) | u ∈ C, k ∈ Z} with the defining
relations

u(k)v(l) − u(k)v(l) = 〈u, v〉δk,−l

for u, v ∈ C and k, l ∈ Z.
The representation space of the algebras A(Zn+1) is defined to be the following vector space:

F =
⊗
ai

( ⊗
k∈Z+

C[ai(−k)]
⊗

k∈Z+

C[a∗
i (−k)]

)
,

where ai runs through any basis in P , consisting of c and δk’s. The algebra A(Z2n+2) acts
on the space by the usual action: a(−k) acts as creation operators and a(k) as annihilation
operators.

For u ∈ C, we define the formal power series with coefficients from the associative algebra
A(Z2n+2):

u(z) =
∑
k∈Z

u(k)z−k−1.

It is a bosonic field acting on the Fock space F.
In the following, we will give a representation of T(A(m, n)) on a quotient V of the tensor

space V [Γ] ⊗ F:

V =
V [Γ] ⊗ F( ∑

k

: X(±ε1,−n + k)c(n) :
) .

Therefore, the relation : X(±ε1, z)c(z) := 0 holds on V. Note that there is a natural homomor-
phism from V onto V [Γ] ⊗ F, where Γ = Γ/(ε0 + δn+2). For simplicity, we will use the same
symbol to denote the coset elements in V. Observe that there is a Z2-gradation on this space
with the parity given by p(eα ⊗ x ⊗ y) = p(α) for α ∈ Γ, x ∈ S

( ⊕
j<0

(h ⊗ tj)
)
, y ∈ F. The vertex

operators X(α, z), α(z) act on the first component and the bosonic field u(z) acts on the second
component. It follows that

p(X(α, z)) = p(α), p(α(z)) = p(u(z)) = 0.

For any two fields a(z), b(w) with fixed parity, we define the normal ordered product by

: a(z)b(w) : = a(z)+b(w) − (−1)p(a)p(b)b(w)a(z)−

= (−1)p(a)p(b) : b(w)a(z) :,

where a±(z) is defined as usual. Based on the normal ordering of two fields, one can define
inductively the normal ordering of more than two fields “from right to left”.

The following facts are well known in literature (see [6, 11]).
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Proposition 3.1 One has that
(1) [α(z), β(w)] = (α, β)∂wδ(z − w), α, β ∈ Γ;
(2) [X(εi − εj, z), X(εj − εi, w)] = F (εi − εj , εj − εi)((εi − εj)(z)δ(z − w) + ∂wδ(z − w));
(3) : X(εi, z)X(−εj, z) := F (εi,−εj)X(εi − εj , z), i �= j;
(4) : X(−εj, z)X(εi, z) := F (−εj,−εi)X(εi − εj, z), i �= j;
(5) : X(εi, z)X(−εi, z) := εi(z).

Furthermore, we define the contraction of two fields a(z), b(w) by

a(z)b(w)︸ ︷︷ ︸ = a(z)b(w)− : a(z)b(w) : .

Proposition 3.2 (see [13]) Suppose that fields a(z), b(w) satisfy the following equality:

[a(z), b(w)] =
N−1∑
j=0

cj(w)∂(j)
w δ(z − w),

where N is a positive integer and cj(w) are formal distributions in the indeterminate z, and
then we have that

a(z)b(w)︸ ︷︷ ︸ =
N−1∑
j=0

cj(w)
1

(z − w)j+1
.

The following well-known Wick’s theorem is useful for calculating the operator product
expansions (OPE) of normally ordered products of free fields.

Theorem 3.1 (see [13]) Let A1, A2, · · · , AM and B1, B2, · · · , BN be two collections of
fields with definite parity. Suppose that these fields satisfy the following properties:

(1) [AiBj︸ ︷︷ ︸, Zk] = 0, for all i, j, k and Z = A or B;

(2) [Ai±, Bj
±] = 0, for all i, j.

Then we have that

: A1 · · ·AM :: B1 · · ·BN :

=
m∑

s=0

∑
i1<···<is
j1 �=···�=js

±(Ai1Bj1︸ ︷︷ ︸ · · ·AisBjs︸ ︷︷ ︸ : A1 · · ·AMB1 · · ·BN :(i1,··· ,is,j1,··· ,js)),

where m = min{M, N} and the subscript (i1, · · · , is, j1, · · · , js) means that the fields Ai1 , . . . ,

Ais , Bj1 , . . . , Bjs are removed and the sign ± is obtained by the rule: Each permutation of the
adjacent odd fields changes the sign.

Now we state the main result of this paper.

Theorem 3.2 The following map defines a level-one representation on the space V:

x+
i (z) →

⎧⎪⎪⎨
⎪⎪⎩
√−1 : X(−ε1, z)β(z) :, i = 0;
X(εi − εi+1, z), 1 � i � m;
: X(εm+1, z)δ∗1(z) :, i = m + 1;√−1 : δi−m−1(z)δ∗i−m(z) :, m + 2 � i � m + n + 1,

x−
i (z) →

⎧⎪⎪⎨
⎪⎪⎩
√−1 : X(ε1, z)β∗(z) :, i = 0;
X(εi+1 − εi, z), 1 � i � m;
: X(−εm+1, z)δ1(z) :, i = m + 1;√−1 : δi−m−1(z)δ∗i−m(z) :, m + 2 � i � m + n + 1,
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αi(z) →

⎧⎪⎪⎨
⎪⎪⎩

: β(z)β∗(z) : −ε1(z), i = 0;
(εi − εi+1)(z), 1 � i � m;
εm+1(z)− : δ1(z)δ∗1(z) :, i = m + 1;
: δi−m−1(z)δ∗i−m−1(z) : − : δi−m(z)δ∗i−m(z) :, m + 2 � i � m + n + 1.

Proof To prove the theorem, one needs to check that all the field operators on the right
side of above map satisfy relations (1′)–(5′) listed in Proposition 2.1.

First of all, we check (4′)–(3′) with the help of Wick’s theorem.

[x+
0 (z), x−

0 (w)] = −(: β(z)β∗(z) : + : X(−ε1, z)X(ε1, z) :)δ(z − w) − ∂wδ(z − w)

= −(α0(z)δ(z − w) + ∂wδ(z − w) · 1),

where we have used the fact : X(−ε1, z)X(ε1, z) := −ε1(z) and

[α0(z), x±
0 (w)] = 0 = ±(α0, α0)x±

0 (w)δ(z − w).

For 1 � i � m, we have by Proposition 3.1 that

[x+
i (z), x−

i (w)] = −((εi − εi+1)(z)δ(z − w) + ∂wδ(z − w))

= − 2
(αi, αi)

(αi(z)δ(z − w) + ∂wδ(z − w) · 1).

It follows from Corollary 3.1 that

[αi(z), x±
i (w)] = ±(αi, αi)x±

i (w)δ(z − w),

[x+
m+1(z), x−

m+1(w)] = (: δ1(z)δ∗1(z) : − : X(εm+1, z)X(−εm+1, z) :)δ(z − w) − ∂wδ(z − w)

= −(αm+1(z)δ(z − w) + ∂wδ(z − w) · 1)

and

[αm+1(z), x±
m+1(w)] = 0 = ±(αm+1, αm+1)x±

m+1(w)δ(z − w).

For m + 2 � i � m + n + 1, we have that

[x+
i (z), x−

i (w)] = (: δi−m−1(z)δ∗i−m−1(z) : − : δi−m(z)δ∗i−m(z) :)δ(z − w) + ∂wδ(z − w)

= − 2
(αi, αi)

(αi(z)δ(z − w) + ∂wδ(z − w) · 1)

and

[αi(z), x+
i (w)] = −2

√−1 : δi−m−1(z)δ∗i−m(z) : δ(z − w)

= (αi, αi)x+
i (w)δ(z − w),

[αi(z), x−
i (w)] = −(αi, αi)x−

i (w)δ(z − w).

For all i �= j, we have [x+
i (z), x−

j (w)] = 0 and for any disconnected vertices

[αi(z), x±
j (w)] = 0 = ±(αi, αj)x±

j (w)δ(z − w).

All the rest can be checked by straightforward calculation, for example,

[α0(z), x+
1 (w)] = −X(ε1 − ε2, z)δ(z − w)

= (α0, α1)x+
1 (w)δ(z − w),
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[αm+1(z), x+
m+2(w)] =: δ1(w)δ∗2(w) : δ(z − w)

= (αm+1, αm+2)x+
m+2(w)δ(z − w),

[αm+n+1(z), x+
m+n(w)] =

√−1 : δn−1(w)δ∗n(w)δ(z − w)

= (αm+n+1, αm+n)x+
m+n(w)δ(z − w).

For the extremal vertices, one also has that

[αm+n+1(z), x+
0 (w)] =

√−1 : X(−ε1, w)δn+1(w) : δ(z − w)

=
√−1 : X(−ε1, w)β(w) : δ(z − w)

= (αm+n+1, α0)x+
0 (w)δ(z − w),

where we have used the fact that

X(−ε1, w)c(w) := 0

and others can be proved similarly.
Secondly, we can check (2′) case by case by using Proposition 3.1(1) and we include the

following examples:

[α0(z), α0(w)] = 0 = (α0, α0)∂wδ(z − w) · 1,

[α0(z), α1(w)] = −∂wδ(z − w) = (α0, α1)∂wδ(z − w) · 1,

[α0(z), αm+n+1(w)] = ∂wδ(z − w) = (α0, αm+1)∂wδ(z − w) · 1.

Finally, we proceed to check the Serre relations. It is easy to verify that [x±
i (z), x±

i (w)] = 0
for 0 � i � m + n + 1 and [x±

i (z), x±
j (w)] = 0 for i �= j, aij = 0. The rest can be checked

directly:

[x+
0 (z1), [x+

0 (z2), x+
1 (w)]]

= −[: X(−ε1, z1)β(z1) :, [: X(−ε1, z2)β(z2) :, X(ε1 − ε2, w)]]

= −[: X(−ε1, z1)β(z1) :, X(−ε2, w)]δ(z2 − w)

= 0,

[x+
0 (z1), [x+

0 (z2), x+
m+n+1(w)]]

= −√−1[: X(−ε1, z1)β(z1) :, [: X(−ε1, z2)β(z2) :, : δn(w)δ∗n+1(w) :]]

= −√−1[: X(−ε1, z1)β(z1) :, : X(−ε1, w)δn(w) :]δ(z2 − w)

= 0,

[x+
m+1(z1), [x+

m+1(z2), x+
m(w)]]

= [: X(εm+1, z1)δ∗1(z1) :, [: X(εm+1, z2)δ∗1(z2) :, X(εm − εm+1, w)]]

= [: X(εm+1, z1)δ∗1(z1) :, ; X(εm, w)δ∗1(w) :]δ(z2 − w)

= 0,

[x+
m+1(z1), [x+

m+1(z2), x+
m+2(w)]]

=
√−1[: X(εm+1, z1)δ∗1(z1) :, [: X(εm+1, z2)δ∗1(z2) :, : δ1(w)δ∗2 (w) :]]

= −√−1[: X(εm+1, z1)δ∗1(z1) :, ; X(εm+1, w)δ∗2(w) :]δ(z2 − w)

= 0.

The remaining relations follow similarly by Wick’s theorem or Corollary 3.1. This completes
the proof of the theorem.
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