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Abstract The authors consider a family of finite-dimensional Lie superalgebras of O-type
over an algebraically closed field of characteristic p > 3. It is proved that the Lie super-
algebras of O-type are simple and the spanning sets are determined. Then the spanning
sets are employed to characterize the superderivation algebras of these Lie superalgebras.
Finally, the associative forms are discussed and a comparison is made between these Lie
superalgebras and other simple Lie superalgebras of Cartan type.
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1 Introduction

During the last fifty years, the theory of Lie superalgebras over fields of characteristic zero
has experienced a rather vigorous development in mathematics. For example, Kac [8–9] clas-
sified the finite-dimensional simple Lie superalgebras and infinite-dimensional simple linearly
compact Lie superalgebras over algebraically closed fields of characteristic zero. The research
on modular Lie superalgebras, i.e., Lie superalgebras over a field of prime characteristic, just
began in recent years. The complete classification of the finite-dimensional simple modular Lie
superalgebras remains an open problem. However, Many important results on modular Lie
superalgebras were obtained (see, e.g., [1, 3–7, 10–15, 17–22]).

As is well-known, the derivation algebras are very useful subjects in the research of both
Lie algebras and Lie superalgebras. In [2, 16], the derivation algebras of modular Lie algebras
of Cartan type were discussed. Eight families of finite-dimensional simple modular Lie super-
algebras of Cartan type W, S, H , K, HO, KO, SHO and SKO were constructed and their
superderivation algebras were studied in [6, 11–13, 19, 23].

In this paper, we study a class of Lie superalgebras of O-type over a field of prime character-
istic. The article is organized as follows. In Section 2, we give the definition of Lie superalgebras
of O-type and prove that they are simple. In Section 3, the generator sets of these Lie super-
algebras are investigated. In Section 4, we first establish some technical lemmas which will
be used to determine the homogeneous derivations of Lie superalgebras of O-type. Then an
explicit description of the superderivation algebras is given.
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2 Definition and Simplicity

Let F be an algebraically closed field of characteristic p > 3 and assume that F is not equal
to its prime field Π. For m > 0, let E = {z1, · · · , zm} ∈ F be linearly independent over the
prime field Π, and H be the additive subgroup generated by E which dose not contain 1. If

λ ∈ H , then let λ =
m∑

i=1

λizi, where 0 ≤ λi < p. We define yλ = yλ1
1 · · · yλm

m . Let N be the set

of positive integers, and N0 be the set of nonnegative integers. Let Z2 = Z/2Z = {0, 1} denote
the ring of integers modulo 2.

Given n ∈ N, let n > 2 and s := (s1, · · · , sn) ∈ N
n
0 . Set M = {1, · · · , n}. For ki ∈ N0,

ki can be uniquely expressed in the p-adic form ki =
si∑

v=0
εv(ki)pv, where 0 ≤ εv(ki) < p. We

define the truncated polynomial algebras

A(n, s) = F[x10, x11, · · · , x1s1 , · · · , xn0, xn1, · · · , xnsn , y1, · · · , ym],

such that xp
ij = 0 for all i ∈M and j = 0, 1, · · · , si; y

p
i = 1 for i = 1, · · · ,m. Let

Q = {(k1, · · · , kn) | 0 ≤ ki ≤ πi, πi = psi+1 − 1, i ∈M}.

If k = (k1, · · · , kn) ∈ Q, we let xk = xk1
1 · · ·xkn

n , where xi
ki =

si∏
v=0

x
εv(ki)
iv . For 0 ≤ ki, k

′
i ≤ πi,

it is easy to see that

xi
kixi

k′
i = xi

ki+k′
i �= 0 ⇔ εv(ki) + εv(k′i) < p, v = 0, 1, · · · , si, i ∈M. (2.1)

Let Λ(n + 1) be the Grassmann superalgebras over F in n + 1 variables ξn+1, · · · , ξ2n+1.
Denote the tensor product by A := A(n, n + 1, s) = A(n, s) ⊗ Λ(n + 1). Obviously, A are
associative superalgebras with a Z2-gradation induced by the trivial Z2-gradation of A(n, s)
and the natural Z2-gradation of Λ(n+ 1): A0 = A(n, s)⊗Λ(n+ 1)0, A1 = A(n, s)⊗Λ(n+ 1)1.
For f ∈ A(n, s) and g ∈ Λ(n+ 1), we abbreviate f ⊗ g to fg. For k ∈ {1, · · · , n+ 1}, we let

Bk := {〈i1, i2, · · · , ik〉 | n+ 1 ≤ i1 < i2 < · · · < ik ≤ 2n+ 1}

and B(n+ 1) =
n+1⋃
k=0

Bk, where B0 := ∅. Given u = 〈i1, · · · , ik〉 ∈ Bk, we set {u} = {i1, · · · , ik},
|u| = k,

[u] =
{
k − 1, 2n+ 1 ∈ Bk,
k, 2n+ 1 �∈ Bk,

‖u‖ =
{
k + 1, 2n+ 1 ∈ Bk,
k, 2n+ 1 �∈ Bk,

and ξu = ξi1 · · · ξik
. Put |∅| = 0 and ξ∅ = 1. Then {xkyλξu | k ∈ Q, λ ∈ H, u ∈ B(n+ 1)} is an

F-basis of A.
If L is a superalgebra, then h(L) denotes the set of all Z2-homogeneous elements of L, i.e.,

h(L) = L0 ∪ L1. If |x| occurs in some expression in this paper, then we always regard x as a
Z2-homogeneous element and |x| as the Z2-degree of x.

Let B be a given Z2-graded vector space over F, and σ be a given homogeneous linear
mapping of degree 1,

σ : A → B,
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such that σ(f) �= 0 for all 0 �= f ∈ A. It is easy to see that σ(A) ⊆ B is a Z2-graded subspaces.
For σ(f) ∈ σ(A), one may easily verify that σ(f) is a Z2-homogeneous element if and only if f
is a Z2-homogeneous element of A, and if f ∈ Aα, then σ(f) ∈ σ(A)α+1, where α ∈ Z2.

Set ei := (δi1, · · · , δin) for i ∈ M . Put T = {n + 1, · · · , 2n + 1} and R = M ∪ T . Define
ĩ = 0 if i ∈M , and ĩ = 1 if i ∈ T . Put T1 = {n+ 1, · · · , 2n}. Let

i′ =
{
i+ n, if i ∈M,
i− n, if i ∈ T1.

Let Di (i ∈ R) be the linear transformations of σ(A), such that

Di(σ(f)) = σ(Di(f)),

where Di are the linear transformations of A, such that

Di(xkyλξu) =

⎧⎨
⎩
k∗i x

k−eiyλξu, if i ∈M,

xkyλ · ∂ξ
u

∂ξi
, if i ∈ T,

where k∗i is the first nonzero number of ε0(ki), ε1(ki), · · · , εsi(ki). Then Di is an even derivation
of A for any i ∈M , and Di is an odd derivation of A for any i ∈ T .

Set

∂ = I − 2−1
∑
j∈M

xj 0
∂

∂xj 0
−

m∑
j=1

zjyj
∂

∂yj
− 2−1

∑
j∈T1

ξj
∂

∂ξj
,

where I is the identity mapping of A. It is easy to see that

∂(xkyλξu) =
(
1 − 2−1

∑
j∈M

kj − λ− 2−1[u]
)
xkyλξu.

We denote σ(A) by O. For σ(f), σ(g) ∈ h(O), we define a bilinear operation in O, such that

[σ(f), σ(g)] = σ(〈f, g〉)
= σ(∂(f)D2n+1(g) + (−1)|f |D2n+1(f)∂(g)

+
∑

i∈M∪T1

(−1)̃i|f |Di(f)Di′(g)). (2.2)

Theorem 2.1 O become Lie superalgebras for the operation [ , ] defined above.

Proof Clearly O are superalgebras by (2.2). Let σ(f) ∈ Oα, σ(g) ∈ Oβ and σ(h) ∈ Oγ ,
where α, β, γ ∈ Z2. Note that ĩ+ ĩ′ = 1, ĩ ĩ′ = 0 for i ∈M ∪T1. By (2.2), one may easily verify
that [σ(f), σ(g)] = −(−1)αβ[σ(g), σ(f)].

Put ∂(f)f := ∂(f). Then we have

∂(fD2n+1(g)) = ∂(fg)fD2n+1(g) = (∂(f) + ∂(g) − 1)fD2n+1(g),

∂(Di(f)Di′(g)) = (∂(f) + ∂(g))Di(f)Di′(g), i = 1, · · · , n+ 1.

We will prove that the operation [ , ] satisfies the graded Jacobi identity.
According to (2.2), we have

(−1)αγ [σ(f), [σ(g), σ(h)]]
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= (−1)αγσ
(
〈f, ∂(g)gD2n+1(h)〉 + 〈f, (−1)β+1∂(h)D2n+1(g)h〉

+
〈
f,

∑
i∈M∪T1

(−1)̃i(β+1)Di(g)Di′(h)
〉)

= a+ b + c,

where

a = (−1)αγσ(〈f, ∂(g)gD2n+1(h)〉)
= σ

(
(−1)βγ+γ∂(f)∂(g)D2n+1(h)fD2n+1(g)

+ (−1)βγ+γ+α+1(∂(g)2 − ∂(g))D2n+1(h)D2n+1(f)g

+ (−1)αγ+α+1∂(g)∂(h)D2n+1(f)gD2n+1(h)

+
∑

i∈M∪T1

(−1)βγ+γ+ĩα+ĩ∂(g)D2n+1(h)Di(f)Di′(g)

+
∑

i∈M∪T1

(−1)αβ+ĩγ+ĩ′∂(g)gD2n+1Di(h)Di′ (f)
)
,

b = (−1)αγσ(〈f, (−1)β+1∂(h)D2n+1(g)h〉)
= σ

(
(−1)αβ+β+γ+1∂(f)∂(h)D2n+1(g)D2n+1(h)f

+ (−1)αγ+α+β(∂(h)2 − ∂(h))D2n+1(f)D2n+1(g)h

+ (−1)αγ+α+β∂(g)∂(h)D2n+1(f)D2n+1(g)h

+
∑

i∈M∪T1

(−1)βγ+ĩ′α∂(h)hDi(f)D2n+1Di′(g)+

+
∑

i∈M∪T1

(−1)αβ+ĩγ+β+i∂(h)D2n+1(g)Di(h)Di′ (f)
)
,

c = (−1)αγσ
(〈
f,

∑
i∈M∪T1

(−1)̃i(β+1)Di(g)Di′(h)
〉)

= σ
( ∑

i∈M∪T1

(−1)αγ+ĩβ+ĩ∂(f)fD2n+1Di(g)Di′(h)

+
∑

i∈M∪T1

(−1)αγ+ĩ′β+1∂(f)fDi(g)D2n+1Di′(h)

+
∑

i∈M∪T1

(−1)αγ+ĩβ+α+ĩ′∂(g)D2n+1(f)Di(g)Di′(h)

+
∑

i∈M∪T1

(−1)αγ+ĩβ+α+ĩ′∂(h)D2n+1(f)Di(g)Di′(h)

+
∑

i,j∈M∪T1

(−1)αγ+j̃α+ĩβ+ĩ+j̃Dj(f)Dj′(Di(g)Di′(h))
)
.

Similarly,

(−1)βα[σ(g), [σ(h), σ(f)]] = a′ + b′ + c′,

where

a′ = σ
(
(−1)αγ+α∂(g)∂(h)D2n+1(f)gD2n+1(h)
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+ (−1)αγ+α+β+1(∂(h)2 − ∂(h))D2n+1(f)D2n+1(g)h

+ (−1)αβ+β+1∂(h)∂(f)D2n+1(g)hD2n+1(f)

+
∑

i∈M∪T1

(−1)αγ+ĩβ+α+ĩ∂(h)D2n+1(f)Di(g)Di′(h)

+
∑

i∈M∪T1

(−1)βγ+ĩα+ĩ′∂(h)hD2n+1Di(f)Di′(g)
)
,

b′ = σ
(
(−1)βγ+γ+α+1∂(g)∂(f)D2n+1(h)D2n+1(f)g

+ (−1)βα+β+γ(∂(f)2 − ∂(f))D2n+1(g)D2n+1(h)f

+ (−1)βα+β+γ∂(h)∂(f)D2n+1(g)D2n+1(h)f

+
∑

i∈M∪T1

(−1)αγ+ĩ′β∂(f)fDi(g)D2n+1Di′(h)

+
∑

i∈M∪T1

(−1)βγ+ĩα+γ+ĩ∂(f)D2n+1(h)Di(f)Di′(g)
)
,

c′ = σ
( ∑

i∈M∪T1

(−1)βα+ĩγ+ĩ∂(g)gD2n+1Di(h)Di′ (f)

+
∑

i∈M∪T1

(−1)βα+ĩ′γ+1∂(g)gDi(h)D2n+1Di′(f)

+
∑

i∈M∪T1

(−1)βα+ĩγ+β+ĩ′∂(h)D2n+1(g)Di(h)Di′(f)

+
∑

i∈M∪T1

(−1)βα+ĩγ+β+ĩ′∂(f)D2n+1(g)Di(h)Di′(f)

+
∑

i,j∈M∪T1

(−1)βα+j̃β+ĩγ+ĩ+j̃Dj(g)Dj′(Di(h)Di′(f))
)

and

(−1)βγ [σ(h), [σ(f), σ(g)]] = a′′ + b′′ + c′′,

where

a′′ = σ
(
(−1)βα+β∂(h)∂(f)D2n+1(g)hD2n+1(f)

+ (−1)βα+β+γ+1(∂(f)2 − ∂(f))D2n+1(g)D2n+1(h)f

+ (−1)βγ+γ+1∂(f)∂(g)D2n+1(h)fD2n+1(g)

+
∑

i∈M∪T1

(−1)βα+ĩγ+β+ĩ∂(f)D2n+1(g)Di(h)Di′(f)

+
∑

i∈M∪T1

(−1)αγ+ĩβ+ĩ′∂(f)fD2n+1Di(g)Di′(h)
)
,

b′′ = σ
(
(−1)αγ+α+β+1∂(h)∂(g)D2n+1(f)D2n+1(g)h

+ (−1)βγ+γ+α(∂(g)2 − ∂(g))D2n+1(h)D2n+1(f)g

+ (−1)βγ+γ+α∂(f)∂(g)D2n+1(h)D2n+1(f)g

+
∑

i∈M∪T1

(−1)βα+ĩ′γ∂(g)gDi(h)D2n+1Di′(f)
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+
∑

i∈M∪T1

(−1)αγ+ĩβ+α+ĩ∂(g)D2n+1(f)Di(g)Di′(h)
)
,

c′′ = σ
( ∑

i∈M∪T1

(−1)βγ+ĩα+ĩ∂(h)hD2n+1Di(f)Di′(g)

+
∑

i∈M∪T1

(−1)βγ+ĩ′α+1∂(h)hDi(f)D2n+1Di′(g)

+
∑

i∈M∪T1

(−1)βγ+ĩα+γ+ĩ′∂(f)D2n+1(h)Di(f)Di′(g)

+
∑

i∈M∪T1

(−1)βγ+ĩα+γ+ĩ′∂(g)D2n+1(h)Di(f)Di′(g)

+
∑

i,j∈M∪T1

(−1)βγ+j̃γ+ĩα+ĩ+j̃Dj(h)Dj′(Di(f)Di′(g))
)
.

Moreover, by a straightforward computation, we can obtain the following equation:

σ
( ∑

i,j∈M∪T1

(−1)αγ+j̃α+ĩβ+ĩ+j̃Dj(f)Dj′ (Di(g)Di′(h))

+
∑

i,j∈M∪T1

(−1)βα+j̃β+ĩγ+ĩ+j̃Dj(g)Dj′ (Di(h)Di′ (f))

+
∑

i,j∈M∪T1

(−1)βγ+j̃γ+ĩα+ĩ+j̃Dj(h)Dj′ (Di(f)Di′(g))
)

= 0.

By a careful comparison, we find that the elements on the right-hand side of a, b, c, a′, b′, c′

and a′′, b′′, c′′ can cancel each other out to be zero.
Therefore

(−1)αγ [σ(f), [σ(g), σ(h)]] + (−1)βα[σ(g), [σ(h), σ(f)]] + (−1)βγ [σ(h), [σ(f), σ(g)]] = 0.

Thus O are Lie superalgebras.
Let xi = x1

i = xi0 for all i ∈ M . Set π = (π1, · · · , πn) ∈ Q and ω = 〈n + 1, · · · , 2n+ 1〉 ∈
B(n+ 1). Put ω − 〈n+ i〉 = 〈n+ 1, · · · , n+ i− 1, n+ i+ 1, · · · , 2n+ 1〉 ∈ B(n+ 1).

Lemma 2.1 Let f ∈ A. If Di(f) = 0 for all i ∈ R, then f =
∑

λ∈H

aλy
λ, where aλ ∈ F.

Proof If Di(xkyλξu) = 0 for all i ∈ R, then we have k = (0, · · · , 0) and u = ∅. Hence
xkyλξu = yλ, as desired.

Theorem 2.2 Lie superalgebras O are simple.

Proof Let I be a nonzero ideal of O. Assume that σ(f) is a Z2-homogeneous nonzero
element of I. Suppose that f = f0ξ2n+1 + f1, where f0 �= 0 and D2n+1(fj) = 0 for j = 0, 1. By
(2.2), we have

[σ(f), σ(1)] = (−1)|f |σ(D2n+1(f)) = (−1)|f |σ(f0) ∈ I.

So we can assume D2n+1(f) = 0. Suppose that f = f0ξi′ + f1, where f0 �= 0 and Di′(fj) = 0
for i ∈M , j = 0, 1. Also by (2.2), we get

[σ(f), σ(xi)] = (−1)ĩ′|f |σ(Di′ (f)) = (−1)|f |σ(f0) ∈ I.
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Thus we can assume thatDi′(f) = 0 for all i ∈M . Now suppose that f = xt
if0+x

t−1
i f1+· · ·+ft,

where f0 �= 0 and Di(fj) = 0 for i ∈M , j = 0, 1, · · · , t. As

(adσ(ξi′ ))t(σ(f)) = (adσ(ξi′ ))t−1[σ(ξi′ ), σ(f)] = −(adσ(ξi′ ))t−1σ(Di(f))

= (−1)tσ(Dt
i(f)) = (−1)t

( t∏
j=1

j∗
)
σ(f0) ∈ I,

we can assume that Di(f) = 0 for all i ∈ M . According to Lemma 2.1, f =
∑

λ∈H

aλy
λ. If f

contains at least two nonzero terms, we can suppose that

f = aηy
η + aμy

μ +
∑

λ∈H\{η,μ}
aλy

λ,

where aη �= 0, aμ �= 0. Let

σ(g) : = [σ(ξ2n+1), σ(f)] + (1 − η)σ(f) = σ
(
(μ− η)aμy

μ +
∑

λ∈H\{η,μ}
(λ− η)aλy

λ
)
.

Obviously, σ(g) is an element of I and g ∈ A with one term less than f . Thus we may assume
that σ(yλ) ∈ I. Since 1 − λ �= 0, (1 − λ)−1[σ(yλ), σ(ξ2n+1y

−λ)] = σ(1) ∈ I. In particular,
−[σ(xiξ2n+1), σ(1)] = σ(xi) ∈ I and [σ(ξi′ξ2n+1), σ(1)] = σ(ξi′ ) ∈ I for all i ∈M . Then

[σ(x1), σ(xπyλξω)] = σ(xπyλξω−〈n+1〉) ∈ I,

2(3 − (−1)n)−1[σ(ξn+1ξ2n+1), σ(xπyλξω−〈n+1〉)] = σ(xπyλξω) ∈ I.

We will show that σ(xkyλξu) ∈ I for all k ∈ Q, λ ∈ H , u ∈ B(n+ 1).
Case 1 ξ2n+1 is not contained in u. Due to (2.2), we have

[σ(1), σ(xkyλξuξ2n+1)] = σ(xkyλξu) ∈ I.

Case 2 ξ2n+1 is contained in u. We let xkyλξu = xkyλξvξ2n+1, where v ∈ B(n + 1).
Suppose that 〈n+ 1, · · · , 2n〉 − v = 〈j1, · · · , js〉. Then

[σ(xj′s), · · · , [σ(xj′1 ), σ(xπyλξω)] · · · ] = σ(xπyλξu) ∈ I.

For i ∈M , we have

[σ(ξi′ ), σ(xπyλξu)] = 2−1σ(xπyλξi′ξ
v) − σ(xπ−eiyλξu) ∈ I.

Case 1 implies that σ(xπyλξi′ξ
v) ∈ I. So σ(xπ−eiyλξu) ∈ I. Furthermore,

(adσ(ξi′ ))2(σ(xπyλξu)) = [σ(ξi′ ), [σ(ξi′ ), σ(xπyλξu)]]

= 2−1[σ(ξi′ ), σ(xπyλξi′ξ
v)] − [σ(ξi′ ), σ(xπ−eiyλξu)]

= −σ(xπ−eiyλξi′ξ
v) + σ(xπ−2eiyλξu) ∈ I.

Again by Case 1, we have σ(xπ−2eiyλξu) ∈ I. Similarly, by letting (adσ(ξi′ ))μi act on
σ(xπyλξu), we can obtain σ(xπ−μieiyλξu) ∈ I. For j ∈M and j �= i, we get

[σ(ξj′ ), σ(xπ−μieiyλξu)] = 2−1σ(xπ−μieiyλξj′ξ
v) − σ(xπ−μiei−ejyλξu) ∈ I.
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As σ(xπ−μieiyλξj′ξ
v) ∈ I, σ(xπ−μiei−ejyλξu) ∈ I. Similarly, by letting

n∏
i=1

(adσ(ξi′ ))μi act on

σ(xπyλξu), we can obtain σ(xkyλξu) ∈ I, where ki + μi = πi for all i ∈ M . Therefore I = O.
The proof is completed.

In the sequel, we denote [O,O] by O and write the element σ(f) as f for simplicity.

Remark 2.1 Theorem 2.2 shows that O = O and O are finite-dimensional Lie superalge-

bras with dim O = 2n+1p

∑
i∈M

(si+1)+m

. We call O the Lie superalgebras of O-type.

3 Spanning Sets

Proposition 3.1 Let S = {xki

i ξ2n+1 | i ∈ M, 0 ≤ ki ≤ πi} ∪ {yλ | λ ∈ H} ∪ {ξjξ2n+1 |
j ∈ T1}. Then Lie superalgebras O are generated by S.

Proof Let Y be the subalgebra generated by S. Firstly, we prove the following:
(i) [1, xki

i ξ2n+1] = xki

i ∈ Y for 0 ≤ ki ≤ πi, i ∈M.

(ii) −[xiξ2n+1, ξi′ξ2n+1] = xiξi′ξ2n+1 ∈ Y for i ∈M.

(iii) ξj ∈ Y for j ∈ T. Clearly,

[1, ξjξ2n+1] = ξj ∈ Y, j ∈ T1.

According to (ii) and the equation above, we have

[xiξi′ξ2n+1, 1] = xiξi′ ∈ Y,

[ξi′ , xiξ2n+1] − 2−1xiξi′ = −ξ2n+1 ∈ Y.

(iv) xki

i x
kj

j ∈ Y for 0 ≤ ki ≤ πi, 0 ≤ kj ≤ πj , i, j ∈M. By virtue of (i), we get

[xki

i , x
kj

j ξ2n+1] = (1 − 2−1ε0(ki))xki

i x
kj

j .

If 1 − 2−1ε0(ki) �≡ 0 (mod p), then xki

i x
kj

j ∈ Y. In particular,

[xπi

i , x
kj

j ξ2n+1] = (1 − 2−1(p− 1))xπi

i x
kj

j =
3
2
xπi

i x
kj

j ∈ Y.

If 1 − 2−1ε0(ki) ≡ 0 (mod p), then ki �= πi. As 0 ≤ ε0(ki) < p, ε0(ki) = 2. Thus (ki + 1)∗ = 3.
By (i), we have

[xki+1
i , x

kj

j ξ2n+1] = −2−1xki

i x
kj

j ∈ Y.

(v) xiξi′ξj ∈ Y for i ∈M and j ∈ T1. (iii) implies that

[xki

i ξ2n+1, ξi′ ] − k∗i x
ki−1
i ξ2n+1 = −2−1xki

i ξi′ ∈ Y,

[ξi′ , ξjξ2n+1] = 2−1ξi′ξj ∈ Y.

It follows that x2
i ξi′ ∈ Y. Hence

[x2
i ξi′ , ξi′ξj ] = 2xiξi′ξj ∈ Y.
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(vi) We will use induction on k to show that ξj1ξj2 · · · ξjk
∈ Y , where jt ∈ T1, 1 ≤ t ≤ k.

The conclusion is true for the case k = 1 by (iii). Suppose that ξj1ξj2 · · · ξjl
∈ Y for l ≤ k − 1.

According to (v), we get

[ξj1ξj2 · · · ξjk−1 , xj′1ξj1ξjk
] = (−1)k−2ξj1ξj2 · · · ξjk

∈ Y.

Let ω = ω − 〈2n+ 1〉. In particular, we have ξω ∈ Y .
Now we verify that ξj1ξj2 · · · ξjk

ξ2n+1 ∈ Y for jt ∈ T1, 1 ≤ t ≤ k. The conclusion above and
(ii) yield that

[xj′1ξj1ξ2n+1, ξj1ξj2 · · · ξjk
] = (−1)k−1ξj1ξj2 · · · ξjk

ξ2n+1 ∈ Y.

In particular, we have ξω ∈ Y .
(vii) We propose to prove that xπ1e1+···+πkekξ2n+1 ∈ Y by induction on k.
Clearly the assertion is true for the case k = 1. Suppose that xπ1e1+···+πk−1ek−1ξ2n+1 ∈ Y .

Thus
[xπ1e1+···+πk−1ek−1ξ2n+1, x

πkekξ2n+1] = (2−1k − 1)xπ1e1+···+πkekξ2n+1.

If 2−1k− 1 �≡ 0 (mod p), then xπ1e1+···+πkekξ2n+1 ∈ Y. If 2−1k− 1 ≡ 0 (mod p), then 2−1k+1 �≡
0 (mod p). The inductive hypothesis implies that

[xπ1e1+···+πk−1ek−1ξ2n+1, ξn+1ξ2n+1] = −(2−1k + 1)xπ1e1+···+πk−1ek−1ξn+1ξ2n+1 ∈ Y.

By virtue of (iv), we see that

[xπ1e1+···+πk−1ek−1ξn+1ξ2n+1, x1x
πk

k ] = xπ1e1+···+πkekξ2n+1 ∈ Y.

In particular, we have xπξ2n+1 ∈ Y . Since 1 − λ �= 0,

(1 − λ)−1[yλ, xπξ2n+1] = xπyλ ∈ Y.

(viii) xπyλξ2n+1 ∈ Y. By (ii) and (vii), we obtain

−[xπyλ, xiξi′ξ2n+1] = xπyλξ2n+1 ∈ Y.

(ix) xπyλξω ∈ Y and xπyλξω ∈ Y. (v) and (vii) yield that

[xπyλξ2n+1, x2ξn+2ξn+1] = (p− 1)xπ−e2x2y
λξ2n+1ξn+1 = xπyλξn+1ξ2n+1 ∈ Y.

Hence

[xπyλξn+1ξ2n+1, x3ξn+3ξn+2] = xπyλξn+1ξn+2ξ2n+1 ∈ Y,

[xπyλξn+1ξn+2ξ2n+1, x4ξ4′ξn+3] = xπyλξn+1ξn+2ξn+3ξ2n+1 ∈ Y, · · · .

Utilizing this procedure continuously, we can obtain xπyλξn+1 · · · ξ2n−1ξ2n+1 ∈ Y . Thus

[xπyλξ1 · · · ξ2n−1ξ2n+1, ξn+1ξ2n] = (p− 1)xπ−e1yλξn+1 · · · ξ2n−1ξ2n+1ξ2n = xπ−e1yλξω ∈ Y.

Since 4xiξ2n+1 − 2[x2
i ξ2n+1, ξi′ ] = x2

i ξi′ ∈ Y, we have

[xπ−e1yλξω, x2
1ξ1′ ] = (p− 2)xπ−2e1x2

1y
λξω + (−1)n+12x1x

π−e1yλξn+2 · · · ξ2nξ2n+1ξn+1
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= −4xπyλξω ∈ Y.

The proof of xπyλξω ∈ Y is completely similar to the proof above.
Then we prove the result of Proposition 3.1. Let c : = xkyλξu be any basis element of O.

We only need to show that c ∈ Y .
If u = ω, i.e., c = xkyλξω , then we will prove c ∈ Y by induction on dc : =

∑
i∈M

πi −
∑

i∈M

ki.

If dc = 0, it follows from (ix) that c = xπyλξω ∈ Y. Let dc > 0. Then there is an i ∈ M , such
that ki < πi. By the induction hypothesis, we have xk+eiyλξω ∈ Y. Thus

[xk+eiyλξω, ξi′ ] = (ki + 1)∗xkyλξω ∈ Y.

If u �= ω, we let u = ω − 〈j1, · · · , jh〉, and then

xkyλξu =
h∏

i=1

(adxj′i )(x
kyλξω) ∈ Y.

If u = ω, i.e., c = xkyλξω, then we still prove c ∈ Y by induction on dc. If dc = 0, according
to (ix), we have c = xπyλξω ∈ Y. Let dc > 0. Then there is an i ∈ M , such that ki < πi. By
the induction hypothesis, we see that xk+eiyλξω ∈ Y. Hence

[xk+eiyλξω, ξi′ ] = (ki + 1)∗xkyλξω ∈ Y.

If u �= ω, we let u = ω − 〈j1, · · · , jh〉. The conclusion above and (2.1) yield xkxj′iy
λξω = 0 ∈ Y

or xkxj′iy
λξω = x

k+ej′
i yλξω ∈ Y . Therefore,

(−1)n+1[xkyλξω, xj′1 ] − 2−1xkxj′1y
λξω = xkyλξω−〈j1〉 ∈ Y.

Clearly, the assertion above is true for all k. By (2.1), we get

xkxj′2y
λξω−〈j1〉 = 0 or xkxj′2y

λξω−〈j1〉 = x
k+ej′2 yλξω−〈j1〉 ∈ Y.

Then
(−1)n[xkyλξω−〈j1〉, xj′2 ] − 2−1xkxj′2y

λξω−〈j1〉 = xkyλξω−〈j1,j2〉 ∈ Y.

Utilizing this procedure continuously, we have xkyλξu ∈ Y . Hence O ⊆ Y . Consequently
Y = O.

4 Superderivations

We know that O =
⊕

α∈Z2

Oα, where

Oα = span
F
{xkyλξu | k ∈ Q, λ ∈ H, u ∈ B(n+ 1), α = |u| + 1}.

For i ∈ Z, we let
Oi = span

F

{
xkyλξu

∣∣∣ ∑
j∈M

kj + ‖u‖ − 2 = i
}
.

(2.2) shows that [Oi,Oj ] ⊆ Oi+j for all i, j ∈ Z. Hence O =
τ⊕

i=−2

Oi are Z-graded Lie superal-

gebras, where τ =
∑

i∈M

πi + n. Clearly, O−2 = span
F
{yλ | λ ∈ H}. If f ∈ Oi, then f is called a

Z-homogeneous element and i is the Z-degree of f which is denoted by zd(f).
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Let DerαO denote the linear space of all derivations of degree α of O, i.e.,

DerαO = {ϕ ∈ DerO | ϕ(Oβ) ⊆ Oα+β , ∀β ∈ Z2},
and let DerO : =

⊕
α∈Z2

DerαO be the superderivation algebras of O. For t ∈ Z, we let

DertO = {ϕ ∈ DerO | ϕ(Oi) ⊆ Oi+t, ∀ i ∈ Z}.
Then DerO =

⊕
t∈Y

DertO are Z-graded Lie superalgebras, where Y = {−ζ,−ζ + 1, · · · , ζ} and

ζ = τ + 2. Therefore, in order to determine the superderivation algebras DerO, we only need
to determine h(DertO) for all t ∈ Y.

Lemma 4.1 Let ϕ ∈ h(DerO) and f ∈ O. Suppose ϕ(xi) = ϕ[f, xi] = ϕ(ξj) = ϕ[f, ξj ] = 0
for all i ∈M and j ∈ T1. Then ϕ(f) ∈ O−2.

Proof Let f =
∑

α∈Z2

fα, where fα ∈ Oα. By ϕ[f, xi] = 0 for all i ∈M, we have

∑
α∈Z2

ϕ[fα, xi] = 0.

Since ϕ, fα and xi are all Z2-homogeneous elements, ϕ[fα, xi] ∈ h(O). Then
∑

α∈Z2

ϕ[fα, xi] = 0

yields ϕ[fα, xi] = 0 for all α ∈ Z2, i.e., [ϕ(fα), xi] + (−1)α|ϕ|[fα, ϕ(xi)] = 0. As ϕ(xi) = 0,
[ϕ(fα), xi] = 0 for all i ∈M . Similarly, [ϕ(fα), ξi′ ] = 0 for all i ∈M . Hence

[ϕ(fα), 1] = [ϕ(fα), [xi, ξi′ ]] = [[ϕ(fα), xi], ξi′ ] + (−1)α+|ϕ|[xi, [ϕ(fα), ξi′ ]] = 0.

Let h := ϕ(fα) ∈ O. (2.2) implies that (−1)|h|D2n+1(h) = [ϕ(fα), 1] = 0. Moreover,
[ϕ(fα), xi] = (−1)ĩ′(|ϕ|+α)Di′(h) = 0 and [ϕ(fα), ξi′ ] = Di(h) = 0 for all i ∈M. Thus Di(h) = 0
for all i ∈ R. By virtue of Lemma 2.1, we get h ∈ O−2, i.e., ϕ(fα) ∈ O−2. Hence ϕ(f) ∈ O−2,

as desired.

Lemma 4.2 Let t ∈ Z and ϕ ∈ h(DertO). If ϕ(Oj) = 0 for j = −2, −1, · · · , s, where
s ≥ −1 and t+ s ≥ −2, then ϕ = 0.

Proof Let j ≥ s. We will prove by induction on j that ϕ(Oj) = 0. Let j > s and f ∈ Oj .
It is easy to see that [f, xi], [f, ξi′ ] ∈ Oj−1. Then the assumption ϕ(Oj−1) = 0 implies that
ϕ(xi) = ϕ[f, xi] = ϕ(ξi′ ) = ϕ[f, ξi′ ] = 0 for all i ∈M . By Lemma 4.1, ϕ(f) ∈ O−2. Since
t+ j > t+ s ≥ −2, ϕ(f) ∈ O−2 ∩ Ot+j = 0. So ϕ(Oj) = 0, that is, ϕ(O) = 0. Therefore ϕ = 0.

Proposition 4.1 Der−2O = ad O−2.

Proof Let ϕ ∈ h(Der−2O). Clearly ϕ(O−1) = ϕ(O−2) = 0. Since ϕ(O0) ⊆ O−2, we
may assume that ϕ(ξ2n+1y

λ) =
∑

η∈H

aηy
η with aη ∈ F. As η − λ ∈ H , η − λ �= 1. Let

g =
∑

η∈H

(η − λ − 1)−1aηy
η−λ and ψ = ϕ − ad g. Then considering Z-degree and by (2.2), we

obtain
ψ(O−1) = ψ(O−2) = 0, ψ(ξ2n+1y

λ) = 0, ∀λ ∈ H.

Clearly ψ(xixl), ψ(xjξl′y
λ) ∈ O−2 for all i, l, j ∈ M and λ ∈ H . Applying ψ to xixjy

λ =
−[xixl, xjξl′y

λ], we get ψ(xixjy
λ) = 0. Similarly, we have

ψ(xiξjy
λ) = ψ(ξlξνyλ) = 0, j �= i′, ∀ i ∈M, ∀ l, j, ν ∈ T1, ∀λ ∈ H.
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Suppose that ψ(xiξi′y
λ) =

∑
θ∈H

aθy
θ, where aθ ∈ F. Note that ψ(ξ2n+1) = 0. By applying ψ to

λxiξi′y
λ = [xiξi′y

λ, ξ2n+1], we have
∑

θ∈H

(θ − λ− 1)aθy
θ = 0. Then aθ = 0, i.e., ψ(xiξi′y

λ) = 0.

Thus ψ(O0) = 0. By virtue of Lemma 4.2, ψ = 0. Hence ϕ = ad g ∈ ad O−2, as desired.
If i ∈ M, then let τ(i) = πi. If i ∈ T, then let τ(i) = 1. An element f of O is called

τ(i)-truncated if Dτ(i)
i (f) = 0, where i ∈ R.

For i ∈ R, we define a linear transformation τi of O, such that τi(σ(f)) = σ(τi(f)) and

τi(xkyλξu) =
{

(ki + 1)∗xk+eiyλξu, if i ∈M,
xkyλξiξ

u, if i ∈ T,

where we set xk+ei = 0 if k + ei �∈ Q.

By the convention before and the definition above, we still write τi(σ(f)) as τi(f). Then we
have the following lemma directly.

Lemma 4.3 (i) If f ∈ O is μ(i)-truncated, then Diτi(f) = f for all i ∈ R.

(ii) Diτj = (−1)̃i j̃τjDi, where i, j ∈ R with i �= j.

Lemma 4.4 Let ft1 , · · · , ftk
∈ O, where t1, · · · , tk ∈ R. If fi is μ(i)-truncated for i =

t1, · · · , tk, and Di(fj) = (−1)̃i j̃Dj(fi) for i, j = t1, · · · , tk, then there is an f ∈ L, such that
Di(f) = fi for i = t1, · · · , tk.

Proof We will use induction on k. If k = 1, then let f = τt1(ft1). By Lemma 4.3(i), we
see that Dt1(f) = Dt1τt1(ft1) = ft1 . Assume that there is g ∈ O, such that Di(g) = fi for
i = t1, · · · , tk−1. Let f = g + τtk

(ftk
−Dtk

(g)). According to Lemma 4.3(ii), we obtain

Di(f) = fi +Diτtk
(ftk

−Dtk
(g))

= fi + (−1)̃it̃kτtk
(Di(ftk

) −DiDtk
(g))

= fi + (−1)̃it̃kτtk
((−1)̃it̃kDtk

(fi) − (−1)̃it̃kDtk
Di(g))

= fi.

As ftk
−Dtk

(g) is μ(tk)-truncated, by virtue of Lemma 4.3(i), we have

Dtk
(f) = Dtk

(g) +Dtk
τtk

(ftk
−Dtk

(g))

= Dtk
(g) + ftk

−Dtk
(g)

= ftk
.

The result follows.

Lemma 4.5 Assume that ϕ ∈ h(DerO). Let f2n+1 = (−1)|ϕ|+1ϕ(1), fi = ϕ(ξi′ ) +
(−1)|ϕ|2−1f2n+1ξi′ and fi′ = (−1)|ϕ|+1ϕ(xi) − 2−1f2n+1xi for all i ∈M. Then the following
statements hold:

(a) Di(fj) = (−1)̃i j̃Dj(fi) for all i, j ∈ R.

(b) fi is μ(i)-truncated for all i ∈ R.

Proof (a) By the assumption, we have

ϕ(1) = (−1)|ϕ|+1f2n+1, (4.1)

ϕ(xi) = (−1)|ϕ|+1(fi′ + 2−1f2n+1xi), ∀ i ∈M, (4.2)



Superderivation Algebras of Modular Lie Superalgebras of O-Type 459

ϕ(ξi′ ) = fi + (−1)|ϕ|+12−1f2n+1ξi′ , ∀ i′ ∈ T1. (4.3)

Note that |fi| = |ϕ| + 1 and |fi′ | = |f2n+1| = |ϕ| for all i ∈M . We will proceed in six steps.
(i) Applying ϕ to [1, ξi′ ] = 0 for all i ∈M , we obtain

[ϕ(1), ξi′ ] + (−1)|ϕ|(|1|+1)[1, ϕ(ξi′)] = 0.

Utilizing (4.1) and (4.3), we get

[(−1)|ϕ|+1f2n+1, ξi′ ] + (−1)|ϕ|[1, fi + (−1)|ϕ|+12−1f2n+1ξi′ ] = 0.

By (2.2), a direct computation shows that

Di(f2n+1) = (−1)|ϕ|+1D2n+1(f2n+1)ξi′ +D2n+1(fi).

So f2n+1 is μ(2n + 1)-truncated, i.e., D2n+1(f2n+1) = 0. Thus Di(f2n+1) = D2n+1(fi) for all
i ∈M.

(ii) Similarly, applying ϕ to [1, xi] = 0 for all i ∈M , we have

[ϕ(1), xi] + (−1)|ϕ|(|1|+1)[1, ϕ(xi)] = 0.

From (4.1)–(4.2), we get

[(−1)|ϕ|+1f2n+1, xi] + (−1)|ϕ|[1, (−1)|ϕ|+1(fi′ + 2−1f2n+1xi)] = 0.

Then
D2n+1(f2n+1)xi +Di′(f2n+1) +D2n+1(fi′) = 0.

Hence D2n+1(fi′) = −Di′(f2n+1) for all i′ ∈ T1.

(iii) Applying ϕ to [ξi′ , ξj′ ] = 0 for all i′, j′ ∈ T1, together with (4.3), yields

[ϕ(ξi′ ), ξj′ ] + [ξi′ , ϕ(ξj′ )] = 0,

[fi + (−1)|ϕ|+12−1f2n+1ξi′ , ξj′ ] + [ξi′ , fj + (−1)|ϕ|+12−1f2n+1ξj′ ] = 0.

A direct computation yields

(−1)|fi|2−1D2n+1(fi)ξj′ +Dj(fi) + 4−1D2n+1(f2n+1)ξi′ξj′

+ (−1)|ϕ|+1Dj(f2n+1)ξi′ + 2−1ξi′D2n+1(fj) −Di(fj)

− (−1)|ϕ|+14−1ξi′D2n+1(f2n+1)ξj′ + (−1)|ϕ|Di(f2n+1)ξj′ = 0.

As Di(f2n+1) = D2n+1(fi) for all i ∈M, Di(fj) = Dj(fi) for all i, j ∈M.

(iv) Applying ϕ to [xi, xj ] = 0 for all i, j ∈M , and by (4.2), we have

[ϕ(xi), xj ] + (−1)|ϕ|(|xi|+1)[xi, ϕ(xj)] = 0,

[(−1)|ϕ|+1(fi′ + 2−1f2n+1xi), xj ] + (−1)|ϕ|[xi, (−1)|ϕ|+1(fj′ + 2−1f2n+1xj)] = 0.

A direct computation shows that

2−1D2n+1(fi′)xj +Dj′(fi′) + 4−1D2n+1(f2n+1)xixj

+ 2−1xiDj′(f2n+1) + 2−1xiD2n+1(fj′ ) +Di′(fj′ )
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+ 4−1xixjD2n+1(f2n+1) + 2−1xjDi′(f2n+1) = 0.

By the claim above, we see that Di′(fj′) = −Dj′(fi′) for all i′, j′ ∈ T1.

(v) Applying ϕ to [xi, ξi′ ] = 1 for all i ∈M , and by (4.2)–(4.3), we get

[ϕ(xi), ξi′ ] + (−1)|ϕ|(|xi|+1)[xi, ϕ(ξi′ )] = ϕ(1),

[(−1)|ϕ|+1(fi′ + 2−1f2n+1xi), ξi′ ] + (−1)|ϕ|[xi, fi + (−1)|ϕ|+12−1f2n+1ξi′ ] = (−1)|ϕ|+1f2n+1.

A direct computation ensures that

(−1)|ϕ|2−1D2n+1(fi′)ξi′ +Di(fi′) + (−1)|ϕ|4−1D2n+1(f2n+1)xiξi′

+ 2−1f2n+1 + 2−1xiDi(f2n+1) − 2−1xiD2n+1(fi) −Di′(fi)

+ (−1)|ϕ|4−1D2n+1(f2n+1)xiξi′ + (−1)|ϕ|2−1Di′(f2n+1)ξi′ + 2−1f2n+1 = f2n+1.

Thus Di(fi′) = Di′(fi) for all i ∈M.

(vi) Applying ϕ to [xi, ξj′ ] = 0 for all i ∈M , j′ ∈ T1, j �= i, and by (4.2)–(4.3), we obtain

[ϕ(xi), ξj′ ] + (−1)|ϕ|(|xi|+1)[xi, ϕ(ξj′ )] = 0,

[(−1)|ϕ|+1(fi′ + 2−1f2n+1xi), ξi′ ] + (−1)|ϕ|[xi, fj + (−1)|ϕ|+12−1f2n+1ξj′ ] = 0.

By computation, it follows that

(−1)|ϕ|2−1D2n+1(fi′)ξj′ +Dj(fi′) + (−1)|ϕ|4−1D2n+1(f2n+1)xiξj′

+ 2−1xiDj(f2n+1) − 2−1xiD2n+1(fj) −Di′(fj)

+ (−1)|ϕ|4−1D2n+1(f2n+1)xiξj′ + (−1)|ϕ|2−1Di′(f2n+1)ξj′ = 0.

Therefore Dj(fi′) = Di′(fj) for all i ∈M and j′ ∈ T1 with j �= i.

Now we conclude that Di(fj) = (−1)̃i j̃Dj(fi) for all i, j ∈ R.

(b) By the first part, we obtain 2Di(fi) = 0, that is, fi is μ(i)-truncated for all i ∈ T .
For i ∈M , we let fi = exπi

i + hi, where e does not contain xi and hi does not contain xπi

i .
By the assumption of this lemma, we have

Di(fj) = Dj(fi) = Dj(e)xπi

i +Dj(hi), j �= i, ∀ j ∈ R.

As Di(fj) and Dj(hi) are μ(i)-truncated, Dj(e) = 0 for all j ∈ R with j �= i. Noticing that
Di(e) = 0, it follows that Dj(e) = 0 for all j ∈ R. Lemma 2.1 yields e ∈ O−2.

Applying ϕ to [1, ξ2n+1] = 1, we get

[ϕ(1), ξ2n+1] + (−1)|ϕ|(|1|+1)[1, ϕ(ξ2n+1)] = ϕ(1).

Put ϕ(ξ2n+1) = g. Then by (4.1), we obtain

[(−1)|ϕ|+1f2n+1, ξ2n+1] + (−1)|ϕ|[1, g] = (−1)|ϕ|+1f2n+1.

Thus

(−1)|ϕ|D2n+1(f2n+1)ξ2n+1 + ∂(f2n+1) −D2n+1(g) = f2n+1.
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By the convention before, we see that

D2n+1(g) = ∂(f2n+1) − f2n+1 = (∂(f2n+1) − 1)f2n+1.

Applying ϕ to [ξi′ , ξ2n+1] = 2−1ξi′ for all i ∈M, we have

[ϕ(ξi′ ), ξ2n+1] + [ξi′ , ϕ(ξ2n+1)] = 2−1ϕ(ξi′ ).

Utilizing (4.3), we get

[fi + (−1)|ϕ|+12−1f2n+1ξi′ , ξ2n+1] + [ξi′ , g] = 2−1fi + (−1)|ϕ|+12−1f2n+1ξi′ .

A direct computation shows that

∂(fi) + (−1)|ϕ|+1D2n+1(fi)ξ2n+1 + (−1)|ϕ|+12−1∂(f2n+1ξi′ )

+ 2−1D2n+1(f2n+1)ξi′ξ2n+1 + 2−1ξi′D2n+1(g) −Di(g)

= 2−1fi + (−1)|ϕ|+14−1f2n+1ξi′ .

Since D2n+1(f2n+1) = 0, D2n+1(fi) = Dif2n+1 and

∂(f2n+1ξi′ ) = (∂(f2n+1) − 2−1)f2n+1ξi′ ,

ξi′D2n+1(g) = (∂(f2n+1) − 1)ξi′f2n+1,

∂(fi) = ∂(exπi

i ) + ∂(hi) = (∂(e) + 2−1)exπi

i + ∂(hi),

we have

2−1fi = 2−1exπi

i + 2−1hi = (∂(e) + 2−1)exπi

i + ∂(hi) + (−1)|ϕ|+1Di(f2n+1) −Di(g).

It follows that
∂(e)xπi

i = (2−1 − ∂(hi))hi + (−1)|ϕ|Di(f2n+1) +Di(g).

Because every term on the right-hand side of the equation above is μ(i)-truncated, ∂(e) = 0.
Since e ∈ O−2, e = 0. Thus fi is μ(i)-truncated for all i ∈M . Hence the result holds.

Put Δ = {θ : H → F | θ(λ + η) = θ(λ) + θ(η), ∀λ, η ∈ H}. For θ ∈ Δ, we define a linear
transformation Dθ of O, such that Dθ(σ(xkyλξu)) = θ(λ)σ(xkyλξu). Clearly Dθ ∈ Der0O.

Lemma 4.6 Let ϕ ∈ h(DerO). If ϕ(xi) = ϕ(ξj) = ϕ(ξ2n+1) = 0 for all i ∈M and j ∈ T1,

then there is a θ ∈ Δ, such that ϕ(yλ) = θ(λ)yλ for all λ ∈ H.

Proof Clearly, ϕ(xi) = ϕ[yλ, xi] = ϕ(ξj) = ϕ[yλ, ξj ] = 0 for all i ∈M and j ∈ T1. By
Lemma 4.1, we may assume ϕ(yλ) =

∑
η∈H

aηy
η ∈ O−2 with aη ∈ F. Applying ϕ to [yλ, ξ2n+1] =

(1 − λ)yλ, we have [ ∑
η∈H

aηy
η, ξ2n+1

]
= (1 − λ)

∑
η∈H

aηy
η,

∑
η∈H

aη(1 − η)yη = (1 − λ)
∑
η∈H

aηy
η.

It follows that aη = 0 for all η ∈ H\{λ}. Thus ϕ(yλ) = θ(λ)yλ, where θ(λ) = aλ. Note that
ϕ(1) = ϕ[xi, ξi′ ] = 0. Applying ϕ to [1, yηξ2n+1] = yη, we get [1, ϕ(yηξ2n+1)] = ϕ(yη). Let
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ϕ(yηξ2n+1) = z. By computation, we can conclude that D2n+1(z) = θ(η)yη. Now applying ϕ
to [yλ, yηξ2n+1] = (1 − λ)yλ+η , we obtain

[θ(λ)yλ, yηξ2n+1] + [yλ, z] = (1 − λ)θ(λ + η)yλ+η.

Furthermore,
(1 − λ)θ(λ)yλ+η + (1 − λ)θ(η)yλ+η = (1 − λ)θ(η + λ)yλ+η.

As 1 − λ �= 0, θ(λ+ η) = θ(λ) + θ(η), i.e., θ ∈ Δ.

Proposition 4.2 Let ϕ ∈ h(DertO) with t ≥ −1. Then there exist g ∈ O and θ ∈ Δ, such
that ϕ = ad g +Dθ.

Proof We first prove that there exist g ∈ O and θ ∈ Δ, such that (ϕ− adg −Dθ)(Oj) = 0
for j = −2, −1.

In fact, we can suppose that fi is defined as in Lemma 4.5. Then Di(fj) = (−1)̃i j̃Dj(fi)
and fi is μ(i)-truncated for all i, j ∈ R. According to Lemma 4.4, there is an f ∈ O, such that
Di(f) = fi for all i ∈ R.

Let ϕ1 = ϕ− ad f. Note that |f | + ĩ = |fi| = |ϕ| + ĩ′. Due to Lemma 4.5, we know that

ϕ1(xi) = ϕ(xi) − [f, xi] = ϕ(xi) − ((−1)|f |2−1D2n+1(f)xi + (−1)|f |Di(f)) = 0, ∀ i ∈M.

Similarly, ϕ1(ξj) = 0 for all j ∈ T1. Moreover,

ϕ1[ξ2n+1, xi] = −2−1ϕ1(xi) = 0, ϕ1[ξ2n+1, ξj ] = −2−1ϕ1(ξj) = 0.

By Lemma 4.1, we can suppose ϕ1(ξ2n+1) =
∑

λ∈H

αλy
λ with αλ ∈ F. Put z :=

∑
λ∈H

(λ−1)−1αλy
λ

and ϕ2 = ϕ1 − adz. Then

ϕ2(ξ2n+1) = ϕ1(ξ2n+1) −
[ ∑

λ∈H

(λ− 1)−1αλy
λ, ξ2n+1

]
= 0,

ϕ2(xi) = ϕ1(xi) −
[ ∑

λ∈H

(λ− 1)−1αλy
λ, xi

]
= 0, ∀ i ∈M,

ϕ2(ξj) = ϕ1(ξj) −
[ ∑

λ∈H

(λ− 1)−1αλy
λ, ξj

]
= 0, ∀ j ∈ T1.

By virtue of Lemma 4.6, there is θ ∈ Δ, such that ϕ2(yλ) = θ(λ)yλ. Let ϕ3 = ϕ2 −Dθ. Then
ϕ3(yλ) = 0 for all λ ∈ H, that is, ϕ3(O−2) = 0. Moreover, ϕ3(xi) = ϕ3(ξj) = ϕ3(ξ2n+1) =
0 for all i ∈M and j ∈ T1. Since ϕ3[xiy

λ, xi] = ϕ3[xiy
λ, ξj ] = 0 for all i ∈M and j ∈ T1,

Lemma 4.1 yields ϕ3(xiy
λ) ∈ O−2 for all i ∈M. Similarly, ϕ3(ξjyλ) ∈ O−2, ϕ3(xiξi′ ) ∈ O−2,

∀i ∈M, ∀j ∈ T1. Applying ϕ3 to xiy
λ = −[xiξi′ , xiy

λ] and by [O−2, xiy
λ] = [xiξi′ ,O−2] = 0,

we have
ϕ3(xiy

λ) = −[ϕ3(xiξi′ ), xiy
λ] − [xiξi′ , ϕ3(xiy

λ)] = 0, ∀ i ∈M.

Similarly, ϕ3(ξjyλ) = 0 for all j ∈ T1. Thus ϕ3(O−1) = 0. Lemma 4.2 implies ϕ3 = 0. Set
g := f + z. Then ϕ = ad(g) +Dθ.

Lemma 4.7 Let t > 2 and ϕ ∈ h(Der−tO). Then ϕ(xt−1
i xl) = ϕ(xt−1

i ξj) = 0 for all j ∈ T1,
i, l ∈M with l �= i.
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Proof For i ∈M , if j = i′, let ϕ(xt−1
i ξi′) =

∑
η∈H

aiηy
η ∈ O−2 with aiη ∈ F. Applying ϕ to

[xt−1
i ξi′ , xiξi′ ] = (t− 1)∗xt−2

i xiξi′ − xt−1
i ξi′ =

{−xt−1
i ξi′ , ε0(t− 1) = 0,

((t− 1)∗ − 1)xt−1
i ξi′ , ε0(t− 1) �= 0,

we have

[ϕ(xt−1
i ξi′), xiξi′ ] + [xt−1

i ξi′ , ϕ(xiξi′ )] =
{−ϕ(xt−1

i ξi′), ε0(t− 1) = 0,
((t− 1)∗ − 1)ϕ(xt−1

i ξi′), ε0(t− 1) �= 0,

which combined with [O−2, xiξi′ ] = 0 and ϕ(xiξi′) ∈ O−t = 0 for t > 2 yields the following:
If ε0(t− 1) = 0, then it is obvious that ϕ(xt−1

i ξi′) = 0.
If ε0(t− 1) �= 0 and (t− 1)∗ − 1 �= 0, then ϕ(xt−1

i ξi′) = 0. When (t− 1)∗ − 1 = 0, we have
ε0(t− 1) = 1, since (t− 1)∗ = ε0(t− 1) and 0 < ε0(t− 1) < p. Letting ϕ act on

[xt−1
i ξi′ , ξ2n+1] = (1 − 2−1ε0(t− 1) − 2−1)xt−1

i ξi′ = 0,

from the assumption above and ϕ(ξ2n+1) ∈ O−t = 0 for t > 2, we get

[ϕ(xt−1
i ξi′), ξ2n+1] + [xt−1

i ξi′ , ϕ(ξ2n+1)] =
[ ∑

η∈H

aiηy
η, ξ2n+1

]
=

∑
η∈H

aiη(1 − η)yη = 0.

Hence aiη = 0 for all η ∈ H , that is, ϕ(xt−1
i ξi′) = 0.

Now let j �= i′ and l �= i. By applying ϕ to

[xt−1
i ξi′ , xixl] = −xt−1

i xl and [xt−1
i ξi′ , xiξj ] = −xt−1

i ξj ,

we see that ϕ(xt−1
i xl) = ϕ(xt−1

i ξj) = 0. Thus for every i ∈M , we have ϕ(xt−1
i xl) = ϕ(xt−1

i ξj) =
0 for all l ∈M and j ∈ T1 with l �= i.

Lemma 4.8 Let t > 2 and ϕ ∈ h(Der−tO). If ϕ(xt
i) = 0, then ϕ(xk

i ξ2n+1) = ϕ(ξjξ2n+1) =
0 for all i ∈M , j ∈ T1 and 0 ≤ k ≤ πi.

Proof We proceed in two steps.
(i) We propose to prove that

ϕ(xk
i xl) = ϕ(xk

i ξj) = 0, ∀ i ∈M, ∀ j ∈ T1, 0 ≤ k ≤ πi + 1.

We first show that ϕ(xk
i ) = 0 by induction on k. If 0 ≤ k < t, then ϕ(xk

i ) ∈ O−t+k−2 = 0.
Moreover, ϕ(xt

i) = 0. Suppose that k > t and ϕ(xk−1
i ) = 0. Clearly, ϕ(xi) = ϕ(ξj) = 0.

Applying ϕ to
[xk

i , ξj ] = k∗xk−1
i δi′j and [xk

i , xν ] = 0,

we obtain ϕ[xk
i , ξj ] = ϕ[xk

i , xν ] = 0 for all ν ∈M and j ∈ T1. Lemma 4.1 ensures that ϕ(xk
i ) ∈

O−2 ∩ O−t+k−2 = 0. It is easy to see that the claim ϕ(xk
i ) = 0 is true for all k ≥ 0.

Then we prove that ϕ(xk
i xl) = 0. If l = i, then by the argument above, we have

ϕ(xk
i xi) =

{
0, ε0(k + 1) = 0,
ϕ(xk+1

i ) = 0, ε0(k + 1) �= 0.



464 X. N. Xu and X. J. Li

Let l �= i. We use induction on k. If k < t − 1, then ϕ(xk
i xl) ∈ O−t+k−1 = 0. Lemma 4.7

implies ϕ(xt−1
i xl) = 0. Assume that k > t− 1 and ϕ(xk−1

i xl) = 0. By the induction hypothesis
and ϕ(xk

i ) = 0, we see that

ϕ([xk
i xl, xν ]) = 0 and ϕ([xk

i xl, ξj ]) = ϕ(δijk∗xk−1
i xl + δljx

k
i ) = 0, ∀ ν ∈M, ∀ j ∈ T1.

It follows from Lemma 4.1 that ϕ(xk
i xl) ∈ O−2 ∩ O−t+k−1 = {0}.

Finally, we prove ϕ(xk
i ξj) = 0 also by induction on k. If k < t− 1, then ϕ(xk

i ξj) ∈ O−t+k−1

= 0. If k = t− 1, by Lemma 4.7, we get ϕ(xt−1
i ξj) = 0. Now let k > t− 1 and ϕ(xk−1

i ξj) = 0.
Similarly, by letting ϕ act on the equalities below,

[xk
i ξj , xν ] = −δjνx

k
i and [xk

i ξj , ξι] = δiιk
∗xk−1

i ξj , ∀ ν ∈M, ∀ ι ∈ T1,

we see that the result is zero. Again Lemma 4.1 yields ϕ(xk
i ξj) ∈ O−2 ∩ O−t+k−1 = {0}.

(ii) Now we return to the proof of this lemma. If t > 3, then ϕ(ξjξ2n+1) ∈ O−t+1 = 0. Put
t = 3. Then let ϕ(ξjξ2n+1) =

∑
η∈H

ajηy
η ∈ O−2 with ajη ∈ F. Applying ϕ to [xj′ξj , ξjξ2n+1] =

ξjξ2n+1, we have

[ϕ(xj′ξj), ξjξ2n+1] + [xj′ξj , ϕ(ξjξ2n+1)] = ϕ(ξjξ2n+1).

Since ϕ(xj′ξj) = 0 and [xj′ξj ,O−2] = 0, ϕ(ξjξ2n+1) = 0.
For 0 ≤ k ≤ πi, by applying ϕ to

(k + 1)∗xk
i ξ2n+1 = [xk+1

i , ξi′ξ2n+1] − (1 − 2−1ε0(k + 1))xk+1
i ξi′

and by the known results ϕ(xk+1
i ) = 0, ϕ(xk+1

i ξi′) = 0 and ϕ(ξi′ξ2n+1) = 0 above, we obtain
ϕ(xk

i ξ2n+1) = 0.

Proposition 4.3 Let t > 2 and t �= pv for all v ∈ N. Then h(Der−tO) = {0}.
Proof Let ϕ ∈ h(Der−tO). Considering the Z-degree, we have ϕ(xt

i) ∈ O−2. Suppose
ϕ(xt

i) =
∑

η∈H

aiηy
η with aiη ∈ F. By applying ϕ to

[xt
i, xiξi′ ] = t∗xt−1

i xi,

if ε0(t) �= 0, then xt−1
i xi = xt

i. It follows from [D−2, xiξi′ ] = 0 and ϕ(xiξi′ ) = 0 that

[ϕ(xt
i), xiξi′ ] + [xt

i, ϕ(xiξi′)] = t∗ϕ(xt
i) = 0.

If ε0(t) = 0, assume that t =
l∑

s=1
εs(t)ps for some 0 ≤ εs(t) < p and εl(t) �= 0. Since t �= pl,

considering Z-degree, we have ϕ(xt−pl+1
i ) = ϕ(xpl

i ξi′ ) = 0. Applying ϕ to

−[xpl

i ξi′ , x
t−pl+1
i ] = xpl

i x
t−pl

i = xt
i,

we get ϕ(xt
i) = 0. Lemma 4.8 implies ϕ(xk

i ξ2n+1) = ϕ(ξjξ2n+1) = 0 for all i ∈ M and j ∈ T1.
Moreover, ϕ(yλ) ∈ O−t−2 = 0. According to Proposition 3.1, we see that ϕ = 0. Hence
h(Der−tO) = {0}.

Proposition 4.4 If t = pv for some v ∈ N, then Der−tO = 〈Dpv

i | i ∈M〉.
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Proof Clearly Dpv

i ∈ Der−tO for all i ∈M . Let t = pv and ϕ ∈ h(Der−tO). It is easy to
see that ϕ(xt

i) =
∑

η∈H

aiηy
η ∈ D−2 with aiη ∈ F. As t = pv, ε0(t) = 0. Applying ϕ to

[xt
i, ξ2n+1] = (1 − 2−1ε0(t))xt

i = xt
i,

together with ϕ(ξ2n+1) = 0, yields[ ∑
η∈H

aiηy
η, ξ2n+1

]
=

∑
η∈H

aiηy
η.

A direct computation implies that∑
η∈H

aiη(1 − η)yη =
∑
η∈H

aiηy
η.

Thus aiη = 0 for all η �= 0. Hence ϕ(xt
i) = ai01. Put ψ := ϕ − ∑

j∈M

cjD
t
j, where cj =

aj0

( t∏
h=1

h∗
)−1. Then

ψ(xt
i) = ϕ(xt

i) −
∑
j∈M

cjD
t
j(x

t
i) = ai01 − ciD

t
i(x

t
i) = ai01 − ci

t∏
h=1

h∗ = 0.

By virtue of Lemma 4.8, we have ψ(xk
i ξ2n+1) = ψ(ξjξ2n+1) = 0 for all i ∈ M and j ∈ T1.

Moreover, ψ(yλ) = 0. Proposition 3.1 shows that ψ = 0. Consequently, ϕ ∈ 〈Dpv

i | i ∈M〉.
If vi > si, then Dpvi

i = 0 for all i ∈M . By Propositions 4.1–4.4, we obtain the following
theorem.

Theorem 4.1 DerO = adO ⊕ {Dθ | θ ∈ Δ} ⊕ 〈Dpvi

i | ∀ i ∈M, 0 < vi ≤ si 〉.
Theorem 4.2 For each algebra in the family, O has no nondegenerate associative form.

Proof Assume that λ is a nondegenerate associative form on O. [23, Proposition 2.3]
implies that λ

∣∣
Oτ×O−2

is nonsingular. It follows that λ(1, xπξω) �= 0. Since λ is associative,

λ(1, xπξω) = λ([1, ξ2n+1], xπξω) = λ(1, [ξ2n+1, x
πξω])

= λ
(
1, (−1)nxπξω −

(
1 − 1

2

n∑
i=1

πi − 1
2
n
)
xπξω

)
= ((−1)n − 1)λ(1, xπξω).

Hence (2 − (−1)n)λ(1, xπξω) = 0. As 2 − (−1)n �= 0 (mod p), λ(1, xπξω) = 0, a contradiction.
As a result, O has no nonsingular associative form.

Theorem 4.3 For each algebra in the family, O is not isomorphic to the simple Lie super-
algebras of Cartan type W, S, H, HO, SHO, K, KO, SKO.

Proof Recall that dimO = 2n+1p

∑
i∈M

(si+1)+m

. By means of [13, 19], we see that the
dimension of modular Lie superalgebras HO is odd and the dimension of modular Lie super-
algebras H can not be divided by p. So O is not isomorphic to modular Lie superalgebras
H and HO, respectively. The outer derivations of W , S, K and KO are all ad-nilpotent in
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[6, 23], but O possesses outer derivations Dθ which are not ad-nilpotent. It follows that O is
not isomorphic to modular Lie superalgebras W , S, K and KO, respectively. Using Theorem
4.2, we can also prove that O is not isomorphic to modular Lie superalgebras SHO and SKO,
which possess nondegenerate associative forms on them (see [12]).

Acknowledgement The authors are grateful to the referees for their many valuable com-
ments and suggestions.
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