
Chin. Ann. Math.
36B(3), 2015, 467–484
DOI: 10.1007/s11401-015-0931-7

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2015

Convolutions, Tensor Products and Multipliers of the
Orlicz-Lorentz Spaces∗

Hongliang LI1 Jiecheng CHEN2

Abstract In this paper, the authors first give the properties of the convolutions of Orlicz-
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1 Introduction

The convolution operator has been studied for many years. The classical type, called Young
inequality, Lp ∗ Lq ↪→ Lr (1 < p, q, r < ∞) is well known. Subsequently, the convolutions of
Lorentz spaces Lp,q was studied in [1] by O’Neil and [2] by Yap. In [3], Kamińska and Musielak
got the sufficient and necessary conditions for embedding Lϕ1 ∗Lϕ2 ↪→ Lϕ3, Eϕ1 ∗Eϕ2 ↪→ Lϕ3 ,
Eϕ1 ∗ Eϕ2 ↪→ Lϕ3 , and Lϕ1 ∗ Lϕ2 ↪→ Eϕ3 , where Lϕi are Orlicz spaces and Eϕi are their
subspaces consisting of all order continuous elements, some parts of which generalize the results
of Hewitt and Ross [4], Hudzik et al [5], O’Neil [6] and Zelazko [7]. In the present paper, we
will obtain the corresponding results on Orlicz-Lorentz spaces Λϕ,w and use the conclusion of
the embedding on Orlicz-Lorentz spaces to get the representation of the tensor products and
multipliers on Orlicz-Lorentz spaces.

Let A be a Banach algebra. By a left (right) Banach A-module we mean (see [8]) a Banach
space V , which is a left (right) A-module in the algebraic sense, and for which

‖av‖ � k‖a‖‖v‖, ∀a ∈ A, v ∈ V,

where k is a constant independent of a, v.
If V and W are left (right) Banach A-modules, then HomA(V,W ) will denote the Ba-

nach space of all continuous A-module homomorphisms from V to W with the operator norm.
HomA(V,W ), as a rule, is called the space of multipliers from V to W .
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The definition of the tensor product of Banach modules can be found in [8–9]. Let A be a
Banach algebra, and V and W be left and right Banach A-modules respectively. Suppose that
V ⊗γW denotes the projective tensor product (see [10]) of V and W as Banach spaces (γ is the
greatest crossnorm in [11], [12, p. 36]). Let K be the closed linear subspace of V ⊗γ W which
is spanned by all the elements of the form

av ⊗ w − v ⊗ aw, a ∈ A, v ∈ V, w ∈ W.

Now the quotient Banach space V ⊗γ W/K is called the A-module tensor product V ⊗AW .
The following isomorphism

HomA(V,W ∗) ∼= (V ⊗AW )∗ (1.1)

was proved by Rieffel [8], where the notation W ∗ is the dual of W . The linear functional on

HomA(V,W ∗), which corresponds to t =
∞∑
i=1

vi ⊗ wi ∈ V ⊗AW , has value

〈t, T 〉 =
∞∑
i=1

〈wi, T vi〉

at T ∈ HomA(V,W ∗). The topology on HomA(V,W ∗) defined by the linear functional of this
form corresponds to the weak ∗-topology (V ⊗A W )∗, which is called ultraweak ∗-operators
topology (see [9, 13]).

In this paper, we get the concrete representation of the tensor products of the Orlicz-Lorentz
spaces Λϕ,w and obtain the multipliers of the Orlicz-Lorentz spaces by (1.1). For more details
about tensor products and multipliers, one can also refer to [14–18] and so on.

2 Preliminaries for Orlicz-Lorentz Spaces

Let M(G,μ) be the class of all measurable and almost everywhere finite functions on (G,μ).
For f ∈ M(G,μ), a non-increasing rearrangement of f , is a non-increasing function f∗ on
R+ ≡ (0,+∞) which is equimeasurable with |f |. The rearrangement f∗ is defined by the
equality (see [19])

f∗(t) = inf{s : λf (s) ≤ t}, 0 < t <∞,

where
λf (s) = μ{x ∈ X : |f(x)| > s}, s ≥ 0.

We say ϕ : [0,∞) → [0,∞) is a Young function if ϕ is non-decreasing and convex with ϕ(0) = 0,
and lim

x→∞ϕ(x) = ∞. The Young conjugate ϕ∗ of the Young function ϕ is defined by

ϕ∗(x) = sup
y≥0

{xy − ϕ(y)}, x ≥ 0.

The Orlicz-Lorentz spaces Λϕ,w(G) (see [20–21]) associated to the Young function ϕ and a
weight w on R+ (nonnegative locally integrable functions in R+), are the set of f ∈ M(G,μ)
such that for some λ > 0, we have Iϕ,w(λf) <∞, where

Iϕ,w(f) =
∫ ∞

0

ϕ(f∗(t))w(t)dt
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(we assume that the weight w vanishes in [μ(G),∞)). Let

‖f‖Λϕ,w(G) = inf
{
ε > 0 : Iϕ,w

(f
ε

)
≤ 1

}
.

If there is no ambiguity, we indicate Λϕ,w(G) = Λϕ,w. If w(t) = 1, then Λϕ,w = Lϕ is an Orlicz
space (see [22–23]); if ϕ(t) = tp (1 ≤ p < ∞), then Λϕ,w = Λp(w) is a Lorentz space (see
[24–25]). Additionally, let

Eϕ,w = {f : Iϕ,w(λf) <∞ for all λ > 0},
called the subspace of finite elements of Λϕ,w. If group G is discrete, the notations lϕ,w and
hϕ,w are used instead of Λϕ,w and Eϕ,w.

Given an arbitrary function D : [0,∞) → [0,∞), we say that D satisfies condition Δ2 in
symbol G ∈ Δ2 when

sup
t>0

D(2t)
D(t)

<∞.

A Young function F is said to satisfy Δ′ condition in symbol F ∈ Δ′ if there exists C > 0 such
that

F (xy) ≤ CF (x)F (y), ∀x, y ≥ 0.

Clearly if F ∈ Δ′, then F ∈ Δ2. By [26, Thm. 3.1], we know that if μ(G) = ∞, W ∈
Δ2, W (∞) = ∞ or μ(G) <∞, then

(Λϕ,w)∗ = Mϕ∗,w. (2.1)

There are many papers devoted to researching Hardy-type inequalities on monotone functions.
Let f be a nonnegative function on R+, the Hardy operator be

Sf(x) =
1
x

∫ x

0

f(t)dt, x ∈ [0,∞),

and f ↓ indicate that f is a nonnegative nonincreasing function in R+. In [27, Thm. 2.3], the
author got that if ϕ ∈ Δ′, then∫ ∞

0

ϕ(Sf(x))w(x)dx ≤ C

∫ ∞

0

ϕ(f(x))w(x)dx, ∀f ↓ (2.2)

if and only if there is a constant H > 0 such that∫ ∞

r

ϕ
(br
t

)
w(t)dt ≤ Hϕ(b)

∫ r

0

w(t)dt, ∀r > 0, b > 0. (2.3)

Obviously, (2.2) implies that Λϕ,w can be normable if ϕ ∈ Δ′. If ϕ = tp, then (2.3) implies that
w ∈ Bp (see [28–29]). If w,ϕ satisfy the inequality (2.2), we say w ∈ Bϕ, and let

Bϕ(w) = sup
f↓

∫ ∞

0

ϕ(Sf(x))w(x)dx∫ ∞

0

ϕ(f(x))w(x)dx
.

As usual, f ≈ g indicates the existence of a universal constant B > 0 (independent of all
parameters involved) so that

(
1
B

)
f ≤ g ≤ Bf . In the sequel, C denotes a positive constant

which need not be the same at different occurrences. If w is a weight on R+, we denote
W (t) =

∫ t
0 w(s)ds.
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3 Convolutions of Orlicz-Lorentz Spaces

In the rest of this paper, G will be a unimodular locally compact abelian group, with Haar
measure μ. Let ϕ be a Young function. A generalized inverse function ϕ−1 : [0,∞] → [0,∞] is
defined as

ϕ−1(y) = inf{x ≥ 0, ϕ(x) > y}, where inf ∅ = ∞.

It is said in [3] that ϕi (i = 1, 2, 3) satisfy condition (+) for l.a. (s.a.) [a.a] if there exist k > 0,
δ > 0, such that

kuv ≤ ϕ1(u)ϕ−1
3 (ϕ2(v)) + ϕ2(v)ϕ−1

3 (ϕ1(u)),

when ϕ1(u) ≥ δ, ϕ2(v) ≥ δ (ϕ1(u) ≤ δ and ϕ2(v) ≤ δ) [u, v ≥ 0]. It is said that ϕi (i = 1, 2, 3)
satisfy condition (++) for l.a. (s.a.) [a.a], if for every α > 0, there exist k > 0, δ > 0, such that

αuv ≤ ϕ1(u)ϕ−1
3 (kϕ2(v)) + ϕ2(v)ϕ−1

3 (kϕ1(u)),

when ϕ1(u) ≥ δ, ϕ2(v) ≥ δ (ϕ1(u) ≤ δ and ϕ2(v) ≤ δ) [u, v ≥ 0]. [3, Prop. 2] showed that
condition (+) for l.a. (s.a.) [a.a] is equivalent to the following one: There exist l, δ > 0, such
that

ϕ−1
1 (u)ϕ−1

2 (u) ≤ luϕ−1
3 (u),

if u ≥ δ (u ≤ δ) [u ≥ 0].
Since G is a unimodular locally compact group, by virtue of the definition of convolution

(see [1]), Hewitt and Ross [4, Ch. 5, Sec. 20] indicated that the operator

T (f, g) = f ∗ g

satisfies that
‖T (f, g)‖1 ≤ ‖f‖1‖g‖1,

‖T (f, g)‖∞ ≤ ‖f‖1‖g‖∞,
‖T (f, g)‖∞ ≤ ‖f‖∞‖g‖1.

So such T is a convolution operator. Thus by [1],

(f ∗ g)∗∗(t) ≤
∫ ∞

t

f∗∗(u)g∗∗(u)du, t > 0. (3.1)

Lemma 3.1 Let w ∈ Bϕi (i = 1, 2) and w ≥ 1. Suppose that ϕi (i = 1, 2, 3) satisfy
condition (+) for a.a. and Iϕ1,w

(
2λ
k f

) ≤ 1
Bϕ1 (w) , Iϕ2,w(g) ≤ 1

Bϕ2 (w) (or Iϕ1,w(f) ≤ 1
Bϕ1 (w) ,

Iϕ2,w

(
2λ
k g

) ≤ 1
Bϕ2(w) ), where k is the constant from (+), so then Iϕ3,w(λf ∗ g) ≤ 1.

Proof By (3.1) we have

Iϕ3,w(λf ∗ g) =
∫ ∞

0

ϕ3(λ(f ∗ g)∗(t))w(t)dt

≤
∫ ∞

0

ϕ3

(
λ

∫ ∞

t

f∗∗(s)g∗∗(s)ds
)
w(t)dt

≤ 1
2

∫ ∞

0

ϕ3

( ∫ ∞

0

k · 2λ
k
f∗∗(s)g∗∗(s)χ(t,∞)(s)ds

)
w(t)dt.
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Since ϕi (i = 1, 2, 3) satisfy condition (+) for a.a. and w(s) ≥ 1, s > 0, the right hand of the
last inequality

1
2

∫ ∞

0

ϕ3

(∫ ∞

0

k · 2λ
k
f∗∗(s)g∗∗(s)χ(t,∞)(s)ds

)
w(t)dt

≤ 1
2

∫ ∞

0

ϕ3

(∫ ∞

0

ϕ1

(2λ
k
f∗∗(s)

)
w(s)ϕ−1

3 (ϕ2(g∗∗(s)χ(t,∞)(s)))ds
)
w(t)dt

+
1
2

∫ ∞

0

ϕ3

(∫ ∞

0

ϕ2(g∗∗(s)χ(t,∞)(s))w(s)ϕ−1
3

(
ϕ1

(2λ
k
f∗∗(s)

))
ds

)
w(t)dt. (3.2)

Since ∫ ∞

0

ϕ1

(2λ
k
f∗∗(s)

)
w(s)dt ≤ 1

Bϕ1(w)

∫ ∞

0

ϕ1

(2λ
k
f∗(s)

)
w(s)dt ≤ 1,

∫ ∞

0

ϕ2(g∗∗(s)χ(t,∞)(s))w(s)ds ≤ 1
Bϕ2(w)

∫ ∞

0

ϕ2(g∗(s))w(s)ds ≤ 1,

by Jensen’s inequality and ϕ3(ϕ−1
3 (t)) ≤ t, t > 0, we get that the right part of (3.2)

≤ 1
2

∫ ∞

0

∫ ∞

0

ϕ1

(2λ
k
f∗∗(s)

)
w(s)ϕ2(g∗∗(s)χ(t,∞)(s))w(t)dsdt

=
∫ ∞

0

ϕ1

(2λ
k
f∗∗(s)

)
w(s)ds

∫ s

0

ϕ2(g∗∗(s))w(t)dt

=
∫ ∞

0

ϕ1

(2λ
k
f∗∗(s)

)
w(s)ds

∫ ∞

0

ϕ2(g∗∗(t))w(t)dt ≤ 1.

Remark 3.1 If w ≥ 1 is replaced by w ≥ c (c > 0 is a nonnegative constant) in the
preceding lemma, then the result also holds.

The next theorems give sufficient conditions for embedding of the spaces Λϕ1(w) ∗ Λϕ2(w)
(lϕ1(w) ∗ lϕ2(w)) into Λϕ3(w) (lϕ3(w)).

Theorem 3.1 (I) Let G be nondiscrete, w ∈ Bϕi (i = 1, 2), w ≥ c (c > 0 be a nonnegative
constant) and ϕi (i = 1, 2, 3) satisfy condition (+) for l.a. if G is compact and (+) for a.a. if G
is noncompact. Then Λϕ1,w ∗Λϕ2,w ↪→ Λϕ3,w. If additionally ϕ3 is finite, then Eϕ1,w ∗Eϕ2,w ↪→
Eϕ3,w.

(II) Let G be discrete, w ∈ Bϕi (i = 1, 2), and ϕi satisfy (+) for s.a. Then lϕ1,w ∗ lϕ2,w ↪→
lϕ3,w and hϕ1,w ∗ hϕ2,w ↪→ hϕ3,w.

Proof (I) By [3] it is sufficient to prove only inclusion. Let first G be noncompact and
(+) for a.a. Take f ∈ Λϕ1,w and g ∈ Λϕ2,w satisfying max(Iϕ1,w(f), Iϕ2,w(g)) ≤ min

i=1,2

(
1

Bϕi
(w)

)
.

Then applying Lemma 3.1 with λ = k
2 , we obtain Iϕ3,w

(
k
2f ∗ g) ≤ 1, which means by [3, Thm.

1.2] that f ∗ g ∈ Λϕ3,w and Λϕ1,w ∗ Λϕ2,w ↪→ Λϕ3,w. If G is compact and ϕi (i = 1, 2, 3) satisfy
condition (+) for l.a., then by [3, Lem. 5] there exist functions ϕi (i = 1, 2, 3) satisfying (+)
for a.a. and equivalent to ϕi for l.a., which implies that Λϕi,w = Λϕi,w. Thus, the embedding
follows in the same way as the above.

To prove the inclusion Eϕ1,w∗Eϕ2,w ⊂ Eϕ3,w, take f ∈ Eϕ1,w, g ∈ Eϕ2,w. Let max(Iϕ1,w(f),
Iϕ2,w(g)) ≤ min

(
1, 1

Bϕ1(w) ,
1

Bϕ2 (w)

)
. For any β > 0, suppose λ = 2β. Then by (3.1) it follows
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that

Iϕ3,w(βf ∗ g) = Iϕ3,w

(λ
2
f ∗ g

)
=

∫ ∞

0

ϕ3

(λ
2
(f ∗ g)∗(t)

)
w(t)dt

≤
∫ ∞

0

ϕ3

(∫ ∞

0

λ

2
f∗∗(s)g∗∗(s)χ(t,∞)(s)ds

)
w(t)dt. (3.3)

Since w ∈ Bϕ1 and f ∈ Eϕ1,w, ∫ ∞

0

ϕ1(λf∗∗(t))w(t)dt <∞.

Thus we can choose t1 > 0 such that
∫ ∞
t1
ϕ1

(
2λ
k f

∗∗(t)
)
w(t)dt ≤ 1. Then the right side of (3.3)

≤ 1
2

∫ ∞

0

ϕ3

( ∫ t1

0

λf∗∗(s)g∗∗(s)χ(t,∞)(s)ds
)
w(t)dt

+
1
2

∫ ∞

0

ϕ3

(∫ ∞

t1

λf∗∗(s)g∗∗(s)χ(t,∞)(s)ds
)
w(t)dt

≤ 1
2

∫ ∞

0

ϕ3

( ∫ t1

0

λf∗∗(s)g∗∗(s)χ(t,∞)(s)ds
)
w(t)dt +

1
2
. (3.4)

Since f ∈ Eϕ1,w, there exists a constant u0 > 0, such that∫ T1

0

ϕ1

(4λ
k
f∗(s)

)
w(s)ds ≤ 1

Bϕ1(w)
, where T1 = μ{x : |f(x)| ≥ u0}.

Thus ∫ T1

0

ϕ1

(4λ
k
f∗∗(s)

)
w(s)ds

=
∫ T1

0

ϕ1

(4λ
k

(f∗(·)χ(0,T1)(·))∗∗(s)
)
χ(0,T1)(s)w(s)ds

≤ Bϕ1(w)
∫ T1

0

ϕ1

(4λ
k
f∗(s)

)
w(s)ds ≤ 1. (3.5)

Now we get∫ ∞

0

ϕ3

(∫ t1

0

λf∗∗(s)g∗∗(s)χ(t,∞)(s)ds
)
w(t)dt

=
∫ t1

0

ϕ3

( ∫ t1

t

λf∗∗(s)g∗∗(s)ds
)
w(t)dt

≤ 1
2

∫ t1

0

ϕ3

(∫ T1

t

2λf∗∗(s)g∗∗(s)ds
)
w(t)dt +

1
2

∫ t1

0

ϕ3

(∫ t1

T1

2λf∗∗(s)g∗∗(s)ds
)
w(t)dt

=
1
2
I1 +

1
2
I2.

But since each function in Λϕ(w) is locally integrable, we get f∗∗(T1) < ∞, g∗∗(T1) < ∞, and
thus

I2 ≤
∫ t1

0

ϕ3

(
2λu0

∫ t1

T1

g∗∗(s)ds
)
w(t)dt = ϕ3

(
2λu0

∫ t1

T1

g∗∗(s)ds
)
W (t1) <∞.
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On the other hand, in view of the condition (+), (3.5), Iϕ2,w(g) ≤ min
(
1, 1

Bϕ2(w)

)
and Jensen’s

inequality, we also know

I1 =
∫ t1

0

ϕ3

(∫ T1

0

2λf∗∗(s)g∗∗(s)χ(t,T1)(s)ds
)
w(t)dt

≤ 1
2

∫ t1

0

ϕ3

( ∫ T1

0

ϕ1

(4λ
k
f∗∗(s)

)
ϕ−1

3 (ϕ2(g∗∗(s)χ(t,T1)(s)))ds
)
w(t)dt

+
1
2

∫ t1

0

ϕ3

( ∫ T1

0

ϕ2(g∗∗(s)χ(t,T1)(s))ϕ
−1
3

(
ϕ1

(4λ
k
f∗∗(s)

))
ds

)
w(t)dt

≤
∫ t1

0

(∫ T1

0

ϕ1

(4λ
k
f∗∗(s)

)
ϕ2(g∗∗(s)χ(t,T1)(s))ds

)
w(t)dt

=
∫ T1

0

ϕ1

(4λ
k
f∗∗(s)

)( ∫ s

0

ϕ2(g∗∗(s))w(t)dt
)
ds

≤
∫ T1

0

ϕ1

(4λ
k
f∗∗(s)

)
ds

( ∫ ∞

0

ϕ2(g∗∗(t))w(t)dt
)

≤ 1.

Now, we see that the right hand of (3.4) is less than infinity, which completes the proof.
(II) For this case, using [3, Lem. 5], we can assume condition (+) for a.a., and get the

corresponding embedding by the same arguments as in (I).

Theorem 3.2 Let G be nondiscrete and ϕi (i = 1, 2, 3) satisfy condition (++) for l.a. if G
is compact and (++) for a.a. if G is noncompact. Let w ∈ Bϕi , i = 1, 2 and W (t) ≥ C1t, ∀0 <
t < μ(G), where C1 is a positive constant. If ϕ3 is finite, then Λϕ1,w ∗ Λϕ2,w ↪→ Eϕ3,w.

Proof Suppose that G is compact. Take f ∈ Λϕ1,w, g ∈ Λϕ2,w such that Iϕ1,w(f) ≤ C1
Bϕ1 (w) ,

Iϕ2,w(g) ≤ C1
Bϕ2 (w) . Let G1 = {x : ϕ1(|f(x)|) ≥ δ}, G2 = {x : ϕ2(|g(x)|) ≥ δ}, where δ is from

the condition (++) and a = min(μ(G1), μ(G2)). Let λ > 0. Then

Iϕ3,w(λf ∗ g) =
∫ μ(G)

0

ϕ3(λ(f ∗ g)∗(t))w(t)dt

=
∫ μ(G)

0

ϕ3(λ(fχG1 ∗ gχG2 + fχG\G1 ∗ g + fχG1 ∗ gχG\G2)
∗(t))w(t)dt

≤
∫ μ(G)

0

ϕ3

(
λ(fχG1 ∗ gχG2)

∗
( t

3

)

+ λ(fχG\G1 ∗ g)∗
( t

3

)
+ λ(fχG1 ∗ gχG\G2)

∗
( t

3

))
w(t)dt

≤ 1
3

∫ μ(G)

0

ϕ3

(
3λ(fχG1 ∗ gχG2)

∗
( t

3

))
w(t)dt

+
1
3

∫ μ(G)

0

ϕ3

(
3λ(fχG\G1 ∗ g)∗

( t
3

))
w(t)dt

+
1
3

∫ μ(G)

0

ϕ3

(
3λ(fχG1 ∗ gχG\G2)

∗
( t

3

))
w(t)dt

=
1
3
I1 +

1
3
I2 +

1
3
I3.
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First check I2 and I3.

I2 = 3
∫ μ(G)

0

ϕ3(3λ(fχG/G1 ∗ gχG2)
∗(s))w(3s)χ

(0, μ(G)
3 )

(s)ds

≤ 3
∫ μ(G)

0

ϕ3

(
3λϕ−1

1 (δ)
∫
G

|g|
)
w(3s)χ

(0,μ(G)
3 )

(s)ds

≤ ϕ3

(
3λϕ−1

1 (δ)
∫
G

|g|
) ∫ μ(G)

0

w(s)ds <∞.

Analogously, I3 <∞. On the other hand, if a = 0, then I1 = 0; if a �= 0, then

I1 = 3
∫ μ(G)

3

0

ϕ3(3λ(fχG1 ∗ gχG2)
∗(s))w(3s)ds

≤ 3
∫ μ(G)

3

0

ϕ3(3λ(fχG1 ∗ gχG2)
∗∗(s))w(3s)ds

≤ 3
∫ μ(G)

3

0

ϕ3

(
3λ

∫ ∞

s

(fχG1)
∗∗(t)(gχG2)

∗∗(t)dt
)
w(3s)ds

≤ 3
2

∫ a

0

ϕ3

(
6λ

∫ a

s

(fχG1)
∗∗(t)(gχG2)

∗∗(t)dt
)
w(3s)ds

+
3
2

∫ a

0

ϕ3

(
6λ

∫ ∞

a

(fχG1)
∗∗(t)(gχG2)

∗∗(t)dt
)
w(3s)ds

+ 3
∫ μ(G)

3

a

ϕ3

(
3λ

∫ ∞

s

(fχG1)
∗∗(t)(gχG2)

∗∗(t)dt
)
w(3s)ds

=
3
2
J1 +

3
2
J2 + 3J3.

But (fχG1)∗∗(t) ≤
∫

G1
|f |
t , (gχG2)∗∗(t) ≤

∫
G2

|g|
t , so∫ ∞

a

(fχG1)
∗∗(t)(gχG2)

∗∗(t)dt ≤
∫ ∞

a

1
t2

dt
∫
G1

|f |
∫
G2

|g| <∞.

Thus J2 <∞, likewise J3 <∞.

On the other hand, due to

ϕ1((fχG1)
∗∗(t)) ≥ ϕ1((fχG1)

∗(t)) > δ,

ϕ2((gχG1)
∗∗(t)) ≥ ϕ1((gχG1)

∗(t)) > δ, ∀t ∈ [0, a),

by the condition (++) we obtain

J1 ≤
∫ a

0

ϕ3

(
6λ

∫ a

s

(fχG1)
∗∗(t)(gχG2)

∗∗(t)dt
)
w(3s)ds

≤ 1
2

∫ a

0

ϕ3

(∫ a

s

ϕ1((fχG1)
∗∗(t))ϕ−1

3 (Kϕ2((gχG2)
∗∗(t)))dt

)
w(3s)ds

+
1
2

∫ a

0

ϕ3

(∫ a

s

ϕ2((gχG2)
∗∗(t))ϕ−1

3 (Kϕ1((fχG1)
∗∗(t)))dt

)
w(3s)ds

=
1
2
J4 +

1
2
J5,
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where K is from the condition (++) for α = 12λ. Since W (t) ≥ C1t, t ∈ [0, μ(G)], by Hardy
lemma (see [19]) we get

∫ a

s

ϕ1((fχG1)
∗∗(t))dt ≤

∫ μ(G)

0

ϕ1(f∗∗(t))dt ≤ 1
C1

∫ μ(G)

0

ϕ1(f∗∗(t))w(t)dt

≤ Bϕ1(w)
C1

∫ μ(G)

0

ϕ1(f∗(t))w(t)dt ≤ 1. (3.6)

In the same way,
∫ a
s ϕ2((gχG2)∗∗(t))dt ≤ 1. Thus, by Jensen’s inequality, (3.6), Hardy lemma,

and W ∈ Δ2,

J4 + J5 ≤ K

∫ a

0

∫ a

s

ϕ1(f∗∗(t))ϕ2(g∗∗(t))dtw(3s)ds

≤ K

∫ a

0

ϕ2(g∗∗(s))w(3s)
( ∫ a

s

ϕ1(f∗∗(t))dt
)
ds

≤ CK <∞,

which ends the proof.

Lemma 3.2 Let W ∈ Δ2. Then
(i) if w ∈ L1(G), S is dense in Λϕ,w, where S is the set of the simple functions in G;
(ii) if w �∈ L1(G), S0 is dense in Λϕ,w, where S0 is the subset of S with support in a set of

finite measures.

Proof Similar to Theorem 2.3.11 and Theorem 2.3.12 of [30].

From now on, let the weight w in Λϕ,w satisfy W ∈ Δ2.
Let fs(x) = f(x− s). Then we have the following result.

Proposition 3.1 If ϕ is finite, then for every f ∈ Λϕ,w, the mapping s → fs of G into
Λϕ,w is continuous.

Proof By Lemma 3.2, it is sufficient to show that for any simple function f , s → fs is

continuous. Let f =
n∑
i=1

kiχEi , and then fs =
n∑
i=1

kiχEi+s. Now

Iϕ,w(fs − f) =
∫ ∞

0

ϕ
([ n∑

i=1

ki(χEi+s − χEi)
]∗

(t)
)
w(t)dt

≤ ϕ
(

max
1≤i≤n

ki

)[
W

( n∑
j=1

λ((Ej + s) � Ej)
)]

→ 0 (s→ 0),

where � denotes the symmetric difference of sets. Then the following relation

Iϕ,w(fs − f) → 0 ⇔ ‖fs − f‖Λϕ,w → 0 (s→ 0)

derives the result.

Proposition 3.2 Let ϕ, ϕ̃ be two Young functions and lim
u→0

ϕ̃(u)
u > 0. Let w be a weight

on R+ which satisfies W (t) ≥ Ct, C > 0, w ∈ Bϕ, w ∈ Bϕ̃. Then there is an approximate
identity {aα} in Λϕ̃,w such that ‖aα‖Λϕ̃,w

= 1 and f ∗ aα → f for every f ∈ Λϕ,w.
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Proof Let {Uα} be a decreasing neighborhood system at the origin in G. For each α, there
exists a non-negative continuous function aα with support in Uα such that ‖aα‖Λϕ̃,w

= 1. Thus
by the Hardy lemma (see [19]), the conditions W (t) ≥ Ct and lim

u→0

ϕ̃(u)
u > 0, we get aα ∈ L1(G)

and ‖aα‖L1(G) ≤ C. Let f ∈ Λϕ,w. Then by the condition lim
u→0

ϕ̃(u)
u > 0 again and Theorem

3.1, we get f ∗ aα ∈ Λϕ,w and

‖f ∗ aα − f‖Λϕ,w =
∥∥∥ ∫

G

(
fy(·) − f(·))aα(y)dλ(y)

∥∥∥
Λϕ,w

≤ C

∫
G

‖fy − f‖Λϕ,waα(y)dλ(y)

≤ C sup
y∈Uα

‖fy − f‖Λϕ,w .

This shows by Proposition 3.1 that

‖f ∗ aα − f‖Λϕ,w → 0,

where the limit is taken over the net of α.

4 Tensor Products and Multipliers on Orlicz-Lorentz Spaces

In this section, we let G be a locally compact unimodular group (unless otherwise indicated).
Set f̃(x) = f(x−1). If for two Young functions ϕi (i = 1, 2) and a weight w on R+ there exists
a Young function ϕ3 which makes ϕi (i = 1, 2, 3) satisfy condition (+) for l.a., if G is compact
and (+) for a.a., if G is noncompact, w ∈ Bϕi (i = 1, 2), and w ≥ c (c > 0 is a nonnegative
constant), then in view of Theorem 3.1 we may define the bounded bilinear map d as

d(f, g) = f̃ ∗ g, f ∈ Λϕ1,w, g ∈ Λϕ2,w,

which lifts to a linear map naturally, D, from Λϕ1,w ⊗γ Λϕ2,w into Λϕ3,w. In addition, letting
w ∈ Bϕ̃ and lim

u→0

ϕ̃(u)
u > 0, by Theorem 3.1 again, we can get that Λϕ1,w, Λϕ2,w can be looked

as right Λϕ̃,w-modules.

Definition 4.1 The range of D, with the quotient norm, will be denoted by Aϕ2
ϕ1

(w).

According to the definition of V ⊗γ W , Aϕ2
ϕ1

(w) consists of exactly those functions h, on G

at least one expansion of the form h =
∞∑
i=1

f̃i ∗ gi, where f ∈ Λϕ1,w, g ∈ Λϕ2,w, and

∞∑
i=1

‖fi‖Λϕ1,w‖g‖Λϕ2,w <∞,

and for any h ∈ Aϕ2
ϕ1

(w), the norm of h is

‖h‖ = inf
{ ∞∑
i=1

‖fi‖Λϕ1,w‖gi‖Λϕ2,w ; h =
∞∑
i=1

f̃i ∗ gi, f ∈ Λϕ1,w, g ∈ Λϕ2,w

}
.

It can be seen that Aϕ2
ϕ1

(w) is a Banach space of functions.
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Let K be the closed linear subspace of Λϕ1,w ⊗γ Λϕ2,w spanned by all elements of the form
(h ∗ f) ⊗ g − f ⊗ (h̃ ∗ g), where f ∈ Λϕ1,w, g ∈ Λϕ2,w and h ∈ Λϕ̃,w. Then the Λϕ̃,w-module
tensor product Λϕ1,w ⊗Λϕ̃,w

Λϕ2,w is the quotient space
(
Λϕ1,w ⊗γ Λϕ2,w

)
/K.

In the next, we need the following conditions for weight w on R+ and Young functions
ϕ1, ϕ2, ϕ̃.

(i) w ≥ c (c > 0 is a nonnegative constant).
(ii) w ∈ Bϕi (i = 1, 2).
(iii) w ∈ Bϕ̃ and lim

u→0

ϕ̃(u)
u > 0.

(iv) There exists a Young function ϕ3 which makes ϕi (i = 1, 2, 3) satisfy condition (+) for
l.a., if G is compact and (+) for a.a., if G is noncompact.

(v) w ∈ Bϕ2∗ and lim
u→0+

(ϕ2∗)−1(u)

ϕ−1
1 (u)

> 0.

Remark 4.1 By [6], if

E2 =
{
(x, y) : x ≥ 0, 0 ≤ y ≤ ϕ−1

1 (x)ϕ−1
2 (x)

x

}
and E2 = convex closure of E2, then E2 �= first quadrant can deduce (iv).

Theorem 4.1 Let G be compact, weight w be nonincreasing and Young functions ϕ1, ϕ2,
ϕ̃ satisfy (i)–(iv). Then Λϕ1,w ⊗Λϕ̃,w

Λϕ2,w is isomorphic to the space Aϕ2
ϕ1

(w).

Proof It suffices to show that the kernel of D is exactly K. Since

D((h ∗ f) ⊗ g) = (h ∗ f)˜∗ g = f̃ ∗ (h̃ ∗ g) = D(f ⊗ (h̃ ∗ g))
(d is Λϕ̃,w-balanced), the kernel of D contains K.

On the contrary, suppose that t is an element of the kernel of D. Then

t =
∞∑
i=1

fi ⊗ gi with
∞∑
i=1

‖fi‖Λϕ1,w‖g‖Λϕ2,w <∞

and ∞∑
i=1

f̃i ∗ gi = 0,

where the summation converges in Λϕ3,w. Let {ψn} be an approximate identity of Λϕ̃,w satis-
fying the condition in Proposition 3.2. For each n, define tn ∈ Λϕ1,w ⊗γ Λϕ2,w by

tn =
∞∑
i=1

(fi ∗ ψn) ⊗ gi.

Then, from Proposition 3.2, fi ∗ ψn converges to fi for each i, and by this one can prove that
tn converges to t in Λϕ1,w ⊗γ Λϕ2,w. Now given n, s, and ε > 0, choose m0 such that

∥∥∥ m∑
i=1

f̃i ∗ gi
∥∥∥

Λϕ3,w

≤ ε

2‖ψn‖Λϕ1,w

, ∀m > m0.

Choose m1 > m0 so that
∥∥∥tn −

m∑
i=1

(fi ∗ ψn) ⊗ gi

∥∥∥ < ε

2
, ∀m > m1.
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We observe that the second term on the right side of the following equality

m∑
i=1

(fi ∗ ψn) ⊗ gi =
m∑
i=1

ψn ⊗ (f̃i ∗ gi) +
m∑
i=1

[(fi ∗ ψn) ⊗ gi − ψn ⊗ (f̃i ∗ gi)]

is in K and can be written∥∥∥ m∑
i=1

ψn ⊗ (f̃i ∗ gi)
∥∥∥ =

∥∥ψn∥∥Λϕ1,w

∥∥∥ m∑
i=1

f̃i ∗ gi
∥∥∥

Λϕ2,w

by the definition of the cross norm. Let ϕ(y) = sup
x≥0

[ϕ2(xy)−ϕ3(x)]. Since μ(G) <∞, 1 ∈ Λϕ,w,

similar to proving the theorem of Andô [31, Thm. 4, 6, Thm. 2.3], we easily get

Λϕ3,w ⊂ Λϕ2,w.

Thus ∥∥∥ m∑
i=1

ψn ⊗ (f̃i ∗ gi)
∥∥∥ ≤ C‖ψn‖Λϕ1,w

∥∥∥ m∑
i=1

f̃i ∗ gi
∥∥∥

Λϕ3,w

≤ C‖ψn‖Λϕ1,w

ε

2‖ψn‖Λϕ1,w

=
Cε

2
.

Then the distance from tn to K is less than (1+C)ε
2 for every ε > 0, and so tn ∈ K. For K is

closed, t ∈ K.

Lemma 4.1 Suppose that weight w is on R+ and Young functions ϕ1, ϕ2, ϕ̃ satisfy (i)–(iii)
and (v). Let ϕ ∈ Cc(G) and define Tϕf = f ∗ ϕ for f ∈ Λϕ1,w. Then

Tϕ ∈ HomΛϕ̃,w
(Λϕ1,w, (Λϕ2,w)∗).

Proof It is obvious that ϕ ∈ Λψ,w with ψ a Young function. By [26], since w ≥ c (c > 0 is
a nonnegative constant), there holds

(Λϕ2,w)∗ = Mϕ2∗,w, (4.1)

where ‖f‖Mϕ2∗,w = ‖S(f∗)‖Lϕ2∗,w , S(f) =
∫

t
0 f(s)ds

W (t) . In view of lim
u→0+

(ϕ2∗)−1(u)

ϕ−1
1 (u)

> 0 and a

simple fact that the function u(ϕ2∗)−1(u)

ϕ−1
1 (u)

is increasing, there exists a Young function ϕ such
that

ϕ−1
1 (u)ϕ−1(u) ≤ u(ϕ∗

2)
−1(u), ∀u ≥ 0,

i.e., ϕ1, ϕ, ϕ
∗
2 satisfy (+) a.a. So by Theorem 3.1 and (4.1), it follows that if f ∈ Λϕ1,w, then

f ∗ ϕ ∈ Λϕ2∗,w ⊂Mϕ2∗,w = (Λϕ2,w)∗,

and Tϕ is a bounded linear operator from Λϕ1,w to
(
Λϕ2,w

)∗. On the other hand,

Tϕ(g ∗ f) = (g ∗ f) ∗ ϕ = g ∗ (f ∗ ϕ) = g ∗ Tϕf

for all f ∈ Λϕ1,w and g ∈ Λϕ̃,w, which ends the proof.

The above lemma induces the following concept.
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Definition 4.2 A locally compact unimodular group G is said to satisfy the property
Pϕ1,ϕ2
ϕ̃ (w), if every element of HomΛϕ̃,w

(Λϕ1,w, (Λϕ2,w)∗) can be approximated in the ultraweak
∗-operator topology by operators Tϕ, ϕ ∈ Cc(G).

Theorem 4.2 Let G be a locally compact unimodular group, w be a weight on R+ and
Young functions ϕ1, ϕ2, ϕ̃ satisfy (i)–(v). Then the following statements are equivalent:

(A) G satisfies the property Pϕ1,ϕ2
ϕ̃ (w).

(B) The kernel of D is K such that

Λϕ1,w ⊗Λϕ̃,w
Λϕ2,w

∼= Aϕ2
ϕ1

(w).

Proof Suppose that G satisfies the property Pϕ1,ϕ2
ϕ̃ (w). Since K ⊂ Ker D, to show that

KerD = K, it is enough to show that KerD ⊂ K. In other words, it suffices to show that by
the Banach theorem, any bounded linear functional on Λϕ1,w ⊗Λϕ̃,w

Λϕ2,w which annihilates K
also annihilates KerD. By (1.1), we know

HomΛϕ̃,w
(Λϕ1,w, (Λϕ2,w)∗) ∼= (Λϕ1,w ⊗Λϕ̃,w

Λϕ2,w)∗. (4.2)

It can be seen from this that if F is a linear functional that annihilates K, there is an operator
T ∈ HomΛϕ̃,w

(Λϕ1,w, (Λϕ2,w)∗) corresponding to F , such that

〈t, F 〉 =
∞∑
i=1

〈gi, T fi〉 (4.3)

for all t ∈ Λϕ1,w ⊗Λϕ̃,w
Λϕ2,w with expansion

t =
∞∑
i=1

fi ⊗ gi. (4.4)

Suppose that t ∈ KerD and has the form (4.4). Then

∞∑
i=1

f̃i ∗ gi = 0,

the summation converging in the norm of Λϕ3,w. We will show that 〈t, F 〉 = 0, or equivalently,
by (4.3),

∞∑
i=1

〈gi, T fi〉 = 0. (4.5)

Since G is assumed to satisfy the property Pϕ1,ϕ2
ϕ̃ (w), there is a net {ψj : j ∈ I} of Cc(G) such

that the operators Tψj converge to T in the ultraweak ∗-operator topology. Thus

∞∑
i=1

〈gi, T fi〉 = lim
j∈I

∞∑
i=1

〈gi, Tψjfi〉 = lim
j∈I

∞∑
i=1

〈gi, fi ∗ ψj〉.

So, to check (4.5), it is enough to show that

∞∑
i=1

〈gi, fi ∗ ψj〉 = 0, ∀j ∈ I.
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Since ψj ∈ Cc(G) ⊂ (Λϕ3,w)∗, we deduce that

∞∑
i=1

〈gi, fi ∗ ψj〉 =
∞∑
i=1

〈f̃i ∗ gi, ψj〉 =
〈 ∞∑
i=1

f̃i ∗ gi, ψj
〉

= 0.

This implies that
Λϕ1,w ⊗Λϕ̃,w

Λϕ2,w
∼= Aϕ2

ϕ1
(G,w).

Suppose conversely that KerD = K. To show that the operators of the form Tϕ of ϕ ∈ Cc(G)
are dense in

HomΛϕ̃,w
(Λϕ1,w, (Λϕ2,w)∗)

in the ultraweak ∗-operator topology, we only need to show that the corresponding functionals
are dense in (Λϕ1,w ⊗Λϕ̃,w

Λϕ2,w)∗ in the weak ∗-topology. Furthermore, it is sufficient to
show that if these functionals, say N , are viewed as functionals on Λϕ1,w ⊗γ Λϕ2,w, then their
annihilators N⊥ = K. Since

Λϕ1,w ⊗Λϕ̃,w
Λϕ2,w = (Λϕ1,w ⊗γ Λϕ2,w)/K

and
((Λϕ1,w ⊗γ Λϕ2,w)/K)∗ ∼= K⊥

(see [32]), we have N ⊂ K⊥. So K ⊂ N⊥. Due to the assumption that KerD = K, we only
need to prove that N⊥ ⊂ KerD.

Now, let t ∈ N⊥. Then 〈t, F 〉 = 0 for all F ∈ N and there exist fi ∈ Λϕ1,w, gi ∈ Λϕ2,w, so
that

t =
∞∑
i=1

fi ⊗ gi,

∞∑
i=1

‖fi‖Λϕ1,w‖g‖Λϕ2,w <∞.

For any F ∈ N , there is an operator Tϕ ∈ HomΛϕ̃,w
(Λϕ1,w, (Λϕ2,w)∗) corresponding to F such

that

〈t, F 〉 = 〈t, Tϕ〉 =
∞∑
i=1

〈gi, Tϕfi〉

=
∞∑
i=1

〈f̃i ∗ gi, ϕ〉 =
〈 ∞∑
i=1

f̃i ∗ gi, ϕ
〉

= 0.

It follows that

D(t) =
∞∑
i=1

f̃i ∗ gi = 0,

that is, N⊥ ⊂ KerD. This proves the theorem.

Then by (4.1)–(4.2), we have the following result.

Corollary 4.1 Let G be a locally compact unimodular group, w be a weight on R+, Young
functions ϕ1, ϕ2, ϕ̃ satisfy (i)–(v), and G satisfy the property Pϕ1,ϕ2

ϕ̃ (w). Then

HomΛϕ̃,w
(Λϕ1,w,Mϕ2∗,w) ∼= (Aϕ2

ϕ1
(G,w))∗. (4.6)
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In the following, we illustrate the convolutions, tensor products, multipliers of Orlicz-Lorentz
spaces Λp,qϕ,w. Let 0 < p, q < ∞, w be a weight on R+ and ϕ be a Young function, and define
the Orlicz-Lorentz space as Λp,qϕ,w = Λϕ0,w0 , where ϕ0 = ϕq, w0 = W

q
p−1w. Simultaneously, we

introduce a modular of M(G,μ) as

Θϕ,w(f) =
∫ ∞

0

ϕ(f∗∗(x))w(x)dx,

and the modular space as

Γϕ,w = {f ∈ M(G,μ) : ∃ λ > 0, such that Θϕ,w(λf) <∞},

which induces
‖f‖Γϕ,w = inf

{
λ > 0 : Θϕ,w

(f
λ

)
< 1

}
.

Additionally, let Θp,q
ϕ,w(f) = Θϕ0,w0(f), Γp,qϕ,w = Γϕ0,w0 , where ϕ0 = ϕq, w0 = W

q
p−1w.

The next theorem needs a certain generalized Hardy-type inequality (see [33]). In [33, Thm.
1.7], Bloom and Kerman give the sufficient and necessary condition of establishing the weighted
integral inequality:

ϕ−1
2

( ∫
ϕ2(w(x)|Tf(x)|)t(x)dx

)
≤ ϕ−1

1

(∫
ϕ1(Cu(x)|f(x)|)v(x)dx

)
,

where ϕ1, ϕ2 are N -functions (an N -function ϕ is a continuous Young function such that ϕ(x) =
0 if and only if x = 0 and lim

x→0

ϕ(x)
x = 0, lim

x→0

ϕ(x)
x = +∞) and T is a generalized Hardy operator.

We need the special form of the above inequality:∫ ∞

0

ϕs
(∣∣∣ ∫ t

0

f(x)dx
∣∣∣) 1
t

s
r +1

dt ≤
∫ ∞

0

ϕs(C|f(x)|)ϕ
s(t)
t

s
r +1

dt, (4.7)

which holds if and only if there exists a positive constant D such that∫ x

0

(ϕs)∗
( ϕs(λ)y

s
r +1

Dλϕs(y)x
s
r

)ϕs(y)
y

s
r +1

dy ≤ ϕs(λ)x−
s
r , ∀x, λ > 0. (4.8)

When ϕ(t) = t, (4.7) is a classical Hardy inequality (see [19]) and it is obvious that (4.8) always
holds.

Now we have the following theorem.

Theorem 4.3 Let G be a unimodular locally compact group, T be a convolution operator
k = T (f, g) = f ∗ g. Suppose that the following conditions hold: (a1) 1

p1
+ 1

p2
> 1; (a2)

w ≥ c1 > 0, where c1 is a constant; (a3) ϕ(t) ≤ c2t, where c2 is a constant, ϕ ∈ Δ′; (a4)
ϕq1 , ϕq2 are N -functions. Then there exists a constant C such that

Θr,s
ϕ,w(k) ≤ C[Θp1,mq1

ϕ,w (f)]
s

mq1 [Θp2,mq2
ϕ,w (g)]

s
mq2 , ∀f ∈ Γp1,q1ϕ,w , g ∈ Γp2,q2ϕ,w ,

where 1
p1

+ 1
p2

= 1 + 1
r ,

s
q1

+ s
q2

= m and s ≥ 1 is a number such that 1
q1

+ 1
q2

≥ 1
s and the

inequality (4.8) holds. In particular, if f ∈ Γp1,q1ϕ,w , g ∈ Γp2,q2ϕ,w , then k ∈ Γr,sϕ,w.

Proof Since (see [1–2])

(f ∗ g)∗∗(t) ≤
∫ ∞

t

f∗∗(u)g∗∗(u)du,
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we get

Θr,s
ϕ,w(k) ≤

∫ ∞

0

ϕs
(∫ ∞

x

f∗∗(t)g∗∗(t)dt
)
W (x)

s
r −1w(x)dx.

For convenience, let f∗∗g∗∗ = h. Then

Θr,s
ϕ,w(k) ≤

∫ ∞

0

ϕs
(∫ ∞

x

h(t)dt
)
W (x)

s
r −1w(x)dx

=
∫ ∞

0

ϕs
[ ∫ ∞

W−1( 1
y )

h(t)dt
] dy
y

s
r +1

=
∫ ∞

0

ϕs
[ ∫ y

0

h
(
W−1

( 1
u

)) 1

u2w
(
W−1

(1
u

))du
] dy
y

s
r +1

.

And by (4.8) it follows that the right part of the last inequality∫ ∞

0

ϕs
[ ∫ y

0

h
(
W−1

(1
u

)) 1

u2w
(
W−1

( 1
u

))du
] dy
y

s
r +1

≤ C

∫ ∞

0

ϕs
[
h
(
W−1

(1
y

)) 1

y2w
(
W−1

(1
y

))]ϕs(y)
y

s
r +1

dy.

Now letting y = 1
W (x) and noticing w(t) ≥ c > 0, ϕ ∈ Δ′ and ϕ(t) ≤ Ct, we have

Θr,s
ϕ,w(k) ≤ C

∫ ∞

0

[ϕ(W 2(x)h(x))]s
ϕs

( 1
W (x)

)
W (x)

s
rw(x)

W (x)
dx

≤ C

∫ ∞

0

[ϕ(f∗∗(x))ϕ(g∗∗(x))W (x)
1
r +1]s

w(x)
W (x)

dx

= C

∫ ∞

0

[W (x)
1

p1 ϕ(f∗∗(x))]s

W (x)
s

mq1

[W (x)
1

p2 ϕ(g∗∗(x))]s

W (x)
s

mq2
w(x)dx.

By Hölder inequality, it is easy to get that

Θr,s
ϕ,w(k) ≤ C

[ ∫ ∞

0

[W (x)
1

p1 ϕ(f∗∗(x))]mq1

W (x)
w(x)dx

] s
mq1

·
[ ∫ ∞

0

[W (x)
1

p2 ϕ(g∗∗(x))]mq2

W (x)
w(x)dx

] s
mq2

= C[Θp1,mq1
ϕ,w (f)]

s
mq1 [Θp2,mq2

ϕ,w (g)]
s

mq2 .

On the other hand, we can get that Γp1,q1ϕ,w ⊂ Γp1,mq1ϕ,w and Γp2,q2ϕ,w ⊂ Γp2,mq2ϕ,w (one can take the
same method which is used for the proof of Λr,s1G (w) ⊂ Λr,s2G (w) if s1 < s2 (see [30])). Now the
lemma is proved.

Remark 4.2 In view of the above theorem, we obtain

Γp1,q1ϕ,w ∗ Γp2,q2ϕ,w ↪→ Γr,sϕ,w,

if ϕ, w, p1, p2, q1, q2, r, s satisfy the conditions in the above theorem. At the same time, if
there exists a constant C0 > 0 such that

Θp,q
ϕ,w(f) ≤ C0I

p,q
ϕ,w(f)
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for any 0 < p, q <∞, where Ip,qϕ,w(f) = Iϕ0,w0(f), ϕ0 = ϕq, w0 = W
q
p−1w and Iϕ,w(f) is defined

in Section 2, then we get
Λp1,q1ϕ,w ∗ Λp2,q2ϕ,w ↪→ Λr,sϕ,w, (4.9)

and Λp,qϕ,w is Λϕ,w-module. Especially, if ϕ(t) = t, w(t) = 1, 1 ≤ p1, p2 < ∞, 1 < q1, q2 < ∞
(obviously they satisfy the preceding conditions), then (4.9) is

Lp1,q1 ∗ Lp2,q2 ↪→ Lr,s.

Additionally, using (4.9) and the same method in Theorem 4.1, Theorem 4.3 and Corollary 4.1,
we can get the representations of the tensor products and multipliers on Λp,qϕ,w, which contain
the result of [13].
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