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Abstract The authors consider a family of finite-dimensional Lie superalgebras of 0-type
over an algebraically closed field of characteristic p > 3. It is proved that the Lie super-
algebras of O-type are simple and the spanning sets are determined. Then the spanning
sets are employed to characterize the superderivation algebras of these Lie superalgebras.
Finally, the associative forms are discussed and a comparison is made between these Lie
superalgebras and other simple Lie superalgebras of Cartan type.
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1 Introduction

During the last fifty years, the theory of Lie superalgebras over fields of characteristic zero
has experienced a rather vigorous development in mathematics. For example, Kac [8-9] clas-
sified the finite-dimensional simple Lie superalgebras and infinite-dimensional simple linearly
compact Lie superalgebras over algebraically closed fields of characteristic zero. The research
on modular Lie superalgebras, i.e., Lie superalgebras over a field of prime characteristic, just
began in recent years. The complete classification of the finite-dimensional simple modular Lie
superalgebras remains an open problem. However, Many important results on modular Lie
superalgebras were obtained (see, e.g., [1, 3-7, 10-15, 17-22]).

As is well-known, the derivation algebras are very useful subjects in the research of both
Lie algebras and Lie superalgebras. In [2, 16], the derivation algebras of modular Lie algebras
of Cartan type were discussed. Eight families of finite-dimensional simple modular Lie super-
algebras of Cartan type W, S, H, K, HO, KO, SHO and SKO were constructed and their
superderivation algebras were studied in [6, 11-13, 19, 23].

In this paper, we study a class of Lie superalgebras of O-type over a field of prime character-
istic. The article is organized as follows. In Section 2, we give the definition of Lie superalgebras
of O-type and prove that they are simple. In Section 3, the generator sets of these Lie super-
algebras are investigated. In Section 4, we first establish some technical lemmas which will
be used to determine the homogeneous derivations of Lie superalgebras of &-type. Then an
explicit description of the superderivation algebras is given.
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2 Definition and Simplicity

Let F be an algebraically closed field of characteristic p > 3 and assume that F is not equal
to its prime field II. For m > 0, let E = {z1,---, 2} € F be linearly independent over the
prime field II, and H be the additive subgroup generated by E which dose not contain 1. If

A€ H, then let A = Y \;z;, where 0 < \; < p. We define y* = ¢ -- -y, Let N be the set
i=1

of positive integers, and Ny be the set of nonnegative integers. Let Zo = Z/2Z = {0,1} denote
the ring of integers modulo 2.
Given n € N, let n > 2 and s := (s1,---,8,) € Nj. Set M = {1,--- ,n}. For k; € Ny,
0

k; can be uniquely expressed in the p-adic form k; = Z gy (ki)p¥, where 0 < g,(k;) < p. We
v=0
define the truncated polynomial algebras

A(TL,§) :F[xloﬂxlla"' yLls1y """ 7 Tn0s Tnls " s Tns,s Y170 7ym]7
such that z}; = 0 for alli € M and j = 0,1,--- ,s;;y; = 1fori=1,--- ,m. Let

Q:{(kl,"',k?n)|ngigﬂi,ﬂi:ps"'—i_l—l,iEM}.

Ifk=(ki, -, kn) €Q, we let 2% = 2% ... zFn where ;% = H 25 ®) | For 0 < ki, kL <,
v=0

n o v

it is easy to see that
wfiti = 2R L0 o ey (k) +eu(kl) <p, v=0,1,---,s;, i € M. (2.1)

Let A(n + 1) be the Grassmann superalgebras over F in n + 1 variables &,11, -, £an41-
Denote the tensor product by A := A(n,n+ 1,s) = A(n,s) ® A(n + 1). Obviously, A are
associative superalgebras with a Zs-gradation induced by the trivial Zs-gradation of A(n, s)
and the natural Zs-gradation of A(n+1): Ag = A(n,s) @ A(n+ 1), Ay = A(n,s) @ A(n+ 1)1
For f € A(n,s) and g € A(n+ 1), we abbreviate f ® g to fg. For k € {1,--- ,n+ 1}, we let

Bi i= {(i1,d2, - ,ip) [ n4+1<iy <ip< - <ip<2n+1}
n+1

and B(n + 1) = |J By, where By := (). Given u = (i1, ,ix) € Bg, we set {u} = {i1, -+ ,ir},
k=0

|ul =k,

[]_ k—1, 2n+41¢€ By, ”u”_ k+1, 2n+1c¢€By,
O\ &, 2n+ 1 ¢ By, O\ &, 2n+ 1 ¢ By,

and £ =&, ---&,. Put 0] = 0 and €® = 1. Then {2*y*¢* |k € Q, N € H, u € B(n+ 1)} is an
F-basis of A.

If L is a superalgebra, then h(L) denotes the set of all Zy-homogeneous elements of L, i.e.,
h(L) = Lz U Ly. If |z| occurs in some expression in this paper, then we always regard = as a
Zs-homogeneous element and |z| as the Zy-degree of x.

Let B be a given Zs-graded vector space over F, and ¢ be a given homogeneous linear
mapping of degree 1,

o:A— B,
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such that o(f) # 0 for all 0 # f € A. It is easy to see that o(A) C B is a Zs-graded subspaces.
For o(f) € o(A), one may easily verify that o(f) is a Zs-homogeneous element if and only if f
is a Zy-homogeneous element of A, and if f € A, then o(f) € 0(A), 7, where a € Zo.

Set e; := (di1,++ ,0in) fori € M. Put T ={n+1,---,2n+ 1} and R = M UT. Define
i=0ifieM,andi=TifieT. Put Ty ={n+1,---,2n}. Let

g fitn, if i€ M,
“Yi—n, if ieT.

Let D; (i € R) be the linear transformations of o(A), such that

Di(o(f)) = o(Di(f)),
where D; are the linear transformations of A, such that

krak—eiyree if ie M,

Dy(ahyre) = pon 08" L
x S if ieT,
T
where k7 is the first nonzero number of £¢(k;), €1(k;), - - - , €5, (k;). Then Dj is an even derivation

of A for any i € M, and D; is an odd derivation of A for any i € T'.

Set
d= 1—2_1Z$308x szy]a 27" Zg]af]

JjEM Jj€T

where [ is the identity mapping of A. It is easy to see that
O(xFyre) = (1 —27! Z kj—A— 2*1[u])xky)‘§“.
jeM

We denote o(A) by &. For o(f), o(g) € h(0), we define a bilinear operation in &, such that

lo(f),o(9)] =a((f 9))
= 0(0(f)Dans1(g) + (—1)V Doy 1 (£)0(9)
+ > (=1)V'Di(f)Di(g)). (2.2)

i€ MUT

Theorem 2.1 & become Lie superalgebras for the operation | , | defined above.

Proof Clearly 0 are superalgebras by (2.2). Let o(f) € On, o(g) € O3 and o(h) € O,
where a, 3, v € Zs. Note that i+4# =T1,i7 =0forie MUT,. By (2.2), one may easily verify

that [o(f), o(9)] = —(=1)*"[o(g), o (f)]-
Put O(f)f := O(f). Then we have

O(fDany1(9)) = 0(f9) fDans1(9) = (O(f) + 0(g) — 1) fDan+1(g),
A(Di(f)Di(9)) = ((f) + 0(9))Di(f)Dir(g), i=1,---,n+1

We will prove that the operation [, ] satisfies the graded Jacobi identity.
According to (2.2), we have

(=)o (f), [o(g),a(h)]]
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= (=170 ({£,0(9)g Dans1(h)) + (£, (~1)"TO(R) Dz 1(g))
+{f. 3 0D Dig)Dy(h)))

1€ MUT,
=a+b+c,

where

(=1)*7o({f,0(g9)gD2nt1(h)))

a( )P 79(£)0(9) Dant1(h) f Dant1(9)

+ (=) (9(g)? — O(g)) Dan g1 (h) Dan 1 (£)g
+ (1)1 19()A(h) Dan1(f)g D2n1(h)

+ > (=1)P7 7490 9(g) Dayy 1 () Di (£) D (9)

+ Y (C)M P (g)g Do Di(h) D () ).

b= (-1)*o((f,(~=1)"*10(h) Dan11(g)h))
= o (=) T [)O(h) Dans1(9) Dan1 ()
+ (~1)* 7 @(h) — B(h) Dans1(f) Dans1(9)h
+ (=1)*7 4 9(9)d(h) Dant1 (f) Dant1(9)h

+ > (- 15779 (h)hDi(f) Dan1 Dir (9)+
1€ MUT,

+ 3 (C1) T (R) Dy (9) Di(B) Dy (1)),

e MUTy

c=(— )%(<f, 3 (—1)7<5+T>Di(g)Di/(h)>)

i€ MUT,

=o( 3 (1) EHO(F) Do Dilg) D ()

Similarly,
(=1)"*[a(g), [o(h),o(f)]] = a' + V' + ¢,
where

a’ = U((—1)“”3(9)3(}1)1?2%1(f)9D2n+1(h)
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+ (1) I (h)? — 3(h)) Dans1 (f) Dans1 (9)h
+ (= 1)aﬁ+6+Ta( h)O(f)D2nt1(9)hD2pni1(f)

+ 0 (L)1) Dy 1 (£) Dilg) D ()
e MUTy
+ 3 (e 8(h)hD2n+1Di(f)Di’(g))’

1€ MUTy

V' = o ((=1)7 7 0()D( ) Do () Dansa (g

+ (=D HHNA(f)? = O(f)) D2ns1(9) Dana (h) f
+ (=17 FFHI0(h)(f) Dant1(9) Danta (h) f
+ >0 (=1 O(f) £ Di(g) Dany1 Do (h)

1€ MUTY
+ Z 67+1a+7+18(f)D2n+1(h)Di(f)Di’ (g))7
1€ MUTY
o X O og)gDa D)D)
e MUTy
+ Y (- 1)+ 19(g) gDy (h) Dapy1 Dis (f)
1€ MUTY
+ Y (=D (R) Doy 1 (9) Di(h) Dy (f)
1€ MUTY
+ Y (~1)P () Doy (9)Di () Dy (f)
e MUTy
+ Z (_1)ﬁa+}5+27+;+}Dj(g)Dj/ (Dl(h)DrL/(f)))
i,jEMUT,
and
(=)Mo (h), [0(f),0(9)]] = a” + V" + ¢,
where

@ = o (1) P0(R)O(£) Dan+1(9)h Dans (F)
+ (~)P QD) = D) Dansr(9)Dania (h)f
+ (=1 £)d(g) Dany1 (h) f Do (9)
Y (D) Do (9) Di(h) D ()

1€ MUTY

+ 3 ()T O(f) [ Do g1 Dilg) D () ),

i€ MUTy
v = o (=) T0(1)(g) Dans () Dans1 (9)h
+ (~1)PD(g)? — 0(9)) Dans1(W) Dansa (F)g
+ (=17 9(£)(g) Dan+1(h) Dant1(f)g
+ > (- 1)54779(g)gDi(h) Dan 1 D (f)

e MUTy



452 X. N. Xu and X. J. Li

+ Y (CY)TFI(g) Dy (F)Dilg) Di ().

1€ MUT,
¢ =o( 3 ()T hDay 2 Di( ) Dir(9)
1€ MUT,
N Z 67-‘,—1 °‘+18( VhD;(f)Dan+1Di(g)
1€ MUTy
. Z 1)81+04747 9 £) Dy i1 (h) Di(£) Dir (g)
1€ MUT,
n Z Bv+za+v+z 3(9)D2n+1(h)Di(f)Di’ (9)
1€ MUT,
+ Ym0t D (h) Dy (Dil f) D (9)))'
i,jE MUTy

Moreover, by a straightforward computation, we can obtain the following equation:

o D (~)THEIE D, (£)Dy (Dig) Dir ()

i,jEMUT,

+ S (=1t D () Dy (Di(h) Dy (f)
1,JEMUTy

+ S0~ D () Dy (Di( f) D (9))) =0.
1,JEMUTy

By a careful comparison, we find that the elements on the right-hand side of a, b, ¢, a’, V', ¢

and a”, 0", ¢’ can cancel each other out to be zero.
Therefore

(=)o (f), [o(9), o(W)]] + (=1)"*[o(9), [o(h), o ()] + (1) [ (h), [o(f), o (g)]] = 0.

Thus & are Lie superalgebras.
Let z; = x} = @40 for alli € M. Set 7 = (71, ,m,) € Qand w = (n+1,--- ,2n + 1) €
Bn+1). Ptw—(n+iy=(n+1,--- ,n+i—1,n+i+1,---,2n+1) e Bn+1).
Lemma 2.1 Let f € A. If D;i(f) =0 for alli € R, then f = . axy’, where ay € F.
A€eH
Proof If D;(z*y*¢*) = 0 for all i € R, then we have k = (0,---,0) and u = (). Hence
zFy e = ¢, as desired.

Theorem 2.2 Lie superalgebras € are simple.

Proof Let I be a nonzero ideal of &. Assume that o(f) is a Zs-homogeneous nonzero
element of I. Suppose that f = folont1 + f1, where fy # 0 and Da,1(f;) =0 for j =0, 1. By
(2.2), we have

o(f),0(1)] = (=)o (Dania(f)) = () o(fo) € T
So we can assume Doy, 11(f) = 0. Suppose that f = foli + fi, where fy # 0 and Dy (f;) =0
fori e M, j =0,1. Also by (2.2), we get

[o(f), o)) = (=) Wo(Dar (1)) = (-1)o(fo) € 1
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Thus we can assume that D, (f) = 0 for alli € M. Now suppose that f = xﬁfo—f—xﬁflfl—i—' <+ f
where fo # 0 and D;(f;) =0forie M, j=0,1,---,t. As

(ad o (&))" (0(f)) = (ad (&))" o (&r), o ()] = —(ad (€)' (Di(/))
= (' i) = (-1 (T]5")ofo) € 1,
j=1

we can assume that D;(f) = 0 for all i € M. According to Lemma 2.1, f = > axy*. If f
\eH
contains at least two nonzero terms, we can suppose that

f=ap"+auy"+ > aw
NEH\ .1}

where a,, # 0, a,, # 0. Let

o(9) i = [0(&ans1) o (N + (L= o (f) = o ((n=mawy” + 3 (A =naxy*).

AeH\{n,u}

Obviously, o(g) is an element of I and g € A with one term less than f. Thus we may assume
that o(y*) € I. Since 1 — X # 0, (1 — A\)"Yo(y?),0(&2ns1y™ )] = o(1) € I. In particular,
—lo(xiéant1),0(1)] = o(x;) € I and [0(&réant1),0(1)] = o(&) € T for all i € M. Then

[o(z1),0(2"y %)) = o(a™y ¢ty e 1
203 = (=1)") o (&ns1&2n41), o (@™ ¢TI = o(a"yre¥) € I

We will show that o(zFy?é%) € I forallk € Q, A € H, u € B(n + 1).
Case 1 2,41 is not contained in u. Due to (2.2), we have

[o(1),0(zFy e any1)] = o(aFyre") € I

Case 2 £y,41 is contained in u. We let xFyr¢% = zFyrevéy, 1, where v € B(n + 1).
Suppose that (n +1,---,2n) —v = (j1, -+ ,Js). Then

[o(2j,)s - o), 0@y )] -] = o(a™yE") € 1.
For i € M, we have
o), o(@™y e = 27 (a7 y ) — o (@™ “yre) € 1.
Case 1 implies that o(z"y &y &¥) € I. So o(z™ ¢y ¢*) € I. Furthermore,
(ad (&) (0 (2™y*E")) = [o(&n), [0(&n), o @™y )]

=27 o(&), o (@Y 6 )] — [o(&r), o (™ Sy
_ —U({Eﬂpieiy)‘fi/fv) + 0’(:[:7‘—7261'3/)\5“) cl.

Again by Case 1, we have o(z™ 2¢y*¢%) € I. Similarly, by letting (ado (&))" act on
o(x™y W), we can obtain o (7 Hi¢iy ) € [. For j € M and j # i, we get

[0(E), ola™ oy )] = 27 (@™ A EY) — o (aT N € 1
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n

As o(a™ Ry EY) € I, o(x™HieimCiy ) € [ Similarly, by letting [] (ad o(&))* act on
i=1

o(z™y "), we can obtain o(2Fy*¢v) € I, where k; + p; = ; for all i € M. Therefore I = 0.
The proof is completed.

In the sequel, we denote [€, 0] by € and write the element o(f) as f for simplicity.

Remark 2.1 Theorem 2.2 shows that & = @ and & are finite-dimensional Lie superalge-
> (si+1)+m
bras with dim & = 2n+1p iem . We call & the Lie superalgebras of 0-type.

3 Spanning Sets

Proposition 3.1 Let S = {x§i£2n+1 |ie M,0<k <m}U{y*| X€ H}U {&&nt |
j € T1}. Then Lie superalgebras € are generated by S.

Proof Let Y be the subalgebra generated by S. Firstly, we prove the following:
(i) [1,:5?"'52”4_1] = xf eY for0<k; <m, i€ M.

(i) —[wiant1,&réont1] = 2ilirant1 € Y for i € M.

(ili) & € Y for j € T. Clearly,

[1a€j§2n+1] = Ej S Y, ] c Tl-

According to (ii) and the equation above, we have

[zi€iréant1, 1] = 2 €Y,
€y Tilont1] — 27 @iy = —Copy1 €Y.

(iv) xfxfj €Y for0<k; <m, 0<k; <mj,i,j€ M. By virtue of (i), we get

[:Cfi,x?j&nﬂ] =(1- 2*150(7%))55?5”?'

If 1 — 27 teg(k;) # 0 (mod p), then xfa:? €Y. In particular,

T k. — T k; 3 TG kf
[27, 2 Conn] = (1 =27 p — D)) 'ay’ = 5% Ty € Y.
If1— 2_150(ki) =0 (modp), then k; 7é m. As 0 < Eo(ki) <p, Eo(ki) = 2. Thus (kl + 1)* = 3.
By (i), we have

o

kj —1 _k; Kk
; ,IjJ€2n+1] =-2"zj'z; €Y.

(v) 2:&&; € Y for i € M and j € Ty. (iii) implies that

ks ki1 —1 ki
[ €ont1, &) — kia) T  onp = =272y €Y,

[ir, Ebonti] = 2_1€i’€j cv.

It follows that 2?¢; € Y. Hence

[22€i,E0€j) = 22:60&5 €Y.
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(vi) We will use induction on k to show that &; &;, ---§;, € Y, where j, € Th, 1 <t < k.
The conclusion is true for the case k =1 by (iii). Suppose that &;,§;, ---&;, € Y for | <k —1.
According to (v), we get

[Ejlfjé T gjk717xj1§j1§jk] = (_1)k72€j1€j2 & €Y

Let @ = w — (2n + 1). In particular, we have £ € Y.
Now we verify that &;,&;, -+ &, &ons1 € Y for j, € T1, 1 <t < k. The conclusion above and
(ii) yield that

[ &0 Eani1, S -+ &) = (D)5, - - ubanir €Y.

In particular, we have £* € Y.
(vii) We propose to prove that ™1+ +mkeéc &, 1 €Y by induction on k.
Clearly the assertion is true for the case k = 1. Suppose that g™t Fm—1ck—1£) €Y.
Thus
[xm614-"'4-#7%167%1§2n_,’_17 xﬂ'kek§2n+1] — (2_1k‘ _ 1)x7131+"'+7kek€2n+1.

If 271k — 1 # 0 (mod p), then x™ertFmeerg, 1 € V. If 271k —1 = 0 (modp), then 271k +1 £
0 (mod p). The inductive hypothesis implies that

[prrer AT e € €anga] = — (27 Tk a1 Gy €Y
By virtue of (iv), we see that
[grret otttk L Conyr, mpaft] = gt TR G, L €Y
In particular, we have 2™&2,+1 € Y. Since 1 — X # 0,
(1=X"yh 2" Eon] = 2"yt €Y.
(viii) 2™y 2,41 € Y. By (ii) and (vii), we obtain
—[27yN wilirbonia) = "y o €Y.
(ix) 2™y ¥ € Y and 2™y ¥ € Y. (v) and (vii) yield that
[27y on i1, Babniabnin] = (p — Da™ P ooy ont1bnir = 27y Enp1bont1 €Y.

Hence

[xﬂ—y)\fnJrngnJrl; x3§n+3£n+2] - xwy)\fn+1§n+2£2n+1 S Y,

(27 Y n1€nr2bont1, Tabarbnis] = 27y nt1€nr2bnralonir €Y, -
Utilizing this procedure continuously, we can obtain x’ry’\fnﬂ <o &oapn—1&on+1 €Y. Thus
[z 6 - on1&ant1, Enprban] = (p— D™y nqn - Ean1bantibon = 27 YN €Y.
Since 4z;€on 11 — 2[22&on11, &) = 22& €Y, we have

[2™ YN 2ier] = (p — 2)2™ 2 aiy e + (- 1) T 222" Y e - onaniibnn
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= —4z™y ¥ €Y.
The proof of 27y ¥ € Y is completely similar to the proof above.
Then we prove the result of Proposition 3.1. Let ¢ : = 2¥3*¢* be any basis element of &.

We only need to show that ¢ € Y.
If u=1w, ie., c = 2Fy*¢¥, then we will prove ¢ € Y by induction on d. : = > m — 3. k.
iEM ieM
If d. = 0, it follows from (ix) that ¢ = 2™y ¢¥ € Y. Let d. > 0. Then there is an i € M, such
that k; < m;. By the induction hypothesis, we have z**¢iy*¢% € Y. Thus
[ ey e 6] = (ki + 1) "2ty ¥ e Y.
If u#w, we let u=w — (j1,---, jn), and then

h
dFyret = [[(ades ) (2Fy ) e V.
i=1

If u=w,ie., c = 2"y ¢, then we still prove ¢ € Y by induction on d.. If d. = 0, according
to (ix), we have ¢ = 2™y*¢¥ € Y. Let d. > 0. Then there is an i € M, such that k; < m;. By
the induction hypothesis, we see that 2*T¢iy ¢ € Y. Hence

[e" ey &) = (ki + 1) 2ty e .
If u# @, we let u=w— (j1, -+ ,7n). The conclusion above and (2.1) yield xkxjgy)‘f“’ =0€eY
or xkxj;y)‘f“’ = 2" y ¥ € Y. Therefore,
()"t e ay) - 27 e ey = atyrem 0 ey
Clearly, the assertion above is true for all k. By (2.1), we get
:ckxjéy)‘fw_U” =0 or xkxjéy’\fw_<j1> — gFres ykgw_m) cY.

Then

(—1) ket ] — 9 Lakay e —tin) = ghyreetii) ey,
Utilizing this procedure continuously, we have xzFy*¢* € Y. Hence ¢ C Y. Consequently
Y =0.

4 Superderivations

We know that & = €@ O,, where

a€Zs
On = spanp{z*y e | ke Q, e H u e B(n+1), a = |u|+1}.

For i € Z, we let
O; = span]F{a:ky”\ﬁu

> ki +llul -2 =i},

jeM

(2.2) shows that [0;, 0;] C Oy, for all i,j € Z. Hence 0 = @ 0; are Z-graded Lie superal-
i=—2
gebras, where 7 = Y. m; +n. Clearly, 0_5 = spang{y* | A € H}. If f € 0}, then f is called a
ieM
Z-homogeneous element and i is the Z-degree of f which is denoted by zd(f).
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Let Der, @ denote the linear space of all derivations of degree a of 7, i.e.,
Dero0 = {p € Der0 | p(O3) C On1p, ¥V € Zs},

and let Derd : = @ Der, 0 be the superderivation algebras of &. For ¢ € Z, we let
aEZ2

Der,0 = {p € Der0 | p(0;) C Oiyy, Vi € L}.

Then Der& = @ Der; 0 are Z-graded Lie superalgebras, where Y = {—-(,—(+1,---,(} and
tey
¢ = 7 + 2. Therefore, in order to determine the superderivation algebras Der&’, we only need

to determine h(Der;0) for all t € Y.

Lemma 4.1 Let ¢ € h(Der0) and f € 0. Suppose ¢(z;) = ¢[f, x| = ¢(&) = ¢[f,&] =0
foralli € M and j € Ty. Then o(f) € O_o.

Proof Let f= > f,, where f, € 0,. By [f,z;] =0 for all i € M, we have
aEZo

Z Sp[favxz] =0.

a€ls

Since ¢, fo and z; are all Za-homogeneous elements, ¢[fq,z;] € h(€). Then > @[fa,zi] =0
aEZo

yields [fa,2;] = 0 for all a € Zy, i.e., [p(fa),zs] + (=) [fo, 0(x;)] = 0. As @(z;) = 0,
[p(fa),x;] =0 for all ¢ € M. Similarly, [¢(fa),&] =0 for all i € M. Hence

[o(fa)s 1] = [(fa), [, &l) = [lp(fa), @il €] + (= 1)y, [p(fa), €] = 0.

Let h := ¢(fa) € 0. (2.2) implies that (—1)" Dy, 1(h) = [p(fa),1] = 0. Moreover,
[p(fa), zi] = (=1)7(#1+) D, (h) = 0 and [@(fa), &) = D;(h) = 0 for all i € M. Thus D;(h) = 0
for all i € R. By virtue of Lemma 2.1, we get h € 0_s, i.e., ¢(fo) € O_2. Hence ¢(f) € O_1,
as desired.

Lemma 4.2 Let t € Z and ¢ € h(Der,0). If ¢(0;) = 0 for j = =2, —1,---, s, where
s>—1andt+ s> —2, then p =0.

Proof Let j > s. We will prove by induction on j that ¢(€;) = 0. Let j > s and f € 0}.
It is easy to see that [f,z;], [f,&] € €j—1. Then the assumption ¢(€;_1) = 0 implies that

olx;) = olf,z] = (&) = ¢[f,&] = 0 for all i € M. By Lemma 4.1, ¢(f) € 0_2. Since
t+j>t+s>-2,¢(f) € 02N 0Oiyj =0. So ¢(0;) =0, that is, (&) = 0. Therefore ¢ = 0.

Proposition 4.1 Der 0 =ad0_s.

Proof Let ¢ € h(Der_20). Clearly ¢(0_1) = ¢(0_3) = 0. Since ¢(0p) C O_z, we
may assume that ¢(&2,119) = Y. ayy” with a, € F. Asnp— X € H, n— X # 1. Let

neH
g= > (n—X—1)"ta,y" > and ¢ = p — adg. Then considering Z-degree and by (2.2), we
neH
obtain

1Z)(ﬁll) = w(ﬁ*Q) = Oa w(£2n+1yk) = 0, V)\ S H
Clearly (z;x;), (& y*) € O_y for all i,1,5 € M and A € H. Applying ¢ to z;z;y* =

— w2 &y), we get (x;x;y0) = 0. Similarly, we have

P(i&yt) = (&™) =0, j#i, Yie M, Vi, j,veTy, VA€ H.
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Suppose that ¥(z;&:y*) = 3 agy?, where ag € F. Note that 1(£2,41) = 0. By applying ¢ to
0cH
A&y = [2:€oy, Eanya], we have S (0 — X — 1)agy? = 0. Then ag = 0, i.e., ¥(x;&y) = 0.
0cH
Thus ¢ (0p) = 0. By virtue of Lemma 4.2, ) = 0. Hence ¢ = adg € ad 0_3, as desired.

If i € M, then let 7(i) = m;. If ¢ € T, then let 7(i) = 1. An element f of & is called
7(i)-truncated if Dz(z)(f) = 0, where i € R.
For i € R, we define a linear transformation 7; of &, such that 7;(c(f)) = o(m(f)) and
. k Aeuy (ki+1)*mk+eiy)\§u7 lf Z c M,
mile e = {wkykﬁiéu, if i €T,

where we set zFt¢ = 0if k4 ¢; € Q.
By the convention before and the definition above, we still write 7;(o(f)) as 7(f). Then we
have the following lemma directly.

Lemma 4.3 (i) If f € 0 is p(i)-truncated, then D;m;(f) = f for all i € R.

(ii) D;m; = (—=1)"7;D;, where i,j € R with i # j.

Lemma 4.4  Let fi,, -, fi, € O, where t1, -ty € R. If f; is p(i)-truncated for i =
t1, s tg, and Di(f;) = (=1)"9D;(fi) for i,j = t1,--- ,ty, then there is an f € L, such that
Di(f) = fi fori=t1, -ty

Proof We will use induction on k. If & = 1, then let f = 7, (f,). By Lemma 4.3(i), we
see that Dy (f) = Dy 7, (ft;) = fr,. Assume that there is g € &, such that D;(g) = f; for
i =11, ,tk—1. Let f =g+ 7, (ft, — D, (g9)). According to Lemma 4.3(ii), we obtain

Di(f) = fi + Dim, (fi,, = Di, (9))
= fi+ (=1)" 7, (Di(fu,) — DiDy,(9))
= f'i + (_1)itk7-tk((_1)itthk (fz) - (_1)itthkDi(g))
= fz.
As fi, — Dy, (g) is p(ty)-truncated, by virtue of Lemma 4.3(i), we have

Dtk(f) =Dy, (g) + Dy, 7, (ftk - Dtk(g))
= Dy, (9) + ft, — D1, (9)
= ftk'

The result follows.

Lemma 4.5 Assume that ¢ € h(Der@). Let foni1 = (=D)IeH1p(1), fi = o(&) +
(=D)lel2=1 o & and fi = (=12 () — 271 fon 12 for all i € M. Then the following
statements hold: B

(a) Di(f;) = (=1)"D;(fi) for alli,j € R.

(b) fi is p(i)-truncated for all i € R.

Proof (a) By the assumption, we have

p(1) = (1)1 fop i, (4.1)
o) = (D) + 27 foprmi), Vie M, (4.2)
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o) = fi+ (D)2 o060, VileT (4.3)

Note that |f;| = |p| + 1 and |fir| = | fant1| = || for all i € M. We will proceed in six steps.
(i) Applying ¢ to [1,&] = 0 for all i € M, we obtain

(1), 9] + (=) PIDL, o(g)] = 0.
Utilizing (4.1) and (4.3), we get
(D o, &) + (DL i+ ()27 o 60] = 0.
By (2.2), a direct computation shows that

Di(fan1) = (=11 Doy i1 (fons1)ér + Dania(fi).

SO font1 is p(2n + 1)-truncated, i.e., Dapt1(fant1) = 0. Thus D;(fant1) = Danyi1(fi) for all
1€ M.
(ii) Similarly, applying ¢ to [1,2;] = 0 for all i € M, we have
[p(1), ] + (=D)L, ()] = 0.
From (4.1)—(4.2), we get
(DT foppr, 2] + (=)L (1) (fir 4+ 27 fop )] = 0.

Then
Dapi1(fant1)xi + Dir(fant1) + Dang1(fir) = 0.
Hence Day11(fir) = —=Dir(fans1) for all i’ € Th.
(ili) Applying ¢ to [§,&] = 0 for all i/, j' € T, together with (4.3), yields
[p(&ir), §5] + [€rs p(€5)] = O,
[fi (CD)F2 o1&, 5] + €, £ + (F1)1PIT27) o085 = 0.

A direct computation yields
)27 Doy 1 (£1)65 + Dy(fi) + 4 Dania (fant1)éury

(
+ (‘DWHTDj(fan)&/ + 271 Dayi1 (f;) — Di(f5)
— (~1)PH 147 Doyt (fons1)Es + (=1)!#1D;i( fant1)€5 = 0.

As Di(an-i—l) = D2n+1(.fi) for all i € M, Dz(f]) = Dj (fz) for all i, ] € M.
(iv) Applying ¢ to [z;,z;] = 0 for all i,j € M, and by (4.2), we have

[o(@:), 5] + (=)D e o(2;)] = 0,
(D) + 27 fongama), @] + (= 1)y, (=) (f + 27 fangazy)] = 0.

A direct computation shows that

27 Doni1 (fi); + Dy (fir) + 47 Dans1(font1)im;
+ 27 %Dy (fans1) + 27 2 Dany1 (fir) + Dir (fi)
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+ 471xiij2n+1(f2n+1) + 271{EjDi/ (f2n+1) =0.

By the claim above, we see that Dy (f;:) = —Dj/(fi) for all ¢/, j" € Ty.
(v) Applying ¢ to [z;,&] =1 for all i € M, and by (4.2)—(4.3), we get

[o(2:), €] + (~1)1E10D [, o(g)] = (1),

(=D)L for 4 27 fongraa), €] + (D)1 [y, fi + (D)2 o6 = ()19 o .

A direct computation ensures that

(=112 Doy g1 (fir)&r + Di(fir) + (—1)147 Doy 1 (fon11)wiir
+ 27 o1 + 27 2 Di font1) — 27 @ Doyt (fi) — Dir (fi)
+ (=147 Doy 1 (fangr) il + (=D)127 Dy (fans1)€ir + 27 fanst = foniga

Thus D; (fz/) = Dl/(fz) for all i € M.
(vi) Applying ¢ to [z;,&;] =0for all i € M, j' € T1, j # i, and by (4.2)—(4.3), we obtain

[o(@:), &) + (~1)1eNI= D5, o(e)] =0,

(D (o + 27 fopgr@a), €] + (1)1, £ + (~1)1eH 271 o 185] = 0.

By computation, it follows that

(D127 D1 (fir)€jr + Dy (fir) + (1)1 Doy (fonsr )i
+ 272 Dj(fons1) — 27 @i Doy (f5) — Dir(f5)
+ (=D)l47 Doy, 1 (fang1)wily + (—1)IP1271 Dy (fang1)E = 0.

Therefore D;(fir) = Dy (f;) for all i € M and j' € T} with j # i.

Now we conclude that D;(f;) = (—1)25Dj(fi) for all 4,5 € R.

(b) By the first part, we obtain 2D;,(f;) = 0, that is, f; is u(i)-truncated for all ¢ € T'.

For i € M, we let f; = ex]’ + h;, where e does not contain x; and h; does not contain x7*.
By the assumption of this lemma, we have

Di(fj) = D;j(fi) = Dj(e)xi* + Dj(h;), j#i, Vj€R.

As D;(f;) and D,(h;) are p(i)-truncated, D;(e) = 0 for all j € R with j # i. Noticing that
D;(e) =0, it follows that D;(e) = 0 for all j € R. Lemma 2.1 yields e € 0_.
Applying @ to [1, &n11] = 1, we get

[p(1), &anta] + ()DL, 00 11)] = (1),
Put (éans1) = g. Then by (4.1), we obtain
(1)1 fap g1, Ganpa] + (1)1, g] = (=) o,
Thus

(=) Doy i1 (fons1)€2nr1 + 0 fant1) — Dant1(9) = fantr-
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By the convention before, we see that
Dant1(9) = (font1) = font1 = (0(fant1) = 1) font1-
Applying ¢ to [&;r,Eani1] = 271 for all i € M, we have
[o(&ir), €onsa] + €, p(Eant1)] = 27 ().
Utilizing (4.3), we get
i+ (—1)PH2 7 for 18 o] + (6 9] = 271 fi + (1) P12 o 6
A direct computation shows that

A(f) + (=D Doy 1 (f)anin + (D278 fop i1 &0r)
+ 27 Doy 1 (fons1)irEonyr + 27 Dony1(g) — Dilg)
=27 (1) e

Since Dapt1(fon+1) = 0, Dony1(fi) = D;font1 and

O font1&) = (0(font1) — 271 fons1&r,
§ir Dan+1(9) = (O(fan+1) — 1)&ir fant1,
afi) = 5((%:’) + d(h;) = (0(e) + 2_1)61)?’ + d(hy),

we have
271 f =27 eal" + 27 hy = (O(e) + 27V eaT + B(hs) + (=1)1?1D;(fans1) — Dilg).

It follows that
Ae)aT = (27" = 0(h))hi + (=1)'°ID;(fans1) + Di(g).

Because every term on the right-hand side of the equation above is ju(i)-truncated, d(e) = 0.
Since e € 0_3, e = 0. Thus f; is p(i)-truncated for all i € M. Hence the result holds.

Pt A={0:H—-F|0A+n) =0\ +0n),Y\neH} For § € A, we define a linear
transformation Dy of @, such that Dy(o(zFy %)) = 0(\)o(aFy ¢¥). Clearly Dy € Derg0.

Lemma 4.6 Let ¢ € h(Der0). If p(x;) = ¢(&) = ¢(€ant+1) =0 for alli € M and j € Th,
then there is a 0 € A, such that p(y*) = 0(\)y> for all X € H.

Proof Clearly, p(z;) = ¢yt 2] = ¢(&) = [y, &] = 0 for all i € M and j € Ty. By

Lemma 4.1, we may assume @(y*) = > a,y" € O_5 with a,, € F. Applying ¢ to [y, Eoni1] =
neH

(1= N)y*, we have

[Z anyn752n+1} =(1-X) Z any",

neH neH
dagl—myt=1=X) ) apy’
neH neH

It follows that a, = 0 for all n € H\{\}. Thus ¢(y*) = 6(\)y*, where 6(\) = ay. Note that
p(1) = ¢lzi,&] = 0. Applying ¢ to [1,y"&an41] = 7, we get [L, o(y"&ans1)] = 9(y"). Let
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©(y"&an+1) = z. By computation, we can conclude that Da,11(2) = 0(n)y". Now applying ¢
to [y, y"€an11] = (1 — M)y ", we obtain

BN, Y Eonra] + [, 2] = (1= M)A + )yt

Furthermore,
(1= NI + (1= N8y = (1= N8 + Ny

As1T—X#£0,000+n) =0\ +60(n), ie., 6 €A

Proposition 4.2 Let ¢ € h(Der,0) with t > —1. Then there exist g € O and 0 € A, such
that o = ad g + Dy.

Proof We first prove that there exist g € ¢ and § € A, such that (¢ —adg — Dg)(0;) =0
for j = -2, —1.

In fact, we can suppose that f; is defined as in Lemma 4.5. Then D;(f;) = (—1)25Dj(fi)
and f; is p(i)-truncated for all i, j € R. According to Lemma 4.4, there is an f € &, such that
D;(f) = fi foralli € R.

Let @1 = ¢ — ad f. Note that |f| +i = |f;] = |¢| + 7. Due to Lemma 4.5, we know that

pr(xi) = p(x:) = [fr] = (i) = ()27 Dopr (s + (—1)VIDi(f)) =0, Vie M.

Similarly, ¢1(§;) = 0 for all j € T7. Moreover,

®1 [€2n+17xi] = —2_1<,01(33i) =0, @1[§2n+17§j] = —2_1<P1(§j) =0.

By Lemma 4.1, we can suppose ¢1(£2,41) = Y. axy® with ay € F. Put z:= > (A—1)"tayy?
XeH AEH
and o = ¢ —adz. Then

p2(Eant1) = p1(&ant1) — { > (A 1)7104Ay)\a€2n+1} =0,

AeH

p2(w:) = p1(xi) — [Z (A — 1)7104)\2/)\7%} =0, VielM,
AeH

p2(&5) = e1(&) — [Z (A= 1)_104AyA7§j} =0, VjeT.

AeH

By virtue of Lemma 4.6, there is § € A, such that ¢o(y*) = 0(\)y*. Let 3 = p2 — Dy. Then
@3(y*) = 0 for all A € H, that is, ¢3(0_3) = 0. Moreover, ¢3(z;) = ¢3(&;) = p3(Eont1) =
0 for all i € M and j € Ty. Since @3[z;y*,z;] = p3[zy*,&] = 0 for all i € M and j € Ty,
Lemma 4.1 yields op3(z;y) € 05 for all i € M. Similarly, p3(£y*) € O_a, p3(x:&) € O,
Vie M, Vj € T1. Applying @3 to z;y* = —[2:&, 2;y”] and by [0z, 2:9*] = [2:&, O_2] = 0,
we have

es(ziy’) = —[ps(ilir), wiy™] — (@i, p3(xiy™)] =0, Vie M.

Similarly, ¢3(&y*) = 0 for all j € Ty. Thus ¢3(0_1) = 0. Lemma 4.2 implies ¢3 = 0. Set
g:=f+ z. Then ¢ = ad(g) + Ds.

Lemma 4.7 Lett > 2 and ¢ € h(Der_,0). Then p(zi 'a;) = p(zl71¢;) = 0 for all j € Ty,
i,l € M with l # 1.
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Proof Forie M, if j =1, let go(:ciflfi/) = > ainy" € O_5 with a;, € F. Applying ¢ to
neH

- * t— — _fj_li/a t—1 :Oa
[} 6o, iler] = (= 1) 2} 2wl — 2f 16 = {((tﬂ%— S* _ el e, <o )

we have

t—1 t—1 _ e ), (t—1)=0,
plaf e mge) et ot = { (. g H0TH 0

which combined with [0_s, z;&] = 0 and ¢(z;§) € O—_, = 0 for t > 2 yields the following:
If e9(t — 1) = 0, then it is obvious that p(z! '¢&/) = 0.

If eg(t — 1) # 0 and (t — 1)* — 1 # 0, then (2! '¢) = 0. When (t — 1)* — 1 = 0, we have
eo(t —1) =1, since (t —1)* =eo(t — 1) and 0 < eg(t — 1) < p. Letting ¢ act on

(20, o] = (1 — 27 eo(t — 1) =27 Y2l tg =0,

from the assumption above and ¢(€apy1) € O_4 = 0 for t > 2, we get

lo(zi ™€), Enia] + [277 Eir, (E2ns1)] [ > ainy” €2n+1] =Y an(l—n)y"=0.

neH neH

Hence a;, = 0 for all n € H, that is, p(z! &) =
Now let j # ' and [ # i. By applying ¢ to

[l Yz = —2 ey and  [pl T, 1i65) = —2tTlE,

Lay) = (i) =

we see that p(2!'a;) = p(2171¢;) = 0. Thus for every i € M, we have (2!~

0 for alll € M and j € Ty with [ # i.

Lemma 4.8 Let t > 2 and p € h(Der_,0). If p(x!) = 0, then o(a¥&ani1) = p(&iéont1) =
0 forallie M, jeT; and 0 <k <m;.

Proof We proceed in two steps.
(i) We propose to prove that

p(afe) = p(ake;) =0, VieM,VjeT,0<k<m+1.

We first show that o(z¥) = 0 by induction on . If 0<k<t, then p(zF) € O_1 112 =0.
Moreover, @(xt) = 0. Suppose that k > t and p(zF~1) = 0. Clearly, p(z;) = @(§;) = 0.
Applying ¢ to

[z, &] = k*2¥ 16, and [z, 2,] =0,

we obtain ¢[z¥,&;] = p[zF,2,] =0 for all v € M and j € T;. Lemma 4.1 ensures that ¢(zF) €
O_9NO_ii(—2=0. It is easy to see that the claim ga(xf) =0 is true for all £ > 0.
Then we prove that ¢(zFx;) = 0. If [ = 4, then by the argument above, we have

k

(ha) = B
PAE) = oty =0, go(k+1) £0.
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Let | # i. We use induction on k. If k < t — 1, then p(zfz;)) € O_;1x—1 = 0. Lemma 4.7
implies (2! '2;) = 0. Assume that k >t — 1 and o(z¥~*2;) = 0. By the induction hypothesis
and p(z¥) = 0, we see that

go([xfxl,xu]) =0 and go([xfxl,fj]) = (,0(57;]'](3*13?711)[ + 5ljxf) =0, VveM,VjeT.

It follows from Lemma 4.1 that ¢(z¥x)) € 09N O 1 = {0}.

Finally, we prove ¢(2¥¢;) = 0 also by induction on k. If k < t — 1, then p(zF&;) € O_t1p—1
=0. If k=t —1, by Lemma 4.7, we get gp(xﬁ_lfj) =0. Now let k >t —1 and go(:cf_lfj) =0.
Similarly, by letting ¢ act on the equalities below,

[chﬁj,xy] = —5jl,xf and [xf@-,@] = (5“16*35;“71@-, Yve M, VieeT,

we see that the result is zero. Again Lemma 4.1 yields ¢(2¥¢;) € 02N O—y1—1 = {0}.
(il) Now we return to the proof of this lemma. If ¢ > 3, then p(€;&2,+1) € O—441 = 0. Put
t = 3. Then let ¢({;&ant1) = > ajny" € O_5 with aj, € F. Applying ¢ to [2;:&;,&8ont1] =
neH

&§i€ont1, we have
[o(x5:&5), Ebonta] + [25&, 0(€i€ant1)] = ©(§€2nt1)-

Since ¢(z;/§;) =0 and [z5:€;, O3] =0, p(§€2n+1) = 0.
For 0 < k < m;, by applying ¢ to

(k+1)"2Fonin = (277, & onia] — (1 — 27 eo(k + 1)z &

and by the known results p(z¥1) = 0, p(zF1&) = 0 and p(&/€2n11) = 0 above, we obtain
p(xF€ant1) = 0.
Proposition 4.3 Let t > 2 and t # p¥ for all v € N. Then h(Der_,0) = {0}.

Proof Let ¢ € h(Der_;¢). Considering the Z-degree, we have ¢(z}) € 0_5. Suppose
o(zh) = > amy" with a;,, € F. By applying ¢ to
neH
[}, 2] = t*al

if eg(t) # 0, then xiflxi = z!. Tt follows from [Z_2,2;6] = 0 and p(z;&) = 0 that

[p(x}), w:&or] + [z}, p(i&wr)] = t*p(a}) = 0.

!
If g9(t) = 0, assume that t = Y e,(t)p® for some 0 < e4(t) < p and &;(t) # 0. Since t # p',
s=1
considering Z-degree, we have gp(xﬁfpurl) = gp(xfl &) = 0. Applying ¢ to

ol g2l =l P =
we get o(x!) = 0. Lemma 4.8 implies p(2F&,11) = p(&j€ant1) = 0 for all i € M and j € T3.
Moreover, p(y*) € €0_; 5 = 0. According to Proposition 3.1, we see that ¢ = 0. Hence

h(Der_,0) = {0}.
Proposition 4.4 Ift = p¥ for some v € N, then Der_,0 = (va |ie M).
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Proof Clearly va € Der_,0 for alli € M. Let t = p¥ and ¢ € h(Der_,;0). It is easy to

see that p(al) = ainy" € Do with a;;, € F. Ast =pv, eo(t) = 0. Applying ¢ to
neH

[}, Eony1] = (1 — 27 o (t))a} = a,

together with ¢(£2,41) = 0, yields

{Z ainy",€2n+1} = ainy".

neH neH

A direct computation implies that

D anl=my’ = amy".

neH neH
Thus ai, = 0 for all 7 # 0. Hence ¢(z}) = ainl. Put ¢ := ¢ — > ¢;D%, where ¢; =
jEM
t
ajo( H h*)_l. Then
h=1

t
P(xh) = p(zh) — Z ch§(x§) = ajol — ¢;Di(z) = al — ¢ H h*=0.
jeMm h=1
By virtue of Lemma 4.8, we have (2¥¢2,11) = 9¥(§;€an41) = 0 for all i € M and j € Ti.
Moreover, ¥(y*) = 0. Proposition 3.1 shows that ) = 0. Consequently, ¢ € (va |ie M).
If v; > s;, then vai = 0 for all s € M. By Propositions 4.1-4.4, we obtain the following
theorem.

Theorem 4.1 Der0 =ad 0 & {Dy | 0 € A} & <vai

ViEM,O<Ui§Si>.
Theorem 4.2 For each algebra in the family, O has no nondegenerate associative form.

Proof Assume that )\ is a nondegenerate associative form on . [23, Proposition 2.3]
implies that /\‘ 6. %6, is nonsingular. It follows that A(1,2™¢“) # 0. Since A is associative,

)‘(L xwgu) = /\([1,&-2"+1]7x7r§w) = )‘(L [§2n+1a xﬂgw])
= /\(17 (=) a7ew — (1 — %Zm — %n)x”£w>
= ((=1)" = DAL, 27¢).

Hence (2 — (—1)™)A(1,27¢¥) = 0. As 2 — (—1)" # 0 (mod p), A(1,27¢¥) = 0, a contradiction.
As a result, & has no nonsingular associative form.

Theorem 4.3 For each algebra in the family, O is not isomorphic to the simple Lie super-
algebras of Cartan type W, S, H, HO, SHO, K, KO, SKO.

> (si+1)+m
Proof Recall that dim@& = 2ntlpicm . By means of [13, 19], we see that the

dimension of modular Lie superalgebras HO is odd and the dimension of modular Lie super-
algebras H can not be divided by p. So & is not isomorphic to modular Lie superalgebras
H and HO, respectively. The outer derivations of W, S, K and KO are all ad-nilpotent in
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[6, 23], but & possesses outer derivations Dy which are not ad-nilpotent. It follows that & is

not isomorphic to modular Lie superalgebras W, S, K and KO, respectively. Using Theorem

4.2, we can also prove that ¢ is not isomorphic to modular Lie superalgebras SHO and SKO,

which possess nondegenerate associative forms on them (see [12]).
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